
RE 2016

Extracting conceptual models from user stories with Visual
Narrator

Garm Lucassen1 • Marcel Robeer1 • Fabiano Dalpiaz1 •

Jan Martijn E. M. van der Werf1 • Sjaak Brinkkemper1

Received: 25 November 2016 / Accepted: 6 May 2017 / Published online: 20 May 2017

� The Author(s) 2017. This article is an open access publication

Abstract Extracting conceptual models from natural lan-

guage requirements can help identify dependencies,

redundancies, and conflicts between requirements via a

holistic and easy-to-understand view that is generated from

lengthy textual specifications. Unfortunately, existing

approaches never gained traction in practice, because they

either require substantial human involvement or they

deliver too low accuracy. In this paper, we propose an

automated approach called Visual Narrator based on nat-

ural language processing that extracts conceptual models

from user story requirements. We choose this notation

because of its popularity among (agile) practitioners and its

focus on the essential components of a requirement: Who?

What? Why? Coupled with a careful selection and tuning

of heuristics, we show how Visual Narrator enables gen-

erating conceptual models from user stories with high

accuracy. Visual Narrator is part of the holistic Grimm

method for user story collaboration that ranges from elic-

itation to the interactive visualization and analysis of

requirements.

Keywords User stories � Requirements engineering �
Conceptual modeling � NLP � Case study � Conceptual

model visualization

1 Introduction

The software industry commonly uses natural language

(NL) notations to express software requirements [47], with

NL being employed by over 60% of practitioners [32].

With the increasing adoption of agile development prac-

tices such as Scrum, the semi-structured NL notation of

user stories is gaining momentum [31, 38].

NL requirements are easy to understand because they

employ the very same language that we use to communi-

cate with others. Nevertheless, NL suffers from several

drawbacks too. The ambiguity of words and sentences is a

well-known and widely studied problem that results in

different interpretations of the same text. See Berry

et al. [9] for an authoritative review. In this paper, we focus

on another difficult problem: the identification and explo-

ration of the key entities and relationships in a large set of

requirements. Our work is intended to support the detection

of dependencies between requirements, redundancies, and

inconsistencies.

Our baseline consists of the existing literature on

deriving conceptual models from NL requirements

[20, 27, 28, 48]. However, we go beyond the limitations of

these inspiring techniques, which either (1) require human

supervision to appropriately tag the entities and relation-

ships in the text [20, 49], or (2) have low accuracy, often

due to the ambitious attempt to support arbitrarily complex

requirements statements [27, 57].

Several studies have shown the added value of con-

ceptual modeling in software development [18, 22]. Yet,

& Garm Lucassen

g.lucassen@uu.nl

Marcel Robeer

m.j.robeer@uu.nl

Fabiano Dalpiaz

f.dalpiaz@uu.nl

Jan Martijn E. M. van der Werf

j.m.e.m.vanderwerf@uu.nl

Sjaak Brinkkemper

s.brinkkemper@uu.nl

1 Department of Information and Computing Sciences, Utrecht

University, Princetonplein 5, 3584 CC Utrecht, The

Netherlands

123

Requirements Eng (2017) 22:339–358

DOI 10.1007/s00766-017-0270-1

http://orcid.org/0000-0003-4480-3887
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-017-0270-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-017-0270-1&domain=pdf

practitioners remain reluctant to adopt these methods. In

2006, just 13% of the Australian Computer Society’s

12,000 members indicated an interest in conceptual mod-

eling [18]. A probable explanation is that the benefits do

not outweigh the burden of constructing and maintaining a

conceptual model manually.

Our goal is to overcome the limitations stated above and

to promote the adoption of conceptual models for dis-

cussing about requirements. Our recipe includes three main

ingredients: (1) our chosen notation is user stories, which

are highly popular among practitioners [31, 38] and that

express concisely the essential elements of requirements

(Who? What? Why?); (2) we minimize human supervision

by proposing a fully automated software tool; and (3) we

deliver value by focusing on high accuracy, and we do so

by carefully choosing heuristics that help create a holistic

view of the requirements, and by ignoring those that con-

tribute with too fine-grained details (and are often less

accurate).

In previous work [53], we have shown the feasibility of

this recipe by introducing the Visual Narrator tool for

extracting conceptual models from user stories via NLP.

Prior to that, we introduced a conceptual model and an

NLP-enabled tool for assisting users in writing high-quality

user stories [36] that obtained promising results [37]. In

this paper, we extend the work in [53] by making two main

contributions:

• We combine Visual Narrator with our other NLP tools

AQUSA and Interactive Narrator into the comprehen-

sive Grimm method for conducting RE with user stories

while stimulating the discussion about requirements

among team members.

• We make technical improvements to Visual Narrator’s

algorithms and conduct a new quantitative evaluation

with four cases, two of which are completely new,

resulting in improved accuracy.

The rest of the paper is structured as follows. Section 2

introduces our Grimm method that combines our research

baseline. Section 3 reviews 23 heuristics from the literature

and selects 11 for use with user stories. Section 4 presents

the architecture, the main algorithm of the tool and elabo-

rates upon the made technical improvements. Section 5

reports on our quantitative evaluation on four data sets from

the software industry. We discuss related work in Sect. 6,

while Sect. 7 presents conclusions and future directions.

2 Baseline: The Grimm method

This paper is part of our ongoing research line on user

stories. The premise of our research is the high adoption

yet low quality of user stories in industry [32, 37, 38]. To

improve this situation, we focus on fostering deeper

understanding of user stories by creating tool-assisted

techniques that support practitioners in creating and com-

municating about high-quality user stories [36, 39].

In Sect. 2.1, we present the conceptual anatomy of user

stories, while in Sect. 2.2 we introduce the main elements

of the Grimm method for conducting requirements engi-

neering (RE) based on user stories.

2.1 Conceptual anatomy of user stories

Based on previous work [15, 37, 66], we define a generic

representation of user stories—see the UML class diagram

in Fig. 1—that dissects a user story into its constituents.

User stories follow a standard predefined format [66] to

capture three aspects of a requirement:

1. Who wants the functionality;

2. What functionality the end users or stakeholders want

the system to provide; and

3. Why the end users and stakeholders need this func-

tionality (optional).

These three aspects are captured in a simple textual

template to form a running sentence. Although many dif-

ferent templates exist, 70% of practitioners use the Con-

nextra template ‘‘As a htype of useri, I want hsome goali

[so that hsome reasoni�’’ [15].

We distinguish between the role, means and ends parts

of a user story. Each of these parts features an indicator

delimiting the three basic parts of a user story. Jointly, the

indicators are the template of a user story.

User Story

Role Means Ends

Indicator Indicator

Subject

Main Verb

Main Object

1 1 0..1

1 1

1

1

1

Functional

Role

1

Free Form
0..1

Indicator
1

Free Form
1

Fig. 1 Conceptual anatomy of a user story

340 Requirements Eng (2017) 22:339–358

123

The role part encompasses the role indicator and the

functional role, describing a generalized type of person

who interacts with the system. When no ambiguity exists,

we use the term role to denote both the full part and the

functional role. The means consists of a subject, a main

object of the functionality, and a main verb describing the

relationship between the subject and main object. The main

object can be represented explicitly by the direct object or

implicitly (e.g., ‘‘I want to log in’’ actually refers to logging

in the system). The rest of the means can assume too many

variations in practice; as such, we do not make any further

distinction: words are captured by the free form class.

For example, consider the user story ‘‘As a visitor, I

want to purchase a ticket so that I can attend the confer-

ence’’. Here, ‘‘visitor’’ is the functional role, ‘‘I’’ is the

subject, ‘‘a ticket’’ the main object (a direct object), and

‘‘purchase’’ is the main verb linking subject and object.

There is no free form part for the means, and the indicators

are ‘‘As a’’, ‘‘I want to’’, and ‘‘so that’’.

Although the ends has a similar structure to the means in

this example, this is not always the case [37]: there are at

least three main purposes for having the ends: (1) clarifying

the means, (2) referencing another user story, or (3)

introducing a qualitative requirement. These functions can

be combined for a single user story. This semantic dis-

tinction between ends types is beyond the scope of this

paper and is left for future work.

2.2 The Grimm method: overview and tooling

The Grimm method that we propose is our response to the

low quality of user stories in industry [32, 37, 38], despite

their popularity. Grimm features automated tools that

improve the situation [37, 39]. Figure 2 illustrates how

Grimm combines our tools in such a way to stimulate

discussion around user stories among the stakeholders; this

is one of the key objectives of user stories [15].

In the following paragraphs, we elaborate on how each

tool contributes to this goal: (1) AQUSA detects quality

defects in human-made user stories, (2) Visual Narrator

extracts entities and relationships from a user story col-

lection to construct a conceptual model, and (3) Interactive

Narrator generates specialized views of the conceptual

model that facilitate discussions for identifying inconsis-

tencies, dependencies, and ambiguities.

2.2.1 AQUSA

Grimm begins when stakeholders formulate some user

stories. First, the AQUSA tool [37] validates their quality

by automatically detecting defects using NL processing

techniques. Based on the Quality User Story Framework,

AQUSA focuses on those quality criteria which can have

the potential to be detected with 100% recall. Although this

Perfect Recall Condition is theoretically unattainable [55],

AQUSA has proved capable of uncovering up to 90% of

easily preventable defects in user stories [37]. Then, a

human requirements engineer analyzes the reported errors

and takes corrective actions when needed. This leads to a

revised collection of reviewed user stories, which may

involve rephrasing some stories, splitting them, or remov-

ing text that is not essential for a user story such as ref-

erences to design documents.

2.2.2 Visual Narrator

After preprocessing with AQUSA, the user stories can be

analyzed further. Visual Narrator applies heuristics from

the conceptual model field to extract the relevant entities

and their relationships. The result is a comprehensive

conceptual model of the entire user story collection. A key

use case for this output is to check the completeness and

consistency of the entities and relationships the user stories

talk about. For example, one could identify isolated entities

that are not connected to others and viewpoints that have

not been fully explored yet such as a role connected to very

few entities. The remainder of this paper focuses on

explaining Visual Narrator’s inner workings and evaluating

its accuracy.

Visual Narrator can generate output as a Prolog program

(to be used for further automated reasoning) or an OWL 2

ontology. The latter can be used in readily available

ontology visualization tools such as WebVOWL [35] to

graphically explore the conceptual model.

Interactive Narrator

Stakeholders
User

stories

Visual Narrator

Overview

visualization

o

b

l
x

yz

Reviewed

user

stories

AQUSA

Entities & relationships

o l

o x

b

l x -

b -

yz

yz

Fig. 2 Grimm method for user story-based RE

Requirements Eng (2017) 22:339–358 341

123

2.2.3 Interactive Narrator

Although a preliminary evaluation with practitioners

showed the potential of Visual Narrator, the extracted

models quickly become too large for human analysts [53].

This cognitive overload is a well-known problem for

conceptual model comprehensibility [4, 45]. As a response,

we created the so-called Interactive Narrator [39] that

generates specialized views of the conceptual model.

Adhering to Shneiderman’s Visual Information-Seeking

Mantra: ‘‘overview first, zoom and filter, then details-on-

demand’’ [58], we combine Visual Narrator’s output with

other data sources to create specialized views that highlight

different user story elements: (1) clustering entities based

on state-of-the-art semantic relatedness algorithm Word2-

Vec [25] and (2) filtering on specific user story details such

as roles as well as project management data from issue

trackers such as Jira.1

As highlighted by our qualitative study via interviews

concerning Visual Narrator [53], key requirements for this

tool are to help identify and resolve inconsistencies,

dependencies [64], and redundancies between the require-

ments. The literature shows that the conceptual model can

also play a role in reducing the ambiguity of the require-

ments [50]. Interactive Narrator is intended as a real-time,

modern documentation tool for agile development [54] that

fosters and facilitates effective discussion among stake-

holders about the software system (to be) [15]. These

possible uses are enabled by the key advantage of graphical

representations over NL in holistically representing a given

domain.

While our initial prototype only supports semantic

clustering and zooming,2 we have since built upon our

proposal and realized a filtering prototype available on

GitHub.3 Aside from generating views that highlight a

specific role or relationship, it supports filtering based on

agile artifacts. In agile software development, user stories

are frequently managed in an issue tracker such as Jira.

These types of tools allow the user to organize a user story

collection into meaningful chunks: epics, themes, and

sprints. Interactive Narrator combines these data with

entities and relationships extracted using Visual Narrator as

shown in Fig. 3. By providing the option to select any

combination of these, the user can explore specific parts of

the system (via epics and themes) or focus on certain

development periods (sprints). For example: a user story

can be part of the epic ‘‘Presentation’’ in sprint 6 and

simultaneously belong to the theme ‘‘Conference’’ (see

Fig. 4).

Each of the Interactive Narrator’s views zooms in on

specific aspects of the system, so as to help end users in

identifying inconsistencies, dependencies, and ambiguity

between requirements [50, 63]. Stakeholders can then use

the views as input for collaboratively resolving issues by

modifying existing user stories or identifying new ones.

This triggers a new method iteration in Fig. 2, which

repeats until all issues are resolved.

3 NLP heuristics for user story analysis

To extract meaningful models from NL requirements,

researchers have been proposing heuristic rules for the

identification of entities and relationships whenever the

text matches certain patterns of the given language (usually

English). The purpose of this section is to select NLP

heuristics that can be effectively employed to derive con-

ceptual models from user stories.

Our literature study on conceptual model generation

identified the 23 heuristics shown in Table 1. This over-

view groups the heuristics by the part of a conceptual

model they generate: entities, non-hierarchical relation-

ships, hierarchical relationships, attributes, and cardinality.

The table presents a simple version of each rule as an

User

stories

Visual Narrator

Segmenting

Entities and

relationships

o l

o x

b

l x -

b -

yz

yz

Interactive Narrator

Issue tracker

o

b

yz

Filtered entities

and relationships

Fig. 3 Method for filtering a large conceptual model

Fig. 4 Filter example showing entities and relationships for user

stories in sprint 6 belonging to theme Conference and epic

Presentation

1 https://www.atlassian.com/software/jira.
2 https://github.com/gglucass/Semantic-Similarity-Prototype.
3 https://github.com/Gionimo/VNwebapp.

342 Requirements Eng (2017) 22:339–358

123

https://www.atlassian.com/software/jira
https://github.com/gglucass/Semantic-Similarity-Prototype
https://github.com/Gionimo/VNwebapp

implication from a condition (the head) to a consequence

(the tail). As an example, the first entity heuristic should be

read as E1: ‘‘If a word is a noun, then it is a potential

entity’’.

The concise format and structure of user stories imply

that not all heuristics are equally relevant. For example,

user stories are not meant to include information about

attributes or cardinality [15], thereby making those

heuristics poorly relevant for our work. Other heuristics are

still ignored by or too difficult for state-of-the-art part-of-

speech taggers. For example, the mainstream Penn Tree-

bank tags do not distinguish between gerunds and present

participle. This exclusion process results in 11 heuristics

that are particularly relevant for generating conceptual

models from user stories. We explain and illustrate those

11 heuristics in the following.

3.1 Entities and non-hierarchical relationships

The most basic heuristics in the literature specify that (1)

nouns in a sentence denote an entity, and (2) verbs indicate

a potential relationship [10, 43]. This prompts us to define

the first two heuristics:

E1. ‘‘Every noun is a potential entity’’

R1. ‘‘Every verb is a potential relationship’’

Example A Consider the user story ‘‘As a visitor, I want

to create a new account’’. that comprises two nouns (visitor

and account), and one verb (create) when we exclude role

and means indicators. Rule E1 specifies to create two

entities visitor and account, and rule R1 originates a

relationship between these entities named as the verb:

create(visitor,account).

Table 1 Classification of heuristics found in the previous literature for conceptual model generation

ID Rule head (if) Rule tail (then) References

Entities

E1 Noun Potential entity [27, 43, 60]

E2 Common noun Entity [11, 28, 48, 60]

E3 Sentence subject Entity [57, 60]

E4 Compound noun Take compound together to form entity [57, 62]

E5 Gerund Entity [11, 57]

Non-hierarchical relationships

R1 Verb Potential relationship [43, 57]

R2 Transitive verb Relationship [11, 27, 28, 57]

R3 Verb (phrase) linking the subject and an object Relationship [27, 57, 60]

R4 Verb followed by preposition Relationship including preposition [48]

R5 Noun–noun compound Non-hierarchical relationship between prefix and

compound

[62]

Hierarchical relationships

H1 Verb ‘‘to be’’ Subjects are children of parent object [28, 60]

H2 Head of noun–noun compound IS-A relationship between compound and head [62]

Attributes

A1 Adjective Attribute of noun phrase main [11, 27, 28, 57, 60]

A2 Adverb modifying a verb Relationship attribute [11, 28]

A3 Possessive apostrophe Entity attribute [27, 57]

A4 Genitive case Entity attribute [48, 57, 60]

A5 Verb ‘‘to have’’ Entity attribute [2, 27, 57, 60]

A6 Specific indicators (e.g., ‘‘number’’, ‘‘date’’, ‘‘type’’,

...)

Entity attribute [48]

A7 Object of numeric/algebraic operation Entity attribute [11]

Cardinality

CA1 Singular noun (?definite article) Exactly 1 [27, 43, 60]

CA2 Indefinite article Exactly 1 [27]

CA3 Part in the form ‘‘More than X’’ X::� [27, 48]

CA4 Indicators many, each, all, every, some, any ??::� [27, 48]

Requirements Eng (2017) 22:339–358 343

123

However, uncritically designating all nouns as entities

would result in a conceptual model with superfluous enti-

ties. Previous authors have employed the distinction

between proper nouns and common nouns to generalize

some of the identified entities as more abstract instantia-

tions [11, 28, 48, 60]. In general, common nouns are

entities and proper nouns are instances of these entities that

can be disregarded. Transitive verbs have a similar func-

tion, referencing an object in the sentence. These two

phenomena lead to heuristics E2 and R2:

E2. ‘‘A common noun indicates an entity’’

R2. ‘‘A transitive verb indicates a relationship’’

To form relationships between entities, a sentence should

contain three components: the subject, the object, and the verb

(phrase) linking the previous two. The subject is certainly

essential: in an active sentence, for instance, the subject is the

initiator—the so-called agent—of the main action performed

in the sentence. Therefore, it has its own heuristics:

E3. ‘‘The subject of a sentence is an entity’’

R3. ‘‘The verb (phrase) linking the sentence subject and

an object forms the relationship between these two’’

Example B Let us consider the story ‘‘As John the man-

ager, I want to design a website’’. The sentence comprises

two common nouns, one proper noun, and one transitive

verb. The person John—a proper noun—can be general-

ized to his job description manager (E2). Therefore, John

is an instance of entity manager. Note that this proper

noun defines the entity John because heuristic E3 says that,

no matter its type, the subject of a sentence leads to an

entity. The transitive verb has website as its direct object

and subject I which refers to John (R2). As we do not know

whether the ability to design a website applies to John or to

managers in general, we create entity John (E3) with

relationship design(John,website) (R3).

Concerning relationships, Omar et al. [48] distinguish

between two types of verbs that indicate relationships:

general transitive verbs and verbs followed by a preposi-

tion. These prepositions significantly change the meaning

of a relationship and are therefore captured in a separate

heuristic:

R4. ‘‘If a verb is followed by a preposition, then the

preposition is included in the relationship name’’

Example C For the user story ‘‘As a visitor, I want to

search by category’’, we first identify the subject I (E3).

The sentence has no direct object. The preposition by (R4)

changes the meaning of the relationship from searching

something to searching by something. Therefore, we obtain

the relationship search_by(I,category). Since I refers to

the functional role visitor, it results in the relationship

search_by(visitor,category).

3.2 Compound nouns

Compound nouns describe an entity that includes multiple

words. Most often these are sequences of nouns or adjec-

tives that precede a noun. To accurately construct a con-

ceptual model, we consider the whole compound noun as

the entity. Compound nouns are known to have many

inherent relationships, as there are many ways to combine

them [23]. However, extracting this requires the synthesis

of lexical, semantic, and pragmatic information, which is a

complex task [33] that can hardly lead to accurate results.

Therefore, we limit ourselves to a simple heuristic pro-

posed by Vela and Declerck [62] by considering only

compound nouns of length two:

E4. ‘‘Noun compounds are combined to form an entity’’

R5. ‘‘In noun–noun compounds, there is a non-

hierarchical relationship between the prefix and

compound’’

Example D The compound noun ‘‘event organizer’’ leads

to entity event_organizer (E4) and a ‘‘has’’ relationship

has_organizer(event,event_organizer) (R5).

3.3 Hierarchical relationships

The ontology generation domain pays special attention to

generalization relationships, often referred to as IS-A

relationships [28, 60]. Tenses of the verb to be typically

indicate a hierarchical relationship between two entities.

The subject of the relationships on the left side of the verb

is a specialization of the parent object on the right side of

the verb to be:

H1. ‘‘The verb ‘to be’ indicates a hierarchical

relationship: the subject is taken as a specialization

of the parent object’’

In addition, Vela and Declerck [62] note that the nouns

in compounds have a generalization relationship. Com-

pound noun entities are a form of a more abstract entity,

e.g., database_administrator is a type of administrator.

This is captured by the following heuristic:

H2. ‘‘If a noun–noun compound exists, the prefix of the

compound is the parent of the compound entity’’

Example E Consider the user story ‘‘As a visitor, I can

change my account password’’. Here, heuristics E4, E5,

and H2 apply on noun compound account password. We

create compound entity account_password (E4), which is

a type of password: IS-A(account_password,password)

344 Requirements Eng (2017) 22:339–358

123

(H2). In addition, we create a ‘‘has’’ relationship (R5)

has_password(account,account_password).

4 The Visual Narrator tool

To automatically extract conceptual models from user

stories, we developed the Visual Narrator tool that

implements the 11 heuristics detailed in Sect. 3. Visual

Narrator takes a set of user stories as input and generates a

conceptual model as output.4 It is built in Python and relies

on the natural text processor spaCy (http://spacy.io), a

recent proposal in NLP that implements algorithms need-

ing minimal to no tuning and with excellent performance.

Additionally, phrasal verb extraction is performed using

Li’s algorithm [34].

Our tool only accepts user stories that use the indicators

as identified by Wautelet et al. [66]: As / As a(n) for the

role, I want (to) / I can / I am able / I would like for the

means, and so that for the ends part. Syntactically invalid

user stories are not processed; in order to sanitize these

stories, analysts should preprocess them using tools such as

AQUSA as shown in Fig. 2 [37].

In addition to generating the conceptual model, Visual

Narrator can also generate separate models per role to help

analysts focus on an individual role. Furthermore, analysts

have the option to fine-tune the sensitivity of the tool: (1)

weights for each type of entity (role, main object, com-

pound, etc.) can be specified to determine their relative

importance and (2) a threshold can be expressed to exclude

from the generated models the least frequent entities by

computing a ranking based on frequency and entity weight.

4.1 Architecture

The conceptual architecture of Visual Narrator is shown in

Fig. 5 and depicts two main components: (1) the Proces-

sor analyzes and parses user stories according to the syn-

tactic model for user stories (Fig. 1), while (2) the

Constructor creates the actual conceptual model starting

from the parsed stories.

First, the Processor analyzes the user story set. The

Miner component uses spaCy to parse each user story into

tokens, which hold the term itself, its part-of-speech tag,

and relationships with other tokens. These tokens are stored

in the UserStory component and used to infer entities and

relationships, and to determine token weights.

Next, the matrix component removes stop words from

the collection of tokens and then attaches a weight to each

term, based on the frequency and on the weights that were

specified as input parameters. This step results in a Term-

by-User-Story matrix containing a weight for each term in

the individual user stories. The summation of the weights

for a given term is added to each token, resulting in a set of

WeightedTokens.

The Constructor then generates the conceptual model

by further processing the WeightedTokens. This starts in

the PatternIdentifier component, which applies the

heuristics to identify all patterns in the user story. The

PatternFactory component creates an internal conceptual

model based on the patterns and stores it in the Ontology

component. Parts of the Ontology are linked to the user

story they originated from. Note that the PatternFactory

filters out all entities and relationships with a weight below

a user-specified threshold. Finally, two Generators output

an ontological representation of the Ontology object as an

OWL 2 ontology and as a Prolog program.

4.2 Extraction algorithm

To extract a conceptual model from user stories, Visual

Narrator implements the procedure DERIVECM presented in

Algorithm 1. The procedure takes as input a set user stories

S as well as empty sets of entities E and relationships

R. The procedure then populates E and R while parsing the

VISUAL NARRATOR

«component»

UserStory

«component»

Miner

«component»

spaCy

«component»

Matrix

Unprocessed

User Story

User Story

object

WeightedToken

User Story

Set

Conceptual

Model

«component»

Constructor

«component»

Generator

«component»

Ontology

«component»

PatternFactory

«component»

PatternIdentifier

Ontology

object

Pattern

Model

«component»

WeightAttacher

Term-by-

US matrix

User Story

object

«component»

Processor

Fig. 5 Component diagram of the Visual Narrator tool

4
github.com/MarcelRobeer/VisualNarrator.

Requirements Eng (2017) 22:339–358 345

123

http://spacy.io

user stories and applying the heuristics defined in the

previous sections.

The procedure starts in line 2 by defining the valid

indicators ind for splitting the user stories into role, means,

end. The cycle of lines 3–14 excludes syntactically incor-

rect user stories and creates the set of entities, including

hierarchical ones. Every story (r, m, e) is initially split

using the indicators (line 4); if this operation fails, the story

is discarded and the loop continues to the next story (line

5). If a story is identified, it is added to the set of syntac-

tically valid user stories S’.

Every part of a syntactically valid user story (role,

means, end) is parsed (line 8). Then, the heuristics to

identify nouns (E2) and the subject of the sentence (E3) are

executed (lines 9–10); all identified nouns are added to the

set of entities E. Lines 11–14 process compound nouns: the

compound is added to E according to heuristic E4, a spe-

cialization relationship is created linking the sub-entity to

the super-entity (H2), and a non-hierarchical ‘‘has’’ rela-

tionship is created from the prefix of the compound to the

compound itself (R5).

Lines 15–29 iterate over the set S0 of syntactically cor-

rect user stories with the intent of identifying relationships

where entities in E are linked through associations created

by processing the verbs in the user stories. Lines 16–17

modify the means and the end by resolving the pronoun

reference: the subject of the means (the ‘‘I’’ of the indicator

‘‘I want to’’) is replaced by the subject of the role r; a

similar processing applies to ends whose subject is ‘‘I’’

(e.g., ‘‘so that I...’’).

Both means and end are processed in lines 18–29.

Subject, main verb, and direct object (R2) are identified in

lines 19, 21, and 22, respectively. If no subject is identified,

the algorithm continues to the next user story element: we

do not look for verbs when the subject is unclear or

nonexistent. If a direct object is not found, an indirect

object is searched for applying heuristics R3 and R4 (lines

23–24). If no object is found, the cycle continues to the

next user story element (line 25). If both subject and object

are in E, a relationship with the name of the verb is created

between them (lines 26–27). In case only the subject is in

E and we are analyzing the means, a relationship is created

from the subject to a special entity called system. For

example, the story ‘‘As a user, I want to login’’ would

result in a relationship login(user,system). This rule

applies only to the means because this part refers to a

desired functionality, while the structure of the end is less

rigid [37].

4.3 Tool implementation and improvements

The aforementioned architecture and algorithm based on

the heuristics of Sect. 3 capture the design and intention of

Visual Narrator. The actual implementation, however,

deviates from this in some aspects. It adapts some of the

heuristics and includes a number of techniques to go

beyond spaCy’s initial Part-of-Speech (PoS) tagging in

order to further optimize the results.

We modify E2 by including both common and proper

nouns, because proper nouns often refer to domain-specific

notions such as the name of a software product or a library.

To improve accuracy, we replace the pronoun ‘‘I’’ with the

noun they refer to when no ambiguity exists (see Sect. 4.2).

Effectively, this means Visual Narrator assigns every noun

to either a new or an existing entity. We did not implement

H1 because the correct application of the heuristics

requires a deep understanding of the semantics of the ‘‘to

be’’ relationship.

Furthermore, after separating a user story in its role,

means, and ends parts, Visual Narrator reruns the PoS

tagger on each of these shorter parts. Because these partial

user story phrases are tagged with higher accuracy, we use

these as the basis for further analysis. Even if the PoS

tagger fails due to missing word classes in a fragmented or

grammatically incorrect sentence, Visual Narrator includes

fall-back mechanisms to parse the user story part: (1) when

no noun is present in the role part, the entire text between

346 Requirements Eng (2017) 22:339–358

123

the two indicators is adopted as the role; (2) if spaCy does

not detect a verb and/or a direct object in the means, Visual

Narrator presumes the word directly after the indicator is

the verb and assigns the first object in the sentence as the

direct object; and (3) if no object is available at all, it

assigns System as a default object.

To improve accuracy over our previous work [53], we

carefully examined Visual Narrator’s output to identify

opportunities for improvement. This resulted in several

minor bug fixes and the introduction of three new features.

The first two features enhance Visual Narrator’s detection

of compound nouns, while the third changes how we detect

a user story’s main object:

• Amod Previously, Visual Narrator relied solely on

spaCy’s ‘‘compound’’ dependency tag to identify two

nouns as a compound noun such as ‘‘environment

language’’. SpaCy, however, excludes all compound

nouns that comprise a noun adjunct and a noun, instead

assigning these the adjectival modifier dependency

‘‘amod’’. By including compound nouns with this depen-

dency, Visual Narrator now correctly creates a compound

for phrases such as ‘‘content types’’ and ‘‘chicken soup’’.

• Rightmost child There are no agreed upon rules

concerning the sequence of a compound noun. Gener-

ally speaking, however, the primary noun is the very

last one with the nouns before it specializing its

meaning: a full moon or a bus stop. Visual Narrator

now favors the rightmost child for noun compounds

with more than two nouns. Parsing the phrase ‘‘photo

editing tools’’ now results in compound ‘‘editing tools’’

instead of ‘‘photo editing’’ as in [53].

• Pobj is main object The direct object in a user story is,

in general, the object of the role’s action. This changes,

however, when a user story has a pronoun, adverb, or

adjective as direct object and includes a prepositional

phrase. Grammatically, an adverb or adjective cannot

be the direct object as they qualify something else. Yet,

the data do include this construction because POS

taggers parse single adverbs and adjectives as a ‘‘noun

phrase’’, resulting in a missing valid ‘‘dobj’’. When a

prepositional phrase is present, the main object is found

by following prep’s ‘‘pobj’’ dependency link as shown

in Fig. 6. Where Visual Narrator would previously

extract learn(I,more) from the user story ‘‘I can learn

more about the content’’, the tool now creates the

arguably more meaningful relationship learn_-

more_about(I,content). Note that this new feature

results in extra information by including the adverbs in

the action, but simply replaces the pronoun with the

functional role. We argue, however, that linking the

pobj is more informative than keeping the pronoun’s

context. Consider for example ‘‘I register the site’’

versus ‘‘I register myself’’ in the case of a user story ‘‘I

register myself with the site’’.

These new features combined with an update to the PoS

tagger spaCy means Visual Narrator output is different

from the output evaluated in [53]. In Sect. 5, we report on a

thorough new evaluation of Visual Narrator to investigate

whether and to what extent these changes result in better

recall and precision.

5 Quantitative evaluation: accuracy

We evaluate the feasibility of our approach and heuristic

accuracy by applying Visual Narrator to four data sets from

real-world projects: an interactive story telling project by

WebCompany, a year of developing CMSCompany’s

flagship product, a public works project for Michigan State,

and six months of development for the open-source

archival software ArchivesSpace. In the following, we

introduce each in more detail. The data sets and their

Fig. 6 Prepositional phrase parsing examples depicting assigning the pobj as main object improvement over [53]

Requirements Eng (2017) 22:339–358 347

123

evaluation documents are available online.5 An overview

of the data sets’ characteristics is provided in Table 2. The

first five rows show the totals per data set: the number of

stories nus, of words nword, of entities nent, of relationships

nrel; and of words in the user story template ntmpl (e.g., ‘‘so

that’’ means two words). The following three rows indicate

averages per user story: number of words �xword, of entities

�xent, and of relationships �xrel. Finally, to measure the user

story writing style, the last three rows report on the con-

ceptual density per data set by introducing three metrics for

a given set of user stories, i.e., entity density qent, rela-

tionship density qrel, and concept density qconc:

qent ¼
nent

nword � ntmpl

qrel ¼
nrel

nword � ntmpl

qconc ¼qent þ qrel

Looking at the averages, the table reveals that CMSCom-

pany’s user stories are long and entity-rich and that despite

being shorter, ArchivesSpace’s user stories contain more

concepts than Michigan State’s. Among these four sets, the

average number of words does not correlate with average

entities and average relationships. Looking at the density

metrics, we can see how the ArchivesSpace’ set is much

more conceptually rich than Michigan State’s and

CMSCompany’s, 85% as opposed to 58%. Nevertheless,

we could find no correlation between density and the

number of words. A detailed study of these metrics and

their effect on quality in RE is left for future work.

In Sect. 5.1, we determine the accuracy of our imple-

mentation of the heuristics (Algorithm 1) by comparing the

results of Visual Narrator to a manual labeling of the data

sets done by the authors. The outcome of this comparison is

encouraging, and we obtain accuracies as high as 97%

recall and 98% precision with a lower bound of 88% recall

and 92% precision. A small but important accuracy

improvement over our earlier work [53]. In Sect. 5.2, we

discuss the limitations of our approach in terms of impor-

tant entities and relationships that are not recognized due to

NLP limitations, our algorithm, or unanticipatable structure

of the user stories.

5.1 Heuristics accuracy

We evaluate the accuracy of our implemented heuristics by

comparing the output of Visual Narrator to manually cre-

ated golden data sets. In comparison with our evaluation in

[53], we have taken a considerably more rigorous approach

to constructing these golden data sets in order to ensure

their validity: (1) two independent taggers applied Algo-

rithm 1 to the user stories to identify all the entities and

their relationships, (2) one tagger compared the two

resulting documents and records all discrepancies between

them, and (3) together, the two taggers resolved the dis-

crepancies by discussing the correct application of Algo-

rithm 1. In our case, there was high agreement between the

two taggers, with only 5% to at most 9% discrepancies

depending on the data set.

To evaluate our implementation of Algorithm 1, we

compare the golden data sets to the analysis by Visual

Narrator.

Our evaluation has two objectives:

• To determine quantitatively to what extent the

employed NLP toolkit fails to deliver accurate results

due to the difficulty of correctly tagging and parsing

sentences.

• To analyze qualitatively the limitations of our imple-

mentation in terms of important information that is not

recognized correctly.

We determine true positive, false positive, and false neg-

ative user story elements (entities and relationships). As is

customary in Information Retrieval reporting, we do not

report on true negatives because they should not affect how

good or bad the outcome is of your algorithm [41]:

• True positive: the element is identified both by the tool

and by the manual analysis.

• False positive: the element is identified by the tool but

not by the manual analysis.

• False negative: the element is not identified by the tool

while it was listed in the manual analysis.

Note that multiple heuristics may apply to a given text

chunk. For example, three heuristics (see Table 1) apply to

Table 2 Lexical characteristics of the evaluation cases

Web CMS Michigan Archives

Totals per data set

nus 79 32 17 49

nword 1549 954 414 783

nent 400 272 91 294

nrel 247 168 42 156

nind 645 207 185 261

Averages per user story

�xword 19.6 29.8 24.4 16.0

�xent 5.1 8.5 5.4 6.0

�xrel 3.1 5.3 2.5 3.2

Conceptual density per data set

qent 0.44 0.36 0.40 0.56

qrel 0.27 0.22 0.18 0.29

qconc 0.71 0.58 0.58 0.85

5 http://www.staff.science.uu.nl/*lucas001/vn_user_stories.zip.

348 Requirements Eng (2017) 22:339–358

123

http://www.staff.science.uu.nl/%7elucas001/vn%5fuser%5fstories.zip

a compound: C4, R5, and H2. Thus, if the tool misses a

compound, it actually generates three false negatives. On

the other hand, if the tool and the manual analysis match,

three true positives are generated. Moreover, the incorrect

identification of a relationship (e.g., see(visitor,content)

instead of see(visitor,display_name)) results in both a

false positive (the incorrect relationship) and a false neg-

ative (the missed out relationship).

We report on accuracy in two ways: (1) on individual

user stories, by aggregating the number of true positives,

false negatives, and false positives for entities and rela-

tionships and (2) on the obtained conceptual model, by

comparing the manually created one against the generated

one.

Making this distinction is important when an unrecog-

nized entity appears many times: consider, for example, a

compound noun (C4, H2, R5) that appears in 20 different

user stories in a data set. This would imply 20 false neg-

ative entities and 40 false negative relationships (20 times

H2 and 20 times R5), while the resulting conceptual

model—the actual artifact that we propose for the stake-

holders to use in their discussion—would only miss one

entity and two relationships.

Tables 3, 4, 5, 6, 7, 8, 9, and 10 report the results using

the same format. They have three macro-columns: entities,

relationships, and overall (entities?relationships). Each

macro-column has three sub-columns to denote true posi-

tives (TP), false positives (FP), and false negatives (FN).

The rows indicate the number of instances (Inst.), i.e., the

number of identified and missed out entities and relation-

ships; the percentile splitting of TP, FP, and FN (%), the

precision (PRC), the recall (RCL), and the weighted har-

monic mean of PRC and RCL using the F1 score [41] (F1).

Table 3 Accuracy of individual user story analysis for the

WebCompany case (N ¼ 79)

Entities Relationships Overall

TP FP FN TP FP FN TP FP FN

Inst. 393 10 7 230 10 17 618 20 24

% 95.9 2.4 1.7 89.3 4.0 6.7 93.4 3.0 3.6

PRC 97.5 95.7 96.9

RCL 98.3 93.0 96.3

F1 97.9 94.4 96.6

Table 4 Accuracy of the generated conceptual model for the

WebCompany case

Entities Relationships Overall

TP FP FN TP FP FN TP FP FN

Inst. 102 5 5 149 10 15 251 15 20

% 91.1 4.5 4.5 85.6 5.7 8.6 87.8 5.2 7.0

PRC 95.3 93.7 94.4

RCL 95.3 90.9 92.6

F1 95.3 92.3 93.5

Table 5 Accuracy of individual user story analysis for the

CMSCompany case (N ¼ 32)

Entities Relationships Overall

TP FP FN TP FP FN TP FP FN

Inst. 259 9 13 145 12 23 404 21 36

% 92.2 3.2 4.6 80.6 6.7 12.8 87.6 4.6 7.8

PRC 96.6 92.4 95.1

RCL 95.2 86.3 91.8

F1 95.9 89.2 93.4

Table 6 Accuracy of the generated conceptual model for the

CMSCompany case

Entities Relationships Overall

TP FP FN TP FP FN TP FP FN

Inst. 129 5 7 112 13 23 241 18 30

% 91.5 3.5 5.0 75.7 8.8 15.5 83.4 6.2 10.4

PRC 96.3 89.6 93.1

RCL 94.9 83.0 88.9

F1 95.6 86.2 90.9

Table 7 Accuracy of individual user story analysis for the Michigan

State case (N ¼ 17)

Entities Relationships Overall

TP FP FN TP FP FN TP FP FN

Inst. 91 2 0 40 2 2 131 4 2

% 97.8 2.2 0 90.0 4.5 4.5 95.6 2.9 1.5

PRC 97.8 95.2 97.0

RCL 100.0 95.2 98.5

F1 98.9 95.2 97.8

Table 8 Accuracy of the generated conceptual model for the

Michigan State case

Entities Relationships Overall

TP FP FN TP FP FN TP FP FN

Inst. 46 2 1 38 1 2 84 3 3

% 93.9 4.1 2.0 92.7 2.4 4.9 93.3 3.3 3.3

PRC 95.8 97.4 96.6

RCL 97.9 95.0 96.6

F1 96.8 96.2 96.6

Requirements Eng (2017) 22:339–358 349

123

5.1.1 WebCompany

This data set comes from a young company in the

Netherlands that creates tailor-made web business appli-

cations. The team consists of nine employees who itera-

tively develop applications in biweekly Scrum sprints.

WebCompany supplied 98 user stories covering the

development of an entire web application focused on

interactive story telling that was created in 2014.

In total, 79 of these 98 user stories were syntactically

correct, usable, and relevant for conceptual model gener-

ation [37]. Part of the generated conceptual model is shown

in Fig. 7.

The accuracy results of the individual user story analysis

shown in Table 3 are positive. The overall precision and

recall are 96.9 and 96.3%. The accuracy is higher for

entities than for relationships; for entities, precision and

recall are approximately 98%, while for relationships pre-

cision is 95.7% and recall is 93.0%. This happens because

correctly identifying a relationship depends on correctly

identifying both the relationship name and its source and

target entities.

The accuracy of the generated conceptual model

(Table 4) is also very good, although a bit less accurate

than that of the individual user story analysis: overall

precision is 94.4% and recall is 92.6%. Interestingly,

despite the large overlap in individual errors, the drop in

recall and precision is comparable for both entities and

relationships (95.3% for both vs. 93.7% precision and

90.9% recall).

Overall, Visual Narrator’s output for the WebCompany

data set is highly accurate. A closer examination of the

false positives and false negatives reveals that there are two

main causes for errors: (1) human error such as using its

instead of it’s confuses spaCy and (2) ambiguous or com-

plex phrases that the NLP tooling fails to correctly identify,

such as up to date erroneously resulting in a entity date.

5.1.2 CMSCompany

A data set from a mid-sized software company located in

the Netherlands with 120 employees and 150 customers.

They supplied 34 user stories for a complex CMS product

for large enterprises; those stories represent a snapshot of

approximately a year of development in 2011. A partial

conceptual model is shown in Fig. 8. The data set of

CMSCompany included 32 syntactically correct user sto-

ries. Despite the smaller size, this data set is particularly

interesting due to the use of lengthy user stories with non-

trivial sentence structuring such as: ‘‘As an editor, I want to

search on media item titles and terms in the Media

Repository in a case insensitive way, so the number of

media item results are increased, and I find relevant media

items more efficiently’’.

Table 5 presents the results of the analysis of individual

stories. The accuracy for the CMSCompany data set is still

high, despite the high complexity of its user stories in terms

of average words, entities, and relationships per user story

as shown in Table 2. The overall precision and recall for

individual user stories are 95.1 and 91.8%. This lower

accuracy is mostly due to the 86.3% recall for relationships

and in smaller part its 92.4% precision. Although the

identification of entities also shows lower accuracy (pre-

cision 96.6% and recall 95.2%), the decrease is small

considering the high user story complexity.

Table 6 reports on the accuracy of the generated con-

ceptual model. The less accurate parsing is also reflected

Table 9 Accuracy of individual user story analysis for the

ArchivesSpace case (N ¼ 49)

Entities Relationships Overall

TP FP FN TP FP FN TP FP FN

Inst. 271 15 23 127 18 29 398 33 52

% 87.7 4.9 7.4 73.0 10.3 16.7 82.4 6.8 10.8

PRC 94.8 87.6 92.3

RCL 92.2 81.4 88.4

F1 93.4 84.4 90.4

Table 10 Accuracy of the generated conceptual model for the

ArchivesSpace case

Entities Relationships Overall

TP FP FN TP FP FN TP FP FN

Inst. 137 6 10 116 17 23 253 23 33

% 89.5 3.9 6.5 74.4 10.9 14.7 81.9 7.4 10.7

PRC 95.8 87.2 91.7

RCL 93.2 83.5 88.5

F1 94.5 85.3 90.0

Administrator User
find, remove, manage, ban

Media Element

add, edit, remove

Media
has_element Media

Gallery

has_gallery

Element Gallery

IS-A IS-A

update, delete, add

Content List

search, manage,

see

Account

manage

Fig. 7 Partial conceptual model for WebCompany’s Administrator

role based on Visual Narrator output

350 Requirements Eng (2017) 22:339–358

123

here with a less accurate conceptual model: overall preci-

sion and recall are 93.1 and 88.9%. While accuracy for

entities is nearly identical to in the individual analysis case,

the precision and recall for relationships drop to 89.6 and

83.0%.

The main determinant of this performance is the exis-

tence of hard-to-process compound nouns that include an

ambiguous term such as ‘‘content’’ or ‘‘flash’’ which could

also be an adjective or verb. In the worst case, Visual

Narrator identifies the wrong compound (C4) and its rela-

tionships (H2, R5). As stated earlier, a missed out com-

pound also implies missing out the relationships when the

compound is a direct object (R2) or a non-direct object (R3

or R4).

5.1.3 Michigan State

These user stories are extracted from a State of Michigan

Enterprise Procurement document. This publicly available

document created by the Department of Technology,

Management, and Budget in Lansing, Michigan, describes

a Statement of Work concerning the scope and definition of

the professional services to be provided by a contracting

company: Accela, Inc. For our analysis, we extracted 27

user stories for a complaints system. Although these user

stories are concise and obviously written by English native

speakers, Visual Narrator could only parse 17 out of 27

user stories, of which Fig. 9 shows a partial model. The

non-parsed user stories contain minor well-formedness

issues that could quickly be resolved by preprocessing with

AQUSA [37].

Despite the small magnitude, the data set is interesting

for its extreme simplicity and consistent structure.

Although its 5.4 average entities per user story is actually

slightly higher than WebCompany’s 5.1, the accuracy

results shown in Table 7 for individual stories push the

boundary of what Visual Narrator can achieve: 97% pre-

cision and 98.5% recall. One reason for this high accuracy

is the inclusion of just six compound nouns. In total, there

are four errors. Two wrongly identified entities lead to a

98% precision and 100% recall for entities, and two mis-

takenly generated relationships result in identical precision

and recall of 95.2%. Due to the low number of errors, the

accuracy of the generated conceptual model is nearly

identical: 96.6% precision and recall overall, 95.8% pre-

cision and 97.9% recall for entities and 97.4% precision

and 95.0% recall for relationships (Table 8). Of all the

errors in the conceptual model, four errors are the conse-

quence of mistakes by the NLP tooling, while the

remaining two emerge because Visual Narrator does not

include personal pronouns in the conceptual model even

when they are the subject (with the exception of ‘‘I’’, which

is replaced by the referential element as per line 17 in

Algorithm 1).

5.1.4 ArchivesSpace

ArchivesSpace6 is an open-source software product created

by archivists such as those of the British Royal Archive.

The user stories of this project are available online.7 For

our analysis, we extracted 56 user stories that span devel-

opment from the start of the project in August 28, 2012,

until February 28, 2013. Out of those stories, 49 are

Fig. 8 Partial conceptual model for CMSCompany’s Marketeer role

in the conceptual model visualization tool Interactive Narrator
Fig. 9 Partial conceptual model for Michigan State’s Complaint

concept in Interactive Narrator

6 http://www.archivesspace.org/.
7
archivesspace.atlassian.net.

Requirements Eng (2017) 22:339–358 351

123

http://www.archivesspace.org/

syntactically correct. The user stories in this collection are

quite peculiar: all of them omit the so that part of the

Connextra template [15], but many user stories contain

unnecessarily capitalized words, compound nouns, and

idiosyncratic phrases such as ‘‘...edit for (Accession |

Resources) before ...’’

This nonstandard approach has a substantial impact on

the analysis and the conceptual model (Fig. 10). Despite

omitting the so that, Visual Narrator’s accuracy is lowest

on the ArchivesSpace data set. For individual user stories,

the overall precision is 92.3% and recall is 88.4%. For

relationships in particular, precision is 87.6% and recall is

81.4%. Likewise, accuracy in identifying entities is the

lowest out of all four sets: 94.8% precision and 92.2%

recall (Table 9).

Table 10 reports on the accuracy of the conceptual

model. Again, the accuracy results are the worst out of all

four data sets: overall precision is 91.7% and recall is

88.5%. Remarkably, however, the precision of entities and

recall of both entities and relationships in the conceptual

model is superior to individual user story analysis. The

reason is that some relationships were missed out in some

user stories, but recognized correctly in others, depending

on the complexity of the sentence.

The majority of incorrectly identified relationships and

entities are due to the (non-)identification of compound

nouns. For example: the text chunk ‘‘(Accession |

Resources)’’ resulted in the creation of the compound noun

| Resources, while Visual Narrator did not identify a

compound noun for the jargon term Subject heading.

5.2 Analysis and discussion

The changes described in Sect. 4.3 generally improved the

accuracy of Visual Narrator over our previous results [53]

as highlighted by the bar charts in Figs. 11, 12, 13, 14. For

the WebCompany case, the average precision for entities

and relationships actually dropped by 1%. In exchange,

however, recall improved substantially. Entity recall for

Fig. 10 Partial conceptual model for ArchivesSpace’s Agent concept

using the publicly available visualization tool WebVOWL

50%

63%

75%

88%

100%

PRC ent REC ent PRC rel REC rel PRC all REC all

96.3%96.9%
93%

95.7%
98.3%97.5%

92.9%
91%

87.2%
83.7%

96.3%95.6%

Old New

Fig. 11 Web individual PRC and RCL change

50%

62.5%

75%

87.5%

100%

PRC ent REC ent PRC rel REC rel PRC all REC all

92.6%
94.4%

90.9%
93.7%95.3%95.3%

88.2%

96.2%

86.0%

94.8%
91.4%

98.2%

Old New

Fig. 12 Web set PRC and RCL change

50%

63%

75%

88%

100%

PRC ent REC ent PRC rel REC rel PRC all REC all

91.8%
95.1%

86.3%

92.4%
95.2%96.6%

86%

81.4%

75.3%

67.2%

91.9%
90%

Old New

Fig. 13 CMS individual PRC and RCL change

50%

62.5%

75%

87.5%

100%

PRC ent REC ent PRC rel REC rel PRC all REC all

88.9%

93.1%

83.0%

89.6%

94.9%96.3%

85.3%

79.3%80.3%

71.7%

90.5%
87.9%

Old New

Fig. 14 CMS set PRC and RCL change

352 Requirements Eng (2017) 22:339–358

123

individual analysis and generated model improved by 2 and

4%, while relationship recall improved by 6 and 5%. The

improvement for CMSCompany is even better, although

there were more opportunities for improvement. On aver-

age, precision improved by 1.5%. Entity recall improved

by 3 and 4%, whereas relationship recall improved by 11

and 3%. WebCompany’s overall accuracy raised from

97.9% precision and 92.9% recall to 96.9 and 96.3% for

individual analysis, and from 96.2% precision and 88.2%

recall to 94.4 and 92.6% for the generated model.

CMSCompany’s overall accuracy changed from 93.8%

precision and 86.0% recall to 96.1 and 91.8% for individual

analysis, and from 91.9% precision and 85.3% recall to

93.1 and 88.9% for the generated model.

The simple and semi-structured template of user stories

makes them an ideal candidate for NLP analysis as

demonstrated by the high accuracy of Visual Narrator.

Problems arise when, as in the second and fourth case study,

people deviate from the basic format and formulate com-

plex requirements that go beyond the purpose of the user

story template. This had a substantial impact for the

ArchivesSpace set in particular, with overall accuracies of

just 92% recall and 88.5% precision for both individual user

story analysis and generated conceptual model. Conversely,

the Michigan State user stories are parsed with the highest

accuracy thanks to their simplicity and consistency. In the

following, we present some key challenges concerning NLP

processing for user stories that our evaluation revealed.

Compounds are difficult to identify correctly Their

proper identification depends on their position within a

sentence. For example, the spaCy tagger would find the

compound events_section in the sentence ‘‘I keep the

events section’’, but it would miss it in the sentence ‘‘I can

keep the events section’’. This is due to the fact that

modern NLP taggers are statistical and try to find the most

probable tagging in many situations [40]. Furthermore, we

do not yet support compounds that consist of three or more

nouns, such as ‘‘profile page statistics’’. Note, however,

that these are often grammatically complex structures with

ambiguous semantics: in the example, do ‘‘page statistics’’

refer to the ‘‘profile’’, or do ‘‘statistics’’ refer to the ‘‘profile

page’’? While a part-of-speech tagger is capable of rec-

ognizing ‘‘profile page statistics’’ as a three-word com-

pound, it is unable to disambiguate it semantically.

Verbs may be difficult to link to the proper object For

example, for CMSCompany, our implementation identifies

the relationship avoid(marketeer,redirects) in the sen-

tence ‘‘Marketeer can avoid duplicate content easily

without having to set permanent redirects’’, instead of

avoid(marketeer,content). Although spaCy is capable of

correctly parsing this sentence, this error occurs due to our

simplification of the sentence which replaces ‘‘Marketeer

can’’ with ‘‘I’’. In this case, spaCy incorrectly tags the

ambiguous adjective ‘‘duplicate’’ as a verb and the equally

ambiguous noun ‘‘content’’ as an adjective. In future work,

we will re-evaluate whether a different approach to sim-

plification is necessary.

Furthermore, while we focused on linking the subject to

the main object of the sentence through the verb, there are

also sentences requiring higher arity relationships. For

instance, the sentence ‘‘The user can add new elements to

the gallery’’ would require the creation of an n-ary asso-

ciation add-something-to tying together the entities user,

element, and gallery.

Conjunctions are also a challenge For the time being,

we decided to overlook them, guided by our conceptual

model of user stories that calls for their atomicity and

minimality [37]. However, our second and fourth case

studies include multiple examples of stories that violate

these principles, using the conjunction ‘‘and’’ (but also

logics-inspired operators such as ‘‘|’’) to specify multiple

requirements or expressing conditions using the conjunc-

tion ‘‘when’’.

Additionally, we currently exclude adjectives and

adverbs from the conceptual models. This prevents us

from identifying specializations and quality requirements.

For example, ‘‘external link’’ is an adjective–noun com-

pound that could induce an attribute of link or a special-

ization. Also, adverbs that qualify verbs (‘‘easily’’,

‘‘intuitively’’, ‘‘faster’’) could lead to more accurate rela-

tionships that indicate the qualities for the system to

comply with. Future work should study whether or not

tagging these additional components would produce more

useful conceptual models: the gained completeness may

result in less accuracy, and the trade-off has to be inves-

tigated empirically in industrial practice.

Finally, the human element is difficult to plan for. A
substantial portion of the errors in the WebCompany case

are caused by grammatical errors or misspellings. The

lower accuracy of the ArchivesSpace case can partly be

attributed to the usage of the logical OR sign |. Prepro-

cessing these types of issues would further improve the

results of Visual Narrator. An interesting direction is to

provide interactive support to the stakeholders expressing

these requirements, e.g., via a grammar checker or the

AQUSA tool [37].

5.3 Threats to validity

External validity threats reduce the generalizability of the

results. To obtain even more reliable accuracy results

requires substantially larger evaluations. Moreover, our

data sets were obtained through convenience sampling

from industry contacts and online searches. It is unclear

whether these data sets are representative of user stories in

general.

Requirements Eng (2017) 22:339–358 353

123

Construct validity threats are about the degree to which

a test measures what it intends to measure. Measuring

accuracy requires understanding the correct interpretation

of a sentence; it is well known that NL is inherently

ambiguous. To reduce the risks, we limited ourselves to the

more objective criterion of compliance with the algorithm,

instead of the general case of recognizing all entities and

relationships. In fact, we argue that comparing Visual

Narrator output with theoretically ideal output is a more

objective evaluation than comparing with a human’s sub-

jective recognition of all relevant concepts and relation-

ships in a text.

Nevertheless, by taking this approach we are unable to

empirically evaluate the validity of the algorithm itself.

While our precision and recall for detecting what we want

to detect are high, we do not know whether what we want

to detect is actually useful. In earlier work, we conducted a

preliminary evaluation with two practitioners who indi-

cated Visual Narrator output is usable and promising [53].

However, a larger-scale evaluation with practitioners is

necessary to determine the subjective validity of the

algorithm.

Internal validity threats focus on how the experiments

were conducted. The golden data sets were tagged and

applied manually. Although multiple human taggers were

used, there is still a low risk that human error caused

incorrect analysis.

6 Related literature

6.1 User stories

The growing popularity of agile development practices

such as Scrum leads to a continuously increasing adoption

of user stories [31, 64]. Although research interest is

slowly growing, the currently available literature is limited.

Arguably, the first literature on incorporating stories into

requirements is within the scenario-based requirements

engineering domain in the 1990s [29]. The earliest research

work on user stories proposes their use as the first artifact

for describing interactions containing a role, an action, and

some object [30]. For implementation purposes, the

authors propose transforming user stories into a more for-

mal notation such as use cases.

The majority of research in the field attempts to create

methods and tools that support or improve user story

practice. In 2002, Rees proposed to replace the pen-and-

card approach for writing user stories with a software tool

called DotStories [52]. Today’s popular agile project

management tools such as Jira and Trello are all built

around the skeuomorph index card metaphor introduced

with DotStories.

As of 2015, academic interest in user stories is renewed,

leading to a variety of research initiatives. Recent studies

predominantly investigate how to connect and/or integrate

user stories with different modeling techniques. For

example, Trkman et al. propose a method to associate user

stories with business process modeling activities [61].

They find that undergraduate students better understand

user stories’ execution order and integration dependencies

when business process models are available.

A variety of studies propose new ways to employ or

work with user stories to achieve some goal. For example,

Barbosa et al. demonstrate how to identify semantically

duplicate user stories by applying well-known similarity

measures. They test their approach with three case sets,

automatically identifying up to 92% of duplicates [7].

Observing that practitioners encounter difficulties incor-

porating user experience concerns into user stories, Choma

et al. propose extending the Connextra template [13].

Although their case company fully adopted this new tem-

plate, more research is necessary to evaluate the added

benefit.

Other studies investigate some aspect of user stories in

practice. Dimitrijevic et al. qualitatively compare five agile

software tools in terms of their functionality, support for

basic agile RE entities and practices, and user satisfaction.

They conclude that basic functionality is well supported by

tools, but that user role modeling and personas are not

supported at all [19]. Soares et al. investigate the link

between user stories and documentation debt, finding that

the low level of detail of user stories is the primary reason

for difficulties [59].

Finally, two authors take a different approach to ours for

transforming a user story set into a visual representation.

Wautelet et al. propose a method that results in Use-Case

Diagrams [65]. The authors demonstrate a CASE-tool that

automates their approach and allows end users to itera-

tively improve and extend the output. In another pro-

ject [67], these same authors propose a method for

mapping user stories to agent-based software architecture

using i* [17, 68]. Similarly, the US2StarTool [42] derives

skeletons of i* goal models from user stories.

Whereas our approach employs NLP to extract all

entities and relationships from a user story, these tools

strictly map the entire action text to a task and the benefit to

a goal. While employing the i* and use case notations

enable these models to be more expressive than ours, they

also require a human to actually construct a model by

assembling the extracted parts. Visual Narrator’s fully

automatic model generation allows all stakeholders to

quickly get an understanding of the software system’s

functionalities and partake in relevant and meaningful

discussion around the user stories. A key activity according

to Cohn [15].

354 Requirements Eng (2017) 22:339–358

123

Aside from facilitating communication, Visual Narrator

output functions as the foundation for employing user sto-

ries to achieve other goals. For example, combining the

extracted entities with semantic similarity calculations

enables grouping user stories in clusters as we do in [39] or

identifying semantically duplicate user stories similar to the

work in [7]. Another application we are currently exploring

is reconciling Visual Narrator output with class diagrams by

automatically connecting an extracted entity to the source

code it executes via automated acceptance tests.

6.2 NLP for RE: extracting models

from requirements

Historically the final frontier of RE has been applying natural

language processing. Nowadays, the ambitious objective of

full automation is considered unattainable in the foreseeable

future [8, 55]. Therefore, RE research has applied NLP to

specific use cases. Berry et al. [8] categorizes the fundamental

approach of all NLP RE tools into four types:

1. Finding defects and deviations in natural language

(NL) requirements document;

2. Generating models from NL requirements

descriptions;

3. Inferring trace links between NL requirements

descriptions;

4. Identifying the key abstractions from NL documents

In [37], we provide an overview of contemporary tools in

NLP for RE and introduce the AQUSA tool for automati-

cally detecting quality defects in user stories. Furthermore,

observing that no objective comparison of NLP for RE

tools is available, Arendse and Lucassen apply three tools

of type I on 112 requirements [5]. They find that none of

the available tools is clearly superior and call for a next

generation tool framework that can dynamically incorpo-

rate the new state of the art.

The objective of type II tools generating models from

NL requirements descriptions is a long-standing research

topic that is relevant in several domains. Already in 1989,

Saeki et al. described a method where verbs and nouns are

automatically extracted from NL, in order for a require-

ments engineer to derive a formal specification of the

system [56]. One of the first tools that implement this idea

is NL-OOPS [44]. The authors demonstrate the capabilities

of NL-OOPS by generating a data model from a 250 word

text. Since then, many tools have been proposed with

diverse approaches and results. CM-builder [27] managed

to extract candidate attributes, entities, and relationships

from a 220 word text with 73% recall and 66% precision.

CIRCE [3] is a sophisticated tool that generates many

different models including ERD, UML, and DFD from NL

requirements. Experimental application in three case

studies indicated improvements in software model analysis

and changing requirements. All these tools, however,

require either human intervention or artificially restricted

NL in the form of a controlled vocabulary and grammar in

order to generate complete and consistent models, thereby

hampering adoption in practice. Note that while the Con-

nextra user story template required by our solution imposes

a three-part structure, each part is completely free form.

Recognizing this gap in a structured literature review,

Yue et al. called for future approaches that fully automati-

cally generate complete, consistent, and correct UML

models [69]. Their latest tool, aToucan, generates reason-

ably high-quality class diagrams from use cases in com-

parison with diagrams created by experts, managing to

consistently outperform fourth-year software engineering

students in terms of completeness, consistency, and redun-

dancy. However, its output constitutes the initial models that

require human intervention in the form of refinements done

by experts [70]. Similarly, the tool presented in [57] out-

performs novice human modelers in generating conceptual

models from natural language requirements. Overall, their

recall for identifying entities ranges from 85 to 100%

depending on the case, while their precision is between 81

and 94%. The performance for relationships between enti-

ties, however, is less impressive: recall is in between 50 and

60%, while precision is in the 80–100% range. Arora

et al. [6] take a similar approach to the work we present in

this paper, combining existing state-of-the-art heuristics for

domain model extraction. They apply their approach to four

industrial requirements documents. According to expert

evaluation, the extraction rules in their implementation

achieve correctness between 74 and 100%.

Although [42, 65, 67] discussed in Sect. 6.1, all intro-

duce methods and tools for extracting models from user

stories, these works lack empirical evaluations. Because of

this, comparing their accuracy with the current state of the

art or our work is impossible. Nevertheless, the prolifera-

tion of work on extracting models from user stories using

NLP signifies the relevance and timeliness of our work.

This paper is the first to empirically demonstrate user

stories’ potential in automatically extracting conceptual

models and not without merit. The results of our evaluation

show that our approach achieves state-of-the-art recall and

precision for both identifying entities and relationships.

Note that it is difficult to compare the recall and precision

of our approach with aforementioned studies, because of

the different evaluation methods each employs.

6.3 Visualization of conceptual models
and requirements

To take advantage of human’s visual processing power,

conceptual models are typically presented as a

Requirements Eng (2017) 22:339–358 355

123

visualization. Typically, new visual notation initiatives first

concern is formally specifying the information types to

support. As the popularity of a graphical notation increases,

the community around it proposes innovative features to

augment or simplify the notation. Unfortunately, esthetic

aspects such as attractive design and user experience are

mostly disregarded when it comes to conceptual mod-

els [26]. Indeed, the most popular conceptual modeling

paradigms such as ER, UML, and BPMN primarily dis-

tinguish elements using basic symbols and shapes [24].

There is a large body of work to inspire innovative

visualization. For example, in 2009 Moody proposed the

Physics of Notations [45] that provides some guidelines for

creating cognitively effective notations and for pinpointing

flaws in existing notations such as i* [46] and use case

maps [24]. Moody’s guidelines inspired further research

that is relevant for our work. For example, Dudáš, Zama-

zal, and Svátek identified seventeen relevant features

implemented by ontology visualization tools [21] such as

incremental exploration and fisheye distortion. Their

notation, however, is mostly disregarded. Aside from this,

other domains such as interaction design and geography are

considerably more sophisticated in effectively visualizing

information [12].

A systematic review of the requirements engineering

visualization (REV) literature by Abad et al. [1] concludes

that more investigation and research are needed to support

knowledge visualization for RE. Similarly, Cooper

et al. [16] review the papers that appeared in the REV

workshops between 2006 and 2008. They distinguish

between different types of visualizations: tabular, rela-

tional, sequential, hierarchical, and metaphorical/quantita-

tive. The most relevant categories for our work are the

relational (i.e., graphs) and hierarchical (decomposing a

system into its parts). While many relational approaches

exist, very few focus on hierarchical aspects, which are the

key in our work.

Indeed, there are few contemporary tools available that

focus on visualizing requirements as models. To date,

ReCVisu? [51] is the most effective tool for requirements

visualization. ReCVisu? supports different visual explo-

ration tasks and employs clustering techniques and

semantic similarity to reduce complexity. While Visual

Narrator only visualizes one type of entity and directed

relationship, our work on Interactive Narrator continuously

explores innovative techniques to convey additional

meaning. For this, we take inspiration from existing tools,

yet are careful to consider their appropriateness in our

context. While RecVisu? determines similarity based on

the frequency of co-occurrence in system documentation,

the Interactive Narrator we propose in [39] relies on cor-

pus-based techniques that do not require the existence of

additional system documentation. Moreover, we do not

consider only concepts but also relationships, necessitating

a different yet similar approach.

7 Conclusion and future work

Natural language is the most adopted notation for

requirements [32]. Unfortunately, text does not readily

provide a holistic view of the involved entities and rela-

tionships. Aligned with other authors [20, 27, 28, 48], we

argue that extracting a conceptual model can significantly

ease the communication between stakeholders.

We have proposed the Grimm method that combines

three NLP-enabled tools to support conducting user story-

based RE. Specifically, the main artifact described in this

paper is the Visual Narrator tool, which automatically

generates a conceptual model from a collection of agile

requirements expressed as user stories. To do so, the tool

orchestrates a selection of state-of-the-art NL processing

heuristics and relies on an off-the-shelf NLP toolkit, spaCy.

Our evaluation on four case studies showed positive

accuracy results, especially when user stories are concise

statements of the problem to solve [15] and not lengthy

descriptions of the solution. Overall, our approach achieves

similar recall and precision to state-of-the-art tools such

as [57], for both entities and relationships. This happens

thanks to the careful selection and implementation of

heuristics that can deliver accurate results combined with

our application of these heuristics based on careful dis-

section of user stories’ syntactical properties.

Improvements can be made to the user story processing

algorithms. In particular, we want to develop support for

elaborate entities such as complex compounds, n-ary

relationships, conjunctions, adjectives, adverbs, and refer-

ences such as ‘‘this’’ and ‘‘that’’. While doing so, however,

we aim to make considerate decisions based on maximiz-

ing accuracy.

Furthermore, we intend to create a fully functional

version of the Interactive Narrator that integrates with the

AQUSA Tool and Visual Narrator. We will then empiri-

cally evaluate the Grimm method introduced in Sect. 2.2

with practitioners.

Another direction is to study the relationship between

user story metrics such as average number of entities,

relationships and their density (see Table 2) and quality of

the created specifications and software. To do so, we need

to collect data about how the user stories were used in the

later stages of software engineering.

Finally, we want to investigate automated techniques to

connect the generated conceptual models to software

architecture views. One promising direction is taking

advantage of automated acceptance tests, which typically

include a hand-coded cross-reference to the user story they

356 Requirements Eng (2017) 22:339–358

123

test [14]. For interpreted languages, executing these test

cases produces a runtime trace related to the user story. By

extracting the accessed data entities, classes, and methods,

it is possible to dynamically construct a class diagram that

includes only those classes contained within the runtime

trace.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Abad ZSH, Ruhe G, Noaeen M (2016) Requirements engineering

visualization: a systematic literature review. In: Proceedings of

the international requirements engineering conference (RE).

IEEE

2. Aguado De Cea G, Gómez-Pérez A, Montiel-Ponsoda E, Suárez-

Figueroa MC (2008) Natural language-based approach for help-

ing in the reuse of ontology design patterns. In: Proceedings of

the international conference on knowledge engineering and

knowledge management (EKAW), LNCS, vol 5268. Springer,

Berlin, pp 32–47

3. Ambriola V, Gervasi V (2006) On the systematic analysis of

natural language requirements with CIRCE. Autom Softw Eng

13(1):107–167

4. Aranda J, Ernst N, Horkoff J, Easterbrook S (2007) A framework

for empirical evaluation of model comprehensibility. In: Pro-

ceedings of the workshop on modelling in software engineering

(MiSE)

5. Arendse B, Lucassen G (2016) Toward tool Mashups: comparing

and combining NLP RE tools. In: Proceedings of the international

workshop on artificial intelligence for requirements engineering

(AIRE)

6. Arora C, Sabetzadeh M, Briand L, Zimmer F (2016) Extracting

domain models from natural-language requirements: approach

and industrial evaluation. In: Proceedings of the ACM/IEEE 19th

international conference on model driven engineering languages

and systems (MODELS). ACM, pp 250–260

7. Barbosa R, Silva AEA, Moraes R (2016) Use of similarity

measure to suggest the existence of duplicate user stories in the

scrum process. In: Proceedings of the annual IEEE/IFIP inter-

national conference on dependable systems and networks work-

shop (DSN-W), pp 2–5

8. Berry D, Gacitua R, Sawyer P, Tjong S (2012) The case for dumb

requirements engineering tools. In: Proceedings of international

conference on requirements engineering: foundation for software

quality (REFSQ), LNCS, vol 7195. Springer, pp 211–217

9. Berry DM, Kamsties E, Krieger MM (2001) From contract

drafting to software specification: linguistic sources of ambiguity.

Technical Report, School of Computer Science, University of

Waterloo, ON, Canada

10. Btoush ES, Hammad MM (2015) Generating ER diagrams from

requirement specifications based on natural language processing.

Int J Database Theory Appl 8(2):61–70

11. Chen PP (1983) Entity-relationship diagrams and English sen-

tence structure. In: Proceedings of the international conference on

the entity-relationship approach to systems analysis and design,

pp 13–14

12. Chi EHH (2000) A taxonomy of visualization techniques

using the data state reference model. In: Proceedings of the

IEEE information visualization conference (InfoVis). IEEE,

pp 69–75

13. Choma J, Zaina LAM, Beraldo D (2016) UserX story: incorpo-

rating UX aspects into user stories elaboration. Springer, Berlin

14. Cleland-Huang J (2012) Traceability in agile projects. In: Cle-

land-Huang J, Gotel O, Zisman A (eds) Software and systems

traceability. Springer, Berlin, pp 265–275

15. Cohn M (2004) User stories applied: for agile software devel-

opment. Addison Wesley Professional, Redwood City

16. Cooper Jr JR, Lee SW, Gandhi RA, Gotel O (2009) Require-

ments engineering visualization: a survey on the state-of-the-art.

In: Proceedings of the international workshop on requirements

engineering visualization (REV), pp 46–55

17. Dalpiaz F, Franch X, Horkoff J (2016) istar 2.0 language guide.

CoRR. http://arxiv.org/abs/1605.07767

18. Davies I, Green P, Rosemann M, Indulska M, Gallo S (2006)

How do practitioners use conceptual modeling in practice? Data

Knowl Eng 58(3):358–380

19. Dimitrijevi S, Jovanovi J, Devedi V (2015) A comparative study

of software tools for user story management. Inf Softw Technol

57:352–368

20. Du S, Metzler DP (2006) An automated multi-component

approach to extracting entity relationships from database

requirement specification documents. In: Proceedings of the

international conference on applications of natural language to

information systems (NLDB), LNCS, vol 3999. Springer, Berlin,

pp 1–11

21. Dudáš M, Zamazal O, Svátek V (2014) Roadmapping and navi-

gating in the ontology visualization landscape. In: Janowicz K,

Schlobach S, Lambrix P, Hyvönen E (eds) Proceedings of the

international conference on knowledge engineering and knowl-

edge management (EKAW). Springer, Berlin, pp 137–152

22. Fettke P (2009) How conceptual modeling is used. Commun

Assoc Inf Syst 25(1):43

23. Gagné CL (2002) Lexical and relational influences on the pro-

cessing of novel compounds. Brain Lang 81(13):723–735

24. Genon N, Heymans P, Amyot D (2010) Analysing the cognitive

effectiveness of the BPMN 2.0 visual notation. In: Proceedings of

the ACM SIGPLAN international conference on software lan-

guage engineering (SLE). Springer, Berlin, pp 377–396

25. Goldberg Y, Levy O (2014) word2vec explained: deriving

Mikolov et al.’s negative-sampling word-embedding method.

arXiv preprint arXiv:1402.3722

26. Gulden J, Reijers HA (2015) Toward advanced visualization

techniques for conceptual modeling. In: Proceedings of the forum

at the international conference on advanced information systems

engineering (CAiSE), pp 33–40. http://ceur-ws.org/Vol-1367/

#paper-05

27. Harmain H, Gaizauskas R (2003) CM-builder: a natural lan-

guage-based CASE tool for object-oriented analysis. Autom

Softw Eng 10(2):157–181

28. Hartmann S, Link S (2007) English sentence structures and EER

modeling. In: Proceedings of the Asia-Pacific conference on

conceptual modelling (APCCM), pp 27–35

29. Holbrook H III (1990) A scenario-based methodology for con-

ducting requirements elicitation. SIGSOFT Softw Eng Notes

15(1):95–104

30. Imaz M, Benyon C (1999) How stories capture interactions. In:

Proceedings of the IFIP international conference on human-

computer interaction (INTERACT), pp 321–328

31. Kassab M (2015) The changing landscape of requirements

engineering practices over the past decade. In: Proceedings of the

international workshop on empirical requirements engineering

(EmpiRE). IEEE, pp 1–8

Requirements Eng (2017) 22:339–358 357

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1605.07767
http://arxiv.org/abs/1402.3722
http://ceur-ws.org/Vol-1367/%23paper-05
http://ceur-ws.org/Vol-1367/%23paper-05

32. Kassab M, Neill C, Laplante P (2014) State of practice in

requirements engineering: contemporary data. Innov Syst Softw

Eng 10(4):235–241

33. Lapata M (2002) The disambiguation of nominalizations. Com-

put Linguist 28(3):357–388

34. Li W, Zhang X, Niu C, Jiang Y, Srihari R (2003) An expert

lexicon approach to identifying english phrasal verbs. In: Pro-

ceedings of the meeting of the association for computational

linguistics (ACL), pp 513–520

35. Lohmann S, Link V, Marbach E, Negru S (2015) WebVOWL:

web-based visualization of ontologies. In: Proceedings of EKAW

satellite events, LNAI, vol 8982. Springer, Berlin, pp 154–158

36. Lucassen G, Dalpiaz F, van der Werf JMEM, Brinkkemper S

(2015) Forging high-quality user stories: towards a discipline for

agile requirements. In: Proceedings of the international require-

ments engineering conference (RE). IEEE, pp 126–135

37. Lucassen G, Dalpiaz F, van der Werf JMEM, Brinkkemper S

(2016) Improving agile requirements: the quality user story

framework and tool. Requir Eng 21(3):383–403

38. Lucassen G, Dalpiaz F, van der Werf JMEM, Brinkkemper S

(2016) The use and effectiveness of user stories in practice. In:

Proceedings of the international working conference on require-

ments engineering: foundation for software quality (REFSQ),

LNCS, vol 9619. Springer, Berlin, pp 205–222

39. Lucassen G, Dalpiaz F, van der Werf JMEM, Brinkkemper S

(2016) Visualizing user story requirements at multiple granularity

levels via semantic relatedness. Springer, Cham. doi:10.1007/

978-3-319-46397-1_35

40. Manning CD (2011) Part-of-speech tagging from 97 to 100%: is

it time for some linguistics?. Springer, Berlin

41. Manning CD, Raghavan P, Schütze H et al (2008) Introduction to

information retrieval. Cambridge University Press, Cambridge

42. Mesquita R, Jaqueira A, Agra C, Lucena M, Alencar F (2015)

US2StarTool: Generating i* Models from user stories. In: Pro-

ceedings of the international i* workshop (iStar)

43. Meziane F, Vadera S (2004) Obtaining E-R diagrams semi-au-

tomatically from natural language specifications. In: Proceedings

of the international conference on enterprise information systems

(ICEIS), pp 638–642

44. Mich L (1996) NL-OOPS: from natural language to object ori-

ented requirements using the natural language processing system

LOLITA. Natl Lang Eng 2:161–187

45. Moody D (2009) The ‘‘physics’’ of notations: toward a scientific

basis for constructing visual notations in software engineering.

IEEE Trans Softw Eng 35(6):756–779

46. Moody DL, Heymans P, Matulevičius R (2010) Visual syntax

does matter: improving the cognitive effectiveness of the i*

visual notation. Requir Eng 15(2):141–175

47. Neill CJ, Laplante PA (2003) Requirements engineering: the state

of the practice. IEEE Softw 20(6):40

48. Omar N, Hanna J, McKevitt P (2004) Heuristics-based entity-

relationship modelling through natural language processing. In:

Proceedings of the Irish conference on artificial intelligence &

cognitive science (AICS), pp 302–313

49. Overmyer SP, Lavoie B, Rambow O (2001) Conceptual modeling

through linguistic analysis using LIDA. In: Proceedings of the

international conference on software engineering (ICSE). IEEE

Computer Society, pp 401–410

50. Popescu D, Rugaber S, Medvidovic N, Berry DM (2008)

Reducing ambiguities in requirements specifications via auto-

matically created object-oriented models. In: Innovations for

requirement analysis. From stakeholders’ needs to formal

designs, LNCS, vol 5320. Springer, Berlin, pp 103–124

51. Reddivari S, Rad S, Bhowmik T, Cain N, Niu N (2014) Visual

requirements analytics: a framework and case study. Requir Eng

19(3):257–279

52. Rees M (2002) A feasible user story tool for agile software

development? In: Proceedings of the Asia-Pacific software

engineering conference (APSEC), pp 22–30

53. Robeer M, Lucassen G, Van der Werf J, Dalpiaz F, Brinkkemper

S (2016) Automated extraction of conceptual models from user

stories via NLP. In: Proceedings of the international requirements

engineering conference (RE). IEEE

54. Rubin E, Rubin H (2010) Supporting agile software development

through active documentation. Requir Eng 16(2):117–132

55. Ryan K (1993) The role of natural language in requirements

engineering. In: Proceedings of the IEEE international sympo-

sium on requirements engineering (ISRE). IEEE, pp 240–242

56. Saeki M, Horai H, Enomoto H (1989) Software development

process from natural language specification. In: Proceedings of

the international conference on software engineering (ICSE).

ACM, pp 64–73

57. Sagar VBRV, Abirami S (2014) Conceptual modeling of natural

language functional requirements. J Syst Softw 88:25–41

58. Shneiderman B (1996) The eyes have it: a task by data type

taxonomy for information visualizations. In: Proceedings of the

IEEE symposium on visual languages (VL), pp 336–343

59. Soares HF, Alves NSR, Mendes TS, Mendonça M, Spı́nola RO

(2015) Investigating the link between user stories and docu-

mentation debt on software projects. In: Proceedings of the

international conference on information technology-new genera-

tions (ITNG), pp 385–390

60. Tjoa AM, Berger L (1993) Transformation of requirement

specifications expressed in natural language into an EER model.

In: Proceedings of the international conference on conceptual

modeling (ER), LNCS, vol 823. Springer, Berlin, pp 206–217

61. Trkman M, Mendling J, Krisper M (2016) Using business process

models to better understand the dependencies among user stories.

Inf Softw Technol 71:58–76

62. Vela M, Declerck T (2009) A methodology for ontology learning:

deriving ontology schema components from unstructured text. In:

Proceedings of the workshop on semantic authoring, annotation

and knowledge markup (SAAKM), pp 22–26

63. Wang J, Wang Q (2016) Analyzing and predicting software

integration bugs using network analysis on requirements depen-

dency network. Requir Eng 21(2):161–184. doi:doi:10.1007/

s00766-014-0215-x

64. Wang X, Zhao L, Wang Y, Sun J (2014) The role of requirements

engineering practices in agile development: an empirical study.

In: Proceedings of the Asia Pacific requirements engineering

symposium (APRES) 432:195–209

65. Wautelet Y, Heng S, Hintea D, Kolp M, Poelmans S (2016)

Bridging user story sets with the use case model. In: Link S,

Trujillo JC (eds) Proceedings of ER workshops, pp 127–138

66. Wautelet Y, Heng S, Kolp M, Mirbel I (2014) Unifying and

extending user story models. In: Proceedings of the international

conference on advanced information systems engineering

(CAiSE), LNCS, vol 8484. Springer, Berlin, pp 211–225

67. Wautelet Y, Heng S, Kolp M, Scharff C (2016) Towards an

agent-driven software architecture aligned with user stories. In:

Proceedings of the 8th international conference on agents and

artificial intelligence (ICAART), pp 337–345

68. Yu ESK (1996) Modelling strategic relationships for process

reengineering. Ph.D. thesis, University of Toronto

69. Yue T, Briand LC, Labiche Y (2010) A systematic review of

transformation approaches between user requirements and anal-

ysis models. Requir Eng 16(2):75–99

70. Yue T, Briand LC, Labiche Y (2015) aToucan: an automated

framework to derive UML analysis models from use case models.

ACM Trans Softw Eng Methodol 24(3):13:1–13:52

358 Requirements Eng (2017) 22:339–358

123

http://dx.doi.org/10.1007/978-3-319-46397-1_35
http://dx.doi.org/10.1007/978-3-319-46397-1_35
http://dx.doi.org/10.1007/s00766-014-0215-x
http://dx.doi.org/10.1007/s00766-014-0215-x

	Extracting conceptual models from user stories with Visual Narrator
	Abstract
	Introduction
	Baseline: The Grimm method
	Conceptual anatomy of user stories
	The Grimm method: overview and tooling
	AQUSA
	Visual Narrator
	Interactive Narrator

	NLP heuristics for user story analysis
	Entities and non-hierarchical relationships
	Compound nouns
	Hierarchical relationships

	The Visual Narrator tool
	Architecture
	Extraction algorithm
	Tool implementation and improvements

	Quantitative evaluation: accuracy
	Heuristics accuracy
	WebCompany
	CMSCompany
	Michigan State
	ArchivesSpace

	Analysis and discussion
	Threats to validity

	Related literature
	User stories
	NLP for RE: extracting models from requirements
	Visualization of conceptual models and requirements

	Conclusion and future work
	Open Access
	References

