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Abstract. Spontaneous brain activity reveals mechanisms of brain func-
tion and dysfunction. Its population-level statistical analysis based on
functional images often relies on the definition of brain regions that must
summarize efficiently the covariance structure between the multiple brain
networks. In this paper, we extend a network-discovery approach, namely
dictionary learning, to readily extract brain regions. To do so, we intro-
duce a new tool drawing from clustering and linear decomposition meth-
ods by carefully crafting a penalty. Our approach automatically extracts
regions from rest fMRI that better explain the data and are more stable
across subjects than reference decomposition or clustering methods.
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1 Introduction

The covariance structure of functional networks, observed at rest using functional
Magnetic Resonance Imaging (fMRI) signals, is a promising source of diagnostic
or prognostic biomarkers, as it can be measured on several impaired subjects,
such as stroke patients [12]. However, statistical analysis of this structure requires
the choice of a reduced set of brain regions [12]. These should i) cover the main
resting-state networks [3,15]; ii) give a faithful representation of the original
signal, e.g. in the sense of compression or explained variance; iii) be defined in
a way that is resilient to inter-subject variability.

Independent Component Analysis (ICA) is the reference method to extract
underlying networks from rest fMRI [3]. Promising developments rely on penal-
ized dictionary learning to output more contrasted maps [13]. However, if the
maps highlight salient localized features, post-processing is required to extract
connected regions. [8] use ICA maps to manually define this parcellation from
resting-state networks. A complementary approach is to rely on voxel clustering
that creates hard assignments rather than continuous maps [15,4].

This paper bridges the gap between the two strategies. The main contribu-
tions are i) the adaptation of dictionary learning to produce well-formed brain
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regions and ii) the computational improvement to the corresponding estimation
procedures. We also bring to light the main trade-offs between clustering and
decomposition strategies and show that our approach achieves better region ex-
traction in this trade-off space. The paper is organized as follows. In section 2,
we present our new region-extraction method. Section 3 presents experiments to
compare different approaches. Finally section 4 summarizes the empirical results.

2 A Dictionary Learning Approach to Segment Regions

Prior Methods Used to Extract Regions. Various unsupervised methods are rou-
tinely used to extract structured patterns from resting-state fMRI data. These
patterns are then interpreted in terms of functional networks or regions. Spa-
tial Group Independent Component Analysis (Group ICA) is the most popular
method to process resting-state fMRI. It is based on a linear mixing model to
separate different signals and relies on a principal component analysis (PCA) to
reject noise [3]. K-Means is the de facto approach to learn clusters minimizing
the �2 reconstruction error: it learns a hard assignment for optimal compression.
Ward Clustering also seeks to minimize �2 error, but using agglomerative hier-
archical clustering. The benefits are that imposing a spatial constraint comes at
no cost and it has been extensively used to learn brain parcellations [4].

Multi-Subject Dictionary Learning. Our approach builds upon the Multi-Subject
Dictionary Learning (MSDL) formulation [13]. The corresponding learning strat-
egy is a minimization problem comprising a subject-level data-fit term, a term
controlling subject-to-group differences, and a group-level penalization:

argmin
Us,Vs,V
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where Ys ∈ R
n×p are the n-long time series observed on p voxels for subject s,

Us ∈ R
n×k are the k time series associated to the subject maps Vs ∈ R

p×k,
V ∈ R

p×k is the set of group-level maps and Ω is a regularization function. μ
is a parameter that controls the similarity between subject-level and group-level
maps while α sets the amount of regularization enforced on the group-level maps.

This problem is not jointly convex with respect to {Us}, {Vs} and V, but
it is separately convex and [13] relies on an alternate minimization strategy,
optimizing separately (1) with regards to {Us}, {Vs} and V while keeping
the other variables fixed. Importantly, the optimization step with regards to V
amounts to computing a proximal operator, also used in e.g. image-denoising:

proxαΩ(w)
def
= argmin

v

∥∥w − v
∥∥2

2
+αΩ(v) (2)

Sparse TV Penalization to Enforce Compact Regions. We want to define a small
set of regions that represent well brain-activity signals. Dictionary learning does
not produce in itself regions, but continuous maps. Enforcing sparsity, e.g. via
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an �1 penalty (Ω(v) = ‖v‖1) on these maps, implies that they display only a
few salient features that may not be grouped spatially. [13] use a smoothness
prior (�2 norm of the image gradient) in addition to the sparsity prior to impose
spatial structure on the extracted maps. However, while smoothness is beneficial
to rejecting very small structures and high-frequency noise, it also smears edges
and does not constrain the long-distance organization of the maps.

The simplest convex relaxation of a segmentation problem is the minimiza-
tion of the total variation (TV) [7] that tends to produce plateaus. Briefly, the
total variation is defined as the norm of the gradient of the image: TV(v) =∑

i

√
(∇xv)2i + (∇yv)2i + (∇zv)2i . Considering the image gradient as a linear op-

erator ∇ : v ∈ R
p → (∇xv,∇yv,∇zv) ∈ R

3p, TV(v) = ‖∇v‖21, where the
�21-norm groups [9] are the x, y, z gradient components at one voxel position.

Going beyond TV regularization, we want to promote regions comprising
many voxels, but occupying only a fraction of the full brain volume. For this
we combine �1 regularization with TV [1]. The corresponding proximal operator
is

argmin
v
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2
+α
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where ∇̃λ is an augmented operator R
p → R

4p, consisting of a concatenation
of the operator ∇ and the scaled identity operator ρ I, and the �21 norm uses
an additional set of groups on the new variables. Note that the structure of the
resulting problem is exactly the same as for TV, thus we can rely on the same
efficient algorithms [2] to compute the proximal operator. Finally, in an effort
to separate as much as possible different features on different components, we
impose positivity on the maps. This constraint is reminiscent of non-negative
matrix factorization [10] but also helps removing background noise formed of
small but negative coefficients (as on the figures of [13]). It is enforced using an
algorithm for constrained TV [2]. The optimality of the solution can be controlled
using the dual gap [6], the computation of which can be adapted from [11]:

δgap(v) = ‖w− v‖22 + α
∥∥∇̃λ v

∥∥
21

− ‖w‖22 − ‖v‖22 (4)

Computational Efficiency. We introduce three improvements to the original op-
timization algorithm of MSDL: stochastic coordinate descent rather than cycling
block coordinate descent, computing image gradients on rectangular geometries,
and an adaptive dual gap control on the proximal operator solver.

The algorithm outlined in [13] to minimize (1) is an alternate minimization us-
ing a cyclic block coordinate descent. The time required to update the {Us,Vs}
parameters grows linearly with the number of subjects, and becomes prohibitive
for large populations. For this reason, rather than a cyclic choice of coordi-
nates to update, we alternate selecting a random subset of subjects to update
{Us,Vs} and updating V. This stochastic coordinate descent (SCD) strategy
draws from the hypothesis that subjects are similar and a subset brings enough
representative information to improve the group-level maps V while bringing
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the computational cost of an iteration of the outer loop of the algorithm down.
More formally, the justification of this strategy is similar to the stochastic gra-
dient descent approaches: the loss term in (1) is a mean of subject-level term
[5] over the group; we are interested in minimizing the expectation of this term
over the population and, for this purpose, we can replace the mean by another
unbiased estimator quicker to compute, the subsampled mean.

The computation of spatial regularization, whether it be with smooth lasso or
TV penalization, implies computing spatial gradients of the images. However, in
fMRI, it is most often necessary to restrict the analysis to a mask of the brain:
out-of-brain volumes contain structured noise due e.g. to scanner artifacts. This
masking imposes to work with an operator ∇ that has no simple expression.
This is detrimental to computational efficiency because i) the computation of
the proximal operator has to cater for border effects with the gradient for voxels
on the edge of the mask –see e.g. [11] for more details– ii) applying ∇ and ∇T

imposes inefficient random access to the memory while computing gradients on
rectangular image-shaped data can be done very efficiently. For these reasons,
we embed the masked maps v into “unmasked” rectangular maps, on which the
computation of the proximal term is fast: M−1(v), where M is the masking
operator. In practice, this amounts to using M(z) with z = proxΩ(M−1(w)))
when computing proxΩ(w), and correcting the energy with the norm of z outside
of the mask. Indeed, in the expression of the proximal operator (2) ‖M−1(w)−
z‖2 = ‖w −M(z)‖2 + ‖M−1(M(z)) − z‖2 where the first term is the term in
the energy (1) and the second term is the correction factor that does not affect
the remainder of the optimization problem (1).

Finally, we use the fact that in an alternate optimization it is not always
necessary to optimize to a very small tolerance all the terms for each execution of
the outer loop. In particular, the final steps of convergence of TV-based problems
can be very slow. The dual-gap (4) gives an upper bound of the distance of the
objective to the optimal. We introduce an adaptive dual gap (ADG) strategy:
at each iteration of the alternate optimization algorithm, we record how much
the energy was decreased by optimizing on {Us,Vs} and stop the optimization
of the proximal operator when the dual gap reaches a third of this value.

Extracting Regions. Decomposition methods such as Group ICA or MSDL pro-
duce continuous maps that we must turn into regions. For this purpose, we choose
a threshold so that, on average, each voxel is non-zero in only one of the maps
(keeping as many voxels as there are in the brain). For this, we consider the 1/thk

quantile of the voxel intensity across all the maps V. This choice of threshold is
independent of the map sparsity, or kurtosis, which is the relevant parameter in
the case of ICA. It can thus be used with all models and penalization choices.
Drawing from the simple picture that brain networks tend to display homologous
inter-hemispheric regions that are strongly correlated and hard to separate, we
aim at extracting 2 k regions, and take the largest connected components in the
complete set of maps after thresholding. Importantly, some maps can contribute
more than two regions to the final atlas, while some might contribute none.
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Finally, in order to compare linear decomposition and clustering methods on
an equal footing, we also convert the extracted maps to a hard assignment by
assigning each voxel to the map with the highest corresponding value.

3 Experiments

Evaluation Metrics. Gaging the success of an unsupervised method is challenging
because its usefulness in application terms is not well defined. However, to form
a suitable tool to represent brain function, a set of regions must be stable with
regards to the subjects used to learn them, and must provide an adequate basis
to capture the variance of fMRI data. To measure stability across models, we
rely on the normalized mutual information [14] –as standard clustering stability
score– computed from a hard assignment. Data fidelity is evaluated by learning,
using least square fitting, the time series associated to the model maps and by
computing the explained variance of these series over the original ones.

Dataset. We use the freely-available Autism Brain Imaging Database Exchange1

dataset. It is a fMRI resting state dataset containing 539 subjects suffering of
autism spectrum disorders and 573 typical controls. To avoid site-related arti-
facts, we restrict our study to data from University of Leuven. From the original
59 subjects, 11 have been removed because the top of the scans were cut. We
apply our model evaluation metrics by performing 20 runs taking 36 random
subjects as a train set to learn regions and the 12 remaining subjects as test set.

Parameter Choice. Following [13], we use a dimensionality k = 42, which implies
that we extract 84 regions. With regards to the PCA, which does not produce
contrasts maps, we consider each map as a region. Parameter μ controls subject-
to-group differences. It has only a small impact on the resulting group-level maps
and we set it to 1. ρ and α control the overall aspect of the maps. Maximizing
explained variance on test data leads to setting ρ = 2.5 and α = 0.01. However
optimizing for explained variance always privileges low-bias models that fit close
to the data, i.e. under-penalizing. These are not the ideal settings to extract
well-formed regions as the corresponding maps are not very contrasted. We also
investigate settings with α 20 times larger, to facilitate region extraction.

4 Results

We report results for MSDL with various penalizations. In the following, “TV-
MSDL” denotes MSDL with sparse TV penalization and α = 0.20. “MSDL low
regularization” is the same penalization with α = 0.01. “Smooth MSDL” denotes
the original formulation of [13] with smooth Lasso regularization and α = 0.20.

1 http://fcon_1000.projects.nitrc.org/indi/abide/

http://fcon_1000.projects.nitrc.org/indi/abide/
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Fig. 1. Regions extracted with the different strategies (colors are random). Please
note that a 6mm smoothing has been applied to data before ICA to enhance region
extraction.
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Fig. 2. (Left) Explained variance on test data for various strategies. (Right) Normal-
ized mutual information between regions extracted from two different subsets.
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Fig. 3. Comparing different optimization strategies: cyclic block coordinate descent,
as proposed by [13], stochastic coordinate descent (SCD), and SCD with adaptive dual
gap (ADG) on the proximal term. (a) distance to the optimal V (in log scale) as a
function of the number of iterations, (b) distance to the optimal V (in log scale) as a
function of time, (c) time spent per iteration to update {Us,Vs} or V.
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Qualitative Assessment of the Brain Regions. Fig. 1 represents an hard assign-
ment of the regions created with different methods. First, we note that, unsur-
prisingly, algorithms with spatial constraints give more structured parcellations.
This behavior is visible in the TV-MSDL regions when regularization increases,
but also when comparing to smooth MSDL, that does not enforce long-range
structure. Regions extracted by TV-MSDL segment best well-known structures,
such as the ventricles or gray nuclei. Finally, their strong symmetry matches
neuroscientific knowledge on brain networks, even though it was not imposed by
the model.

Stability-fidelity trade-offs. Fig. 2 shows our model-evaluation metrics: explained
variance on test data capturing data fidelity and normalized mutual informa-
tion between the assignments estimated on independent subjects measuring the
methods’ stability. PCA is the optimal linear decomposition method to maximize
explained variance on a dataset: on the training set, it outperforms all others
algorithms with about 40% of explained variance. On the other hand, on the test
set, its score is significantly lower (about 23%): the components that it learned in
the tail of the spectrum are representative of noise and not reproducible. In other
words, it overfits the training set. This overfit also explains its poor stability:
the first six principal components across the models are almost equal, however
in the tail they start to diverge and eventually share no similarity. While the
raw ICA maps span the same subspace as the PCA maps, when thresholded
and converted to regions, their explained variance drops: Group ICA does not
segment regions reliably. Both clustering techniques give very similar results,
although Ward is more stable and explains test data better than K-means. They
both give very stable regions but do not explain the data as well as PCA.

Thus on these reference methods, we observe a trade-off between data fidelity
and stability. Linear models can explain the data well but do not yield very
stable regions as opposed to clustering methods. An ideal model would maximize
both fidelity and stability. TV-MSDL can improve on both aspects and explore
different parts of the trade-off by controlling the amount of regularization. The
regularization can be set to maximize explained variance (TV-MSDL low reg) to
the cost of less contrast in the maps and less stability. Increasing regularization
to restore contrast (TV-MSDL) gives regions with an explained variance greater
than that of PCA, but with a stability similar to that of K-means.

Computational Speedup. Fig. 3 shows speed benchmarks realized on the full
dataset (48 subjects), parallelizing the computation of {Us,Vs} on 16 cores.
Profiling results (Fig 3c) show that the update {Us,Vs} is the bottleneck. Using
SCD with a stochastic subset of a fourth of the dataset proportionnaly decreases
the time of this step and only has a little impact on convergence rate per iteration
(Fig 3a). However, the iteration time speedup brought by SCD dramatically
increases overall convergence speed (Fig 3b). ADG yields an additional speed
up, and altogether, we observe a speedup of a factor 2, but we expect it to
increase with the group size. SCD combined with ADG enable tackling large
groups.
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5 Conclusion

Decomposition methods such as ICA or dictionary learning delineate functional
networks that capture the variance of the signal better than parcels extracted
using clustering of voxels. Regions can be recovered from the network maps by
thresholding. They are however much more unstable across subjects than cluster-
ing results, and this thresholding can be detrimental to the explained variance.
We have introduced a new region-extraction approach that pushes further this
fidelity/stability trade-off. It uses a sparse TV penalty with dictionary learn-
ing to combine the tendency of TV to create discrete spatial patches with the
ability of linear decomposition models to unmix different effects. Careful choices
of optimization strategy let our method scale to very large groups of subjects.
The resulting regions are stable, reveal a neurologically-plausible partition of
the brain, and can give a synthetic representation of the resting-state correla-
tion structure in a population. This representation opens the door to learning
phenotypic markers from rest, e.g. for diagnosis of neurological disorders.

Acknowledgments. We acknowledge funding from the NiConnect project and
NIDA R21 DA034954, SUBSample project from the DIGITEO Institute, France.
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