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Abs t rac t 
We develop a qualitative method for under­
standing and representing phase space struc­
tures of complex systems. To demonstrate this 
method, a program called MAPS has been con­
structed that understands qualitatively differ­
ent regions of a phase space and represents and 
extracts geometric shape information about 
these regions, using deep domain knowledge of 
dynamical system theory. Given a dynamical 
system specified as a system of governing equa­
tions, MAPS applies a successive sequence of 
operations to incrementally extract the qual­
itative information and generates a complete, 
high level symbolic description of the phase 
space structure, through a combination of nu­
merical, combinatorial, and geometric compu­
tations and spatial reasoning techniques. The 
high level description is sensible to human be­
ings and manipulable by other programs. We 
are currently applying the method to a difficult 
engineering design domain in which controllers 
for complex systems are to be automatically 
synthesized to achieve desired properties, based 
on the knowledge of the phase space "shapes" 
of the systems. 

1 I n t r o d u c t i o n 
Analysis of dynamical systems via phase space structures 
plays an increasingly important role in experimenting, 
interpreting, and controlling complex systems [Abelson 
and Sussman, 1989a; Abelson et al, 1989b]. Nonlin­
ear systems usually fall outside the domain of tradi­
tional analysis, such as Fourier analysis for linear sys­
tems. However, most of the important qualitative be­
haviors of a nonlinear system can be made explicit in 
the phase space with a phase space analysis. 
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We have constructed a program, MAPS 1 , for under­
standing and representing qualitative structures of phase 
spaces through a combination of numerical, combinato­
rial, and geometric computations and techniques of spa­
tial reasoning. MAPS uses theoretical knowledge about 
nonlinear dynamical systems. We wi l l i l lustrate our tech­
niques of extracting and representing the qualitative fea-
tures of the phase space structures wi th two and three 
dimensional systems. The techniques presented in this 
paper also apply to higher dimensional systems. 

Complex systems are often nonlinear and high dimen­
sional. Our theoretical knowledge about nonlinear dy­
namical systems is far from complete. Therefore, many 
engineering applications reply on extensive numerical ex­
periments. A numerical simulation typically generates 
an immense amount of quantitative information about a 
complex system. To interpret the numerical result and to 
use the information for engineering designs, it is essen­
tial to develop qualitative methods that automatically 
analyze the system, extract the qualitative features, and 
represent them in a high level description sensible to hu­
man beings and manipulable by other programs. 

This paper demonstrates a qualitative method 
for automatically understanding and representing the 
"shapes" of dynamical systems. Our ult imate goal is to 
develop a class of intelligent and autonomous controllers 
that understand the phase spaces of complex systems, 
sense the world, synthesize control commands, and af­
fect the processes. For example, an intelligent controller 
would balance an inverted pendulum that is mounted on 
a moving cart pulled by a motor, through qualitatively 
analyzing the pendulum system, monitoring the motion 
of the system, and commanding the motor, much like 
what one would do to balance a broom on its end with a 
hand. Accomplishing such difficult tasks by autonomous 
robots would be hard to imagine without their under­
standing of the qualitative behaviors of the systems, es­
pecially when the systems are of high order and operate 
in nonlinear regimes. We are particularly interested in 
automating the control analysis and synthesis for a class 
of nonlinear systems that do not lend themselves easily 
to tradit ional analysis and design techniques. 

1MAPS stands for Modeler and Analyzer for Phase 
Spaces. See [Zhao, 1991a] for more detailed discussions on 
the program. 
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2 A u t o m a t e d Qua l i t a t i ve Analysis of 
Phase Space St ruc tures 

The phase spaces of nonlinear dynamical systems often 
consist of qualitatively different regions. The "shapes" 
of dynamical systems refer to the geometric information 
about the structures and spatial arrangements of these 
regions. A key component of the qualitative analysis 
of the "shapes" is to determine the stability regions of 
the dynamical system. The geometric information about 
the stabil i ty regions is extremely useful in analyzing sta­
bilities of control designs for complex systems, such as 
electric power systems and mechanical control systems, 
as well as in economics, ecology, etc. 

MAPS understands qualitatively different regions and 
extracts and represents geometric shape information 
about these regions. Given a dynamical system specified 
as a system of governing equations, MAPS generates a 
complete, high level symbolic description of the phase 
space structure as the result of the analysis. The high 
level description can be used as input to other programs 
for further computations. 

2.1 T h e q u a l i t a t i v e phase space s t ruc tu res 

We are interested in representing the qualitative features 
of dynamical systems for engineering analysis and de­
sign. For this purpose, the qualitative phase space struc­
ture of a dynamical system within the phase space region 
of interest is characterized by the equilibrium points and 
limit cycles and their stabil i ty types, the geometric struc­
tures of stabil ity regions associated with the attractors, 
and the spatial arrangement of the equilibrium points, 
l imit cycles, and stabil i ty regions. 

We review some of the basic concepts in dynamical 
system theory in order to describe the qualitative phase 
space structures. The equilibrium points of a dynam­
ical system x1 = / ( x , u ) , where u is a parameter, are 
the zeros of the vector field f(x,u) : Rn —► Rn. Struc­
turally stable systems [Guckenheimer and Holmes, 1983] 
can have equil ibrium points of three types: stable equi­
l ibrium points (attractors), unstable equilibrium points 
(repellors), and nonstable equil ibrium points (saddles), 
whose local behaviors in phase spaces are shown in Fig­
ure 1. An attractor is an equil ibrium point that nearby 
trajectories approach in forward time. A repellor is the 
one that repels nearby trajectories and can be thought 
of as an attractor in reverse t ime. Trajectories approach 
a saddle in some directions and leave it in the other di­
rections. For example, the downward resting state of 
a damped pendulum is an attractor and the upward 
state is a saddle. The equil ibr ium points are asymp­
totic behaviors of dynamical systems. The other classes 
of asymptotic behaviors are l imi t cycles, quasi-periodic 
orbits, and chaotic attractors. Although our techniques 
apply to l imi t cycles and quasi-periodic orbits, we shall 
not discuss them in detail in this paper. 

The collection of trajectories approaching an equilib­
rium point is called the stable trajectories of the point; 
and the collection of trajectories leaving an equilibrium 
point is called the unstable trajectories of the point. A 
saddle has stable trajectories along some directions and 

Figure 1: Equil ibrium points: (a) attractors, (b) repel­
lors, and (c) saddles. 

unstable trajectories along the other directions. The 
union of the stable trajectories of an attractor is its sta­
bility region, often called the basin of attraction. The 
important concept of stability is associated wi th the sta­
bility regions. The stability region of an attractor is a 
simply connected and open region, either bounded or un­
bounded. Every trajectory start ing in the region wil l be 
attracted to the attractor, by definition. The boundary 
of the region contains saddles or repellors only. The re­
gion is unbounded if the boundary contains no repellors. 

2.2 A u t o m a t e d q u a l i t a t i v e analysis 

Our algorithm for determining stability boundaries is 
based on a crucial theoretical result characterizing the 
stability boundaries of a fairly large class of dynamical 
systems. Under certain weak conditions the result of 
Chiang et al [Chiang ct al., 1988] shows that the sta­
bility boundary for an attractor consists of the stable 
trajectories of equilibrium points and l imi t cycles whose 
unstable trajectories approach the attractor. This allows 
us to numerically determine a collection of trajectory 
points on the stability boundary through calculations of 
the stable and unstable trajectories. 

We need to extract the geometric information about 
the stability regions from the numerical results about the 
stability boundaries, and represent it parsimoniously so 
as to facilitate further computations. For example, the 
representation is to be used to estimate the volumes of 
the stability regions, to reason about the spatial relations 
with the stability boundaries, to compute topological 
properties of the regions, to extract information about 
trajectory flows, etc. Given a set of trajectory points 
on the stability boundary, the minimal representation— 
the one with fewest edges and preserving topological 
structures—is the polyhedron having those boundary 
points as vertices. Furthermore, the polyhedron is con­
tained in the convex hull of the boundary points. 

The geometric information about a stability region is 
represented as a polyhedron, t ightly stretched over the 
trajectory points on the stability boundary. Extraction 
of the polyhedral approximation proceeds in two steps: 
computing a triangulation of the convex hull containing 
the polyhedron, and eliminating exterior triangles. The 
convex hull is computed and tessellated wi th simplices 
(triangles, tetrahedra, etc.) by a triangulation method— 
the Delaunay triangulation. The polyhedral approxi­
mation is then extracted by a "sculpture method" used 
in visual information representation [Boissonnat, 1984]. 
Simplices exterior to the polyhedron are eliminated by 
heuristic rules. 
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2.3 T h e a l g o r i t h m 
We present the following algorithm for analyzing, ex­
tracting, and representing qualitative features of a dy­
namical system of any order in the phase space. 

( I ) I d e n t i f y q u a l i t a t i v e behav io rs : 
(a) locate equil ibrium points/ l imi t cycles and classify 

their stability types; 
(b) compute stable and unstable trajectories for each 

saddle/l imit cycle; 
(c) identify those saddles/limit cycles whose unstable 

trajectories approach an attractor; 
(d) the stability boundary for the attractor is the 

union of the stable trajectories of those sad­
dles/l imit cycles identified in (c); 

(e) check if consistency rules are violated. If yes, look 
for missing equil ibrium points/ l imit cycles and go 
to step (a). Otherwise, go to the next step. 

(2) E x t r a c t geomet r i c s t ruc tu res : 
(a) for each attractor, collect stability boundary 

points; 
(b) tessellate the convex hull of the boundary points 

with a tr iangulation; 
(c) extract a polyhedral approximation to the stabil­

i ty region. 
(3) S u m m a r i z e q u a l i t a t i v e behav io rs : 

(a) compile the phase space data structure from 
step 1 into a relational graph; 

(b) augment the graph with the geometric structure 
from step 2; 

(c) report the graph as the output. 

The set of consistency rules specify the conditions for 
the stability boundaries and are used in the algorithm 
to automatically locate missing saddles. 

1. The Existence Rule: Every stability region of an at-
tractor has a boundary in a phase space with mul­
tiple attractors; 

2. The Separation Rule: Separatrices either form a 
closed surface or become unbounded on all ends. 

The first rule states the existence of stability bound­
aries in a phase space with multiple attractors. The sec­
ond rule describes the separation property of multiple 
stability regions. The separatrices are stability bound­
aries that separate two stability regions. 

The first step of our algorithm is based on a numerical 
method proposed by Parker and Chua [Parker and Chua, 
1989] for numerically determining stability boundaries 
of planar systems. We have augmented their method 
with the set of consistency rules they suggested to auto­
mate the locating of saddles. Since the Newton-Raphson 
method used in finding equilibrium points requires an 
init ial guess, Parker-Chua's method uses a grid to set up 
init ial guesses and is able to find all the stable and un­
stable equil ibrium points under normal circumstances. 
However, they require that the init ial guesses for saddles 
be provided manually by the user. We seek to automate 
saddle locating by focusing the search for missing saddles 
on the most likely places using partial boundary informa­
tion already obtained, or by refining the init ial guesses 

for the Newton-Raphson method. We want to empha­
size that our algorithm is valid for higher dimensional 
systems as well and generates a symbolic description of 
the phase space structure. Parker-Chua's method is de­
signed for numerically analyzing planar systems only. 

MAPS uses our algorithm to analyze the qualitative 
behaviors of nonlinear dynamical systems. It is imple­
mented in Scheme, a dialect of LISP. Al l the numerical 
routines are implemented in Scheme as well. Figure 2 
shows the flow chart of MAPS. The input to MAPS is a 
system of governing equations for a dynamical system. 

2.4 T h e m a i n i l l u s t r a t i o n 
We illustrate how MAPS is used to compute the high 
level description of a dynamical system wi th an example. 
Consider a 2nd order nonlinear system 

(1) 

where u is a parameter. For the parameter value u = 
0.2, the vector field within the region 
and is shown in Figure 3(a). We use 
the algorithm to analyze the qualitative behavior of the 
system within this region. 

The equil ibrium points of the system are found by the 
Newton-Raphson method. MAPS locates four equilib­
r ium points within the region and classifies their sta-
bilities by inspecting the eigenvalues of Jacobians at 
the equilibrium points: two attractors at 
and (2.0,2.0) and two saddles at (1.05,0.19) and 
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all shown in Figure 3(b) (attractors: +; 
saddles: The stable and unstable trajectories of the 
saddle are then computed by integrating the system from 
a small neighborhood of the saddle in the directions of 
the stable and unstable eigenvectors backwards and for­
wards, respectively. 

Since one of the unstable trajectories of each saddle 
goes to the attractor at (2.0,2.0), the stability bound­
ary of the attractor consists of the stable trajectories of 
both saddles. Similarly, the stability boundary of: the 
attractor at (0.0,0.0952) consists of the stable trajecto­
ries of the saddle at (1.05,0.19), one of whose unstable 
trajectories goes to the attractor. However, within the 
region of interest there are trajectories that leave the 
bounding box. These trajectories can be conveniently 
thought of as the stable trajectories of an attractor at 
infinity. Therefore, the stable trajectories of the saddle 
at (3.05,-0.21) form the stability boundary for the at 
tractor at infinity, for one of the unstable trajectories of 
the saddle leaves the bounding box. Consistency rules 
are checked and satisfied. At the end of this step, MAPS 
finds three qualitatively different regions associated with 
the three attractors and internally represents the phase 
space structure in a data structure: the attractors are 
connected with each other via saddles and associated 
with stability boundaries (Figure 3(c)). 

The second step extracts a polyhedral approximation 
to each stability region preserving the gross features of 
the shape of the region. Consider the stability region 
of the attractor at (2.0,2.0). The stability boundary is 
numerically approximated by a collection of trajectory 
points relatively uniform and dense on the boundary; 
see Figure 3(d). 

A Delaunay triangulation is performed on this set of 
points. As the result, the convex hull of the points is tes 
sellated with triangles; see Figure 3(e). Under our condi­
tion that the points are reasonably dense and uniform on 
the boundary, the polyhedral shape of the stability re­
gion is contained in the triangulation of the convex hull. 
In order to extract the polyhedron, triangles exterior to 
the polyhedron have to be eliminated. We note two facts. 
First, the circumcircles of exterior triangles are larger 
than the circumcircles of the interior triangles [Boisson-
nat, 1984], since the interior triangles respect the local 
geometries of the boundary they approximate, whereas 
the exterior ones do not. Second, only certain type of t r i -
angles are the candidates for elimination: the triangles 
with exactly one edge and two vertices on the bound­
ary of the convex hull in two dimensions. Therefore, we 
can focus the search and eliminate the exterior triangles 
by deleting the candidate triangle with the largest cir-
cumcircle, unti l the number of points on the boundary 
of the polyhedral approximation is the same as that of 
the original set of the boundary points or there are no 
more candidates for elimination (Figure 3(f)). We reit­
erate that the condition on the distribution and density 
of the boundary points has to be checked with respect 
to the shape of a region, to ensure that the circumcircle 
heuristic rule for elimination works. 

MAPS compiles the data structure from step 1 into 
a relational graph, augments it with the polyhedral ap-

( a ) ( b ) 

( c ) ( d ) 

( e ) ( f ) 
Figure 3: The analysis of a 2nd order nonl inear system: 
(a) vector f ie ld; (b) equ i l i b r i um po in ts ; (c) boundary 
and connect ing t ra jector ies; (d) po ints on the s tab i l i ty 
boundary for one of the a t t rac to rs ; (e) t r i angu la t ion of 
the convex hu l l ; ( f ) po lyhedra l approx ima t ion . 

p rox imat ion , and repor ts to the user the fo l lowing f ind­
ings: 

< e q u i l i b r i u m - p o i n t s : 
1 . saddle a t : ( 3 . 0 5 - . 2 1 ) 
2 . a t t r a c t o r a t : ( 2 . 2 . ) 
3. saddle a t : ( 1 . 0 5 .19) 
4 . a t t r a c t o r a t : ( 0 . ,0952)> 

< r e l a t i o n a l - g r a p h : 
1 . s t a b i l i t y - r e g i o n f o r a t t r a c t o r a t : * i n f i n i t y * : 

s t a b i l i t y - b o u n d a r y : 
t r a j e c t o r y 1 : ( f rom * i n f i n i t y * t o (3.05 - . 2 1 ) ) 
t r a j e c t o r y 2 : ( f r om * i n f i n i t y * t o (3.05 - . 2 1 ) ) 

c o n n e c t i n g - t r a j e c t o r i e s : 
t r a j e c t o r y 3 : ( f r om (3 .05 - . 2 1 ) t o * i n f i n i t y * ) 

2 . s t a b i l i t y - r e g i o n f o r a t t r a c t o r a t : ( 2 . 2 . ) : 
s t a b i l i t y - b o u n d a r y : 

t r a j e c t o r y 4 : ( f r o m * i n f i n i t y * t o (1.05 .19)) 
t r a j e c t o r y 5 : ( f r om * i n f i n i t y * t o (1.05 .19)) 
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t ra jec to ry 1:(from * i n f i n i t y * to (3.05 - .21)) 
t ra jec to ry 2:(from * i n f i n i t y * to (3.05 - .21)) 

connect ing- t ra jector ies: 
t ra jec to ry 6:(from (1.05 .19) to (2. 2.) ) 
t ra jec to ry 7:(from (3.05 - .21) to (2. 2 . ) ) 

3. s t ab i l i t y - r eg ion fo r a t t rac to r a t : ( 0 . .0952): 
s tabi l i ty-boundary: 

t ra jec tory 4:(from * i n f i n i t y * to (1.05 .19)) 
t ra jec tory 5:(from * i n f i n i t y * to (1.05 .19)) 

connect ing- t ra jector ies: 
t ra jec to ry 8:(from (1.05 .19) to (0. .0952))> 

2.5 O t h e r examples 
We have run MAPS on several other nonlinear examples, 
some with greater complexity and some of higher order. 

The dynamical system for a buckling column under 
compressive force 

is a 2nd order system. For the parameter values a = 
— 1.0, b = 2.0, and c = —0.2 and the phase space region 

MAPS finds two 
attractors at (1.41,0.0) and (-1.41,0.0) and a saddle at 
the origin, and generates a description of the phase space 
geometries: two banded stability regions associated with 
the two attractors, separated by the stable trajectories 
of the saddle at the origin. Figure 4(a) shows stability 
boundaries and connecting trajectories of two stability 
regions, and Figure 4(b) shows the polyhedral approxi­
mation to one of the regions. 

Since the stabil ity regions are interleaved, the geomet­
ric extraction algorithm using the circumcircle heuristic 
described earlier terminates before all the exterior tr ian­
gles are eliminated. A more expensive procedure is then 
used to eliminate the remaining exterior triangles: a t r i ­
angle is in a stability region of an attractor if the trajec-
tory starting at the centroid of the triangle approaches 
the attractor in the l imit or enters another triangle al­
ready in the stability region. 

Our algorithm works for higher dimensional systems as 
well. Consider the following 3rd order nonlinear system 

MAPS locates an attractor at (1.06,0.0, 1.12) and a sad­
dle at (-1.06,0.0,1.12) within the region  

5.0, and de­
termines that the stable trajectories of the saddle form 
the stability boundary for the attractor. The stability 
boundary is a two dimensional surface and is approxi­
mated by a set of relatively evenly spaced trajectories. 
MAPS then tessellates the phase space with tetrahedra 
and extracts a polyhedral approximation to the stability 
region of the attractor (see Figure 5). 

3 Hierarch ica l Representat ion 
We have described and demonstrated our algorithm for 
analyzing a dynamical system through successive com­
putations on the system, starting from its system equa-

(n) (b) 
Figure 4: The analysis of a buckling column: (a) stabil­
i ty boundary and connecting trajectories; (b) polyhedral 
approximation. 

( n ) ( b ) 

Figure 5: The analysis of a 3rd order nonlinear system: 
(a) projection of stability boundary and connecting tra­
jectories in x-z plane; (b) projection of polyhedral ap­
proximation in x-z plane. 

tion representation. MAPS generates a high level de­
scription of the dynamical system at the end of the 
analysis. To bridge the large semantic gap between the 
deduced symbolic description and the system equation 
representation of the input, we have employed multiple 
intermediate representations for the dynamical system, 
shown in Figure 6. 

MAPS extracts the information incrementally, apply­
ing a set of operations to each intermediate representa­
tion. At each level of the representation, implicit prop­
erties of the system at different scales are made explicit 
and thus can be accessed and manipulated by the opera­
tors at the next level of the representation. In the order 
of analysis, MAPS generates a local description of equi­
l ibr ium points, l imit cycles, and their eigenstructures, a 
relational description of equilibrium points, l imit cycles, 
and their interactions, polyhedral approximations to sta-
bil ity regions, and a high level description of the phase 
space structure. 

The internal representation of the phase space descrip­
tion as a relational graph captures the qualitative aspects 
of the phase space structure. In the relational graph, 
nodes are attractors and arcs denote the relations be­
tween their stability regions. Each node has informa­
tion about the attractor it represents, the associated sta­
bility region and its polyhedral approximation, and the 
boundary trajectories and boundary equil ibrium points 
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Figure 6: A multi-layered representation for a dynamical 
system. 

and l imit cycles. 

4 Related wo rk 
Yip has constructed a program, K A M , for automati­
cally analyzing Hamiltonian systems with two degrees 
of freedom in planar phase sections [Yip, 1989]. The 
program uses techniques from computer vision to clus­
ter point sets in phase sections and classifies phase por­
traits into meaningful categories. Our method applies 
to a large class of dissipative dynamical systems of any 
order in continuous phase spaces, in contrast to Hamil­
tonian maps on planar phase sections in K A M . Since 
we are interested in using MAPS to automatically syn-
thesize controllers in phase spaces, MAPS also extracts 
and represents stability regions with geometric pieces, as 
opposed to a point set representation in K A M . 

Sacks' Poincare program analyzes planar systems 
through a part i t ion algorithm on phase spaces and a bi­
furcation analysis on one parameter [Sacks, 1990]. The 
partit ion algorithm is based on the properties of two di­
mensional flows that do not generalize to higher dimen­
sions. MAPS differs f rom Sacks' part i t ion algorithm in 
that our method is able to analyze phase spaces of any 
dimensions, based on a general theoretical result on dy­
namical systems. MAPS generates a relational graph for 
a dynamical system characterizing the spatial arrange­
ment of phase space structures and containing geometric 
information about stabil ity regions. 

5 Conclusions 
We have developed a qualitative method for automati­
cally analyzing phase space structures of nonlinear dy­
namical systems and have constructed MAPS to demon­
strate the method. MAPS looks at the phase spaces, 
finds qualitatively different regions—the stability re­
gions, and extracts and represents the qualitative fea­
tures. It employs deep domain knowledge about dynam­
ical system theory to recognize the qualitative structures 
of phase spaces. It computes a high level description of a 
dynamical system through a combination of numerical, 
combinatorial, and geometric computations and repre­
sents the phase space structure with a relational graph. 

We are currently using our method to develop a novel 
control synthesis strategy for nonlinear control systems, 
with which a controller for a nonlinear system can be au­
tomatically synthesized in the phase space [Zhao, 1991b]. 
The strategy relies on the knowledge of phase spaces ob­
tained from MAPS, made possible by the internal rep­
resentation of the phase space structures. It generates 
control laws by synthesizing shapes of dynamical sys­
tems and planning and navigating system trajectories in 
the phase spaces. More specifically, the control strategy 
consists of a global control path planner and a local tra­
jectory generator. The global path planner finds optimal 
paths from an init ial state to the goal state in the phase 
space, consisting of a sequence of path segments con­
nected at intermediate points where control parameter 
changes. The high-level description of the phase space is 
used to guide the search for the global paths. The local 
trajectory generator uses the flow information about the 
phase space regions to produce smoothed trajectories. 
Because of the human accessible aspect of the high level 
description, MAPS can also assist engineers in designing 
controllers for complex systems. 
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