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ABSTRACT

Fully automatic methods that extract lists of objects from
the Web have been studied extensively. Record extraction,
the first step of this object extraction process, identifies a set
of Web page segments, each of which represents an individ-
ual object (e.g., a product). State-of-the-art methods suffice
for simple search, but they often fail to handle more compli-
cated or noisy Web page structures due to a key limitation –
their greedy manner of identifying a list of records through
pairwise comparison (i.e., similarity match) of consecutive
segments. This paper introduces a new method for record
extraction that captures a list of objects in a more robust
way based on a holistic analysis of a Web page. The method
focuses on how a distinct tag path appears repeatedly in the
DOM tree of the Web document. Instead of comparing a
pair of individual segments, it compares a pair of tag path
occurrence patterns (called visual signals) to estimate how
likely these two tag paths represent the same list of objects.
The paper introduces a similarity measure that captures how
closely the visual signals appear and interleave. Clustering
of tag paths is then performed based on this similarity mea-
sure, and sets of tag paths that form the structure of data
records are extracted. Experiments show that this method
achieves higher accuracy than previous methods.

Categories and Subject Descriptors

H.2.8 [Database applications]: Data mining; H.3.5 [On-
line Information Services]: Web-based services

General Terms

Algorithm, Performance, Experimentation

Keywords

Information extraction, data record extraction, clustering

1. INTRODUCTION
The Web contains a large amount of structured data, and

serves as a good user interface for databases available over
the Internet. A large amount of Web content is generated
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from databases in response to user queries. Such content is
sometimes referred to as the deep Web. A deep Web page
typically displays search results as a list of objects (e.g.,
products) in the form of structured data rendered in HTML.
A study in 2004 found 450,000 databases in the deep Web
[5]. Structured data also plays a significant role on the sur-

face Web. Google estimated that their crawled data set con-
tains 154 million Web tables, i.e., relational data rendered
as HTML tables [3]. In addition to relational tables, the
Web contains a variety of lists of objects, such as conference
programs and comment lists in blogs. It is an important
and challenging task to identify such object lists embedded
in Web pages in a scalable manner, which enables not only
better search engines but also various applications related
to Web data integration (i.e., data mashups) and Web data
mining ( e.g., blog analysis).

There have been extensive studies of fully automatic meth-
ods to extract lists of objects from the Web [1, 7]. A typical
process to extract objects from a Web page consists of three
steps: record extraction, attribute alignment, and attribute
labeling. Given a Web page, the first step is to identify a
Web record [11], i.e., a set of HTML regions, each of which
represents an individual object (e.g., a product). The sec-
ond step is to extract object attributes (e.g., product names,
prices, and images) from a set of Web records. Correspond-
ing attributes in different Web records are aligned, resulting
in spreadsheet-like data [19, 21]. The final step is the op-
tional task (which is very difficult in general) of interpreting
aligned attributes and assigning appropriate labels [17, 22].

In this paper we focus on Web record extraction. Our
study is motivated by our experience in developing an auto-
matic data extraction component of a data mashup system
[16], where we scrape a set of objects from a variety of Web
pages automatically. The extraction component, developed
with existing state-of-the-art technologies, sometimes fails
at the very first step, i.e., record extraction, which signifi-
cantly affects the entire mashup process.

Most state-of-the-art technologies for Web record extrac-
tion employ a particular similarity measure between Web
page segments to identify a region in the page where a similar
data object or record appears repeatedly. A representative
example of this approach is MDR [11], which uses the edit
distance between data segments (called generalized nodes).
By traversing the DOM tree of a Web document, MDR dis-
covers a set of consecutive sibling nodes that form a data
region. More recent work [15, 19] extends this approach by
introducing additional features such as the position of the
rendered data. In our experience, an approach based on
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MDR is sufficient for simple search, but it starts to fail as
the Web page structure becomes more complicated.

We observe that, on many Web pages, objects are ren-
dered in a highly decorated manner, which affects the qual-
ity of extraction. For instance, an image that is inserted
between objects as a separator makes objects no longer con-
secutive. As a work around, we employ a heuristic rule to
exclude decorative images from the DOM tree. In fact, such
visual information can be helpful or harmful. A heuristic
rule might utilize such decorations to identify object bound-
aries. However, it is not easy to generalize such a heuristic
rule so that it applies to a variety of Web pages. Thus,
in general, the irregularity that decorative elements intro-
duce is more harmful than helpful. Moreover, as [21] notes,
the same HTML tag can sometimes work as a template to-
ken (that contributes to form an object structure) and can
sometimes work as a decorative element (that is used in an
unstructured manner). Such tags can be very noisy but, if
the algorithm ignores these tags, it can miss useful evidence
of structured objects.

We also observe that objects are sometimes embedded in a
complicated Web page structure with various context infor-
mation. In such cases, objects are not necessarily rendered
consecutively. Existing work tries to address such complex
Web page structures [1]. However, that work typically
assumes availability of multiple Web page instances.

A key limitation that we have identified in the MDR ap-
proach is its greedy manner of identifying a data region (a
region containing records) through pairwise comparison of
consecutive segments. In many cases, one misjudgment due
to noise causes separation of an object list into multiple lists.
We can imagine an extended algorithm that employs more
sophisticated search for data regions instead of the greedy
approach, but its computational cost is very high.

Thus, we propose an alternative approach to the Web
record extraction problem, which captures a list of objects
based on a holistic analysis of a Web page. Our method fo-
cuses on how a distinct tag path (i.e., a path from the root
to a leaf in the DOM tree) appears repeatedly in the doc-
ument. Instead of comparing a pair of individual subtrees
in the data, we compare a pair of tag path occurrence pat-
terns (called visual signals) to estimate how likely these two
tag paths represent the same list of objects. We introduce a
similarity measure that captures how closely the tag paths
appear and how they interleave. We apply clustering of tag
paths based on this similarity measure, and extract sets of
tag paths that form the structure of the data records.

Compared to existing approaches, our method has the fol-
lowing advantages:

• Data records do not have to be consecutive. Based
on the discovery of non-consecutive data records, our
method can also detect nested data records.

• Template tags and decorative tags are distinguished
naturally. When a tag (path) appears randomly in
unstructured content, the corresponding visual signal
will not be similar to other signals. A tag (path) is
clustered based on the structure of the data records
only when it repeats similarly to other tags.

2. RELATED WORK
Extracting structured data from HTML pages has been

studied extensively. Early work on wrapper induction uti-

lizes manually labeled data to learn data extraction rules [9].
Such semi-automatic methods are not scalable enough for
extraction of data on the scale of the Web. To address this
limitation, more fully automatic methods have been stud-
ied recently. Fully automatic methods address two types of
problems: (1) extraction of a set of objects (or data records)
from a single page, and (2) extraction of underlying tem-
plates (or schema) from multiple pages [1, 7]. Our work fo-
cuses on the former, which does not assume the availability
of multiple instance pages containing similar data records.

Techniques that address record extraction from a single
page can be categorized into the following approaches, which
evolved in this order: (a) early work based on heuristics [2],
(b) mining repetitive patterns [4, 17], and (c) similarity-
based extraction [11, 15, 21]. OMINI [2] applies a set of
heuristics to discover separator tags between objects in a
Web page, but is applicable to only simple cases. IEPAD [4]
identifies substrings that appear multiple times in a docu-
ment encoded as a token string. DeLa [17] extends that ap-
proach to support nested repetition, such as “(AB*C)*D”.
One limitation of such a pattern mining approach is that
it is not robust against optional data inserted into records.
The similarity-based approach tackles this limitation with
approximate matching to identify repeating objects. MDR
[11] is one such technique, which utilizes edit distance to as-
sess whether two consecutive regions are a repetition of the
same data type. It is reported that MDR out-performs both
OMINI and IEPAD.

As discussed in Section 1, even similarity-based extraction
has limitations when the data are complex and noisy. MDR
relies on a greedy approach based on a similarity match be-
tween two segments, with a pre-determined threshold. A
limitation of MDR is that it does not handle nested data
objects. The researchers who developed MDR proposed an
extended algorithm, NET, to address this issue [12]. NET
handles nested objects by traversing a DOM tree in post-
order (bottom-up), whereas MDR traverses the tree in pre-
order (top-down). When a list of objects is discovered dur-
ing traversal, the list is collapsed into a single object (pat-
tern) so that the number of objects does not affect detec-
tion of higher-layer objects. However, NET still employs a
greedy approach based on similarity match. Moreover, its
bottom-up traversal with edit distance comparison is expen-
sive. Whereas MDR’s top-down traversal can stop as soon
as it finds data records, NET’s bottom-up traversal requires
a full scan from the bottom up to the root. For each visit
of a node in this traversal, NET executes all-pair tree com-
parisons within its children.

Other work extends the similarity approach by incorpo-
rating a variety of additional features such as visual layout
information [20] and hyperlinks to detail pages [10]. How-
ever, without any assumptions about the target domain, it
is difficult to identify such additional features. Moreover,
such features are not always available or generally useful. In
future work, we plan to extend our method to incorporate
additional feature information.

Our method focuses on record extraction and does not
extract detailed data in a record. There exist other tech-
niques that address extraction and alignment of attributes
in records [19, 21]. Our method can be combined with those
techniques to realize the entire data extraction process.

Among existing approaches for template extraction from
multiple pages, EXALG [1] is related to our method in its
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key idea. EXALG identifies a set of tokens that forms a tem-
plate based on the intuition that tokens that co-occur with
the same frequency within multiple pages are likely to form
the same template. Whereas EXALG utilizes occurrence
patterns across multiple documents, our method utilizes oc-
currence patterns within a single document. Thus, the two
algorithms are very different.

3. METHODOLOGY
Although automatically identifying and extracting data

records from Web pages is considered a hard problem in
the computer science community, it is fairly easy for hu-
man beings to identify such records. The data records that
constitute a Web page are typically represented using an
HTML code template. Thus, they often have a similar ap-
pearance and are visually aligned. Such a visually repeating
pattern can be easily captured by human eyes, and the data
records in the visually repeating part can be accurately lo-
cated. Inspired by this observation, our method comprises
three steps: (1) detecting visually repeating information, (2)
data record extraction, and (3) semantic-level nesting detec-
tion. The first step addresses the problem of what appears
repeatedly on the Web page. The second step extracts the
data records from the HTML blocks where the repeating
patterns occur. The third step extracts the high-level data
objects when there is a nested list. The method is fully au-
tomatic and does not involve human labeling or feedback.
The three steps are described in more detail below.

3.1 Detecting Visually Repeating Information
A data region is part of a Web page that contains multiple

data records of the same kind, which can be consecutive or
non-consecutive. Instead of viewing the Web page as a DOM
tree, we consider it as a string of HTML tags. A data region
maps to one or more segments of the string with a repeating
texture composed of HTML tags, which result in the visually
repeating pattern rendered on a Web page. We aim to find
the HTML tags that are elements of the data regions.

3.1.1 Visual Signal Extraction

The visual information rendered on a Web page, such as
fonts and layout, is conveyed by HTML tags. A given hy-
perlink tag can have different appearances when it follows
different paths in the DOM tree. For each tag occurrence,
there is an HTML tag path, containing an ordered sequence
of ancestor nodes in the DOM tree. Figure 1 shows the dif-
ferent appearances of hyperlink tags defined by two different
HTML tag paths.

A Web page can be viewed as a string of HTML tags,
where only the opening position of each HTML tag is con-
sidered. Each HTML tag maps to an HTML tag path. An
example is shown in Table 1. Roughly speaking, each tag

Figure 1: Hyperlinks following different tag paths.

Table 1: Finding tag paths for HTML tags
HTML code Pos Tag path
<html> 1 html
<body> 2 html/body
<h1>A Web page</h1> 3 html/body/h1
<table> 4 html/body/table
<tr> 5 html/body/table/tr
<td> Cell #1 </td> 6 html/body/table/tr/td
</tr> NA NA
<tr> 7 html/body/table/tr
<td> Cell #2 </td> 8 html/body/table/tr/td
</tr></table></body>
</html>

NA NA

Table 2: Extracting visual signals from a Web page
Unique tag path Pos Visual signal vector
html 1 [1, 0, 0, 0, 0, 0, 0, 0]
html/body 2 [0, 1, 0, 0, 0, 0, 0, 0]
html/body/h1 3 [0, 0, 1, 0, 0, 0, 0, 0]
html/body/table 4 [0, 0, 0, 1, 0, 0, 0, 0]
html/body/table/tr 5,7 [0, 0, 0, 0, 1, 0, 1, 0]
html/body/table/tr/td 6,8 [0, 0, 0, 0, 0, 1, 0, 1]

path defines a unique visual pattern. Our goal is to mine
the visually repeating information in the Web page using
this simplified representation.

An inverted index characterizing the mappings from HTML
tag paths to their locations in the HTML document can be
built for each Web page, as shown in Table 2. Each indexed
term in the inverted index, i.e., one of the unique tag paths,
is defined to be a visual signal.

Formally, a visual signal si is a triple < pi, Si, Oi >, where
pi is a tag path, Si is a visual signal vector that represents
occurrence positions of pi in the document, and Oi repre-
sents individual occurrences (i.e., DOM tree nodes). Si is
a binary vector where Si(j) = 1 if pi occurs in the HTML
document at position j and Si(j) = 0 otherwise. Oi is an or-
dered list of occurrences (o1

i , · · · , om
i ), where ok

i corresponds
to the kth occurrence of 1 in Si.

Examples of visual signal vectors are shown in the third
column of Table 2. All of the visual signal vectors extracted
from a Web page have the same length, which is the total
number of HTML tag occurrences in the Web page.

The vector representation {Si} of a Web page is much
simpler than the DOM tree representation. It also captures
how a Web page is organized. Figure 3(a) shows a snap-
shot of a DBLP [8] Web page containing lists of publication
records and other data objects. The extracted visual sig-
nals and the visual signal vectors are shown in Figures 3(b)
and 3(d). Each row in Figure 3(d) is a visual signal vec-
tor. Due to space limitations, we show only the first part
of each visual signal vector. The visual signal vectors repre-
sent how each atomic-level visual pattern repeats in the Web
page. The visually repeating patterns in a Web page involve
multiple visual signals. These visual signals together form
a certain repeating texture as shown in Figure 3(d). Each
texture corresponds to a data region that contains multiple
data records of the same kind.

Detecting the visually repeating information is equivalent
to identifying the set of visual signals with similar patterns
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that are elements of the same data region. In other words,
detecting visually repeating information is a clustering prob-

lem. The visual signals in the same data region are grouped
together, while the visual signals not in the same data region
are split into different clusters. We use spectral clustering
[13] to cluster the visual signals, because of its superior ex-
perimental performance and theoretical soundness.

3.1.2 Similarity Measurement

The spectral clustering algorithm produces clustering re-
sults based on the pairwise similarity matrix calculated from
the data samples. A similarity function captures the likeli-
hood that two data samples belong to the same cluster. A
critical factor in determining clustering performance is the
choice of similarity function.

In our case, the similarity function captures how likely
two visual signals belong to the same data region. Figure
2(a) shows a pair of visual signals that are highly likely to
belong to the same data region. Their positions are close
to each other, and they interleave with each other. Every
occurrence of visual signal 1 is followed by two occurrences
of visual signal 2.

(a) A pair of similar visual signal vectors.

(b) Segmented visual signal vectors.

Figure 2: Example pair of visual signals that appear
regularly.

The distance between the centers of gravity of two visual
signals characterizes how close they appear. We call this
measure the offset ω and calculate it in Equation (1).

ω(Si, Sj) =

∣

∣

∣

∣

∣

∑

Si(k)=1 k
∑

Si(k)
−

∑

Sj(k)=1 k
∑

Sj(k)

∣

∣

∣

∣

∣

(1)

In Equation (1), Si and Sj are two visual signal vectors and
k ∈ {1, 2, ..., l}, where l is the length of the visual signal
vectors, and Si(k) is the kth element of Si.

To capture the interleaving characteristic, we estimate
how evenly one signal is divided by the other. We define
a segment of Si divided by Sj as follows: a segment is a
(non-empty) set of occurrences of visual signal si between
any pair of which there is no occurrence of visual signal sj .
Figure 2(b) illustrates how two signals divide each ohter.
Let DSi/Sj

be the occurrence counts in the segments of Si

divided by Sj . In our example, DS1/S2
= {1, 1, 1} and

DS2/S1
= {2, 2, 2}. We define the interleaving measure ι

in terms of the variances of counts in DSi/Sj
and DSj/Si

in
Equation (2).

ι(Si, Sj) = max{V ar(DSi/Sj
), V ar(DSj/Si

)} (2)

Both the offset measure and the interleaving measure yield
non-negative real numbers. A smaller value of either mea-
sure indicates a high probability that the two visual signals
come from the same data region. The similarity measure

σ(si, sj) between two visual signals is inversely proportional

to the product of these two measures and is defined by Equa-
tion (3).

σ(si, sj) =
ε

ω(Si, Sj) × ι(Si, Sj) + ε
(3)

In Equation (3), ε is a non-negative term that avoids di-
viding by 0 and that normalizes the similarity value so that
it falls into the range (0, 1]. In our experiments, we chose
ε = 10.

Given Equation (3), we can calculate the similarity value
of any pair of visual signals. Example results are shown in
Figure 3(c). The pixel in the ith row and jth column shows
the similarity value for visual signal si and visual signal sj .
A bright pixel indicates a high similarity value, whereas a
dark pixel indicates a low similarity value. Thus, the visual
signals in Figure 3(b) aligned with the large bright blocks in
Figure 3(c) are likely to be from the same data region. The
visual signals actually involved in the data regions (i.e., the
ground truth) are highlighted in rectangles. Each box in-
cludes one data region. As expected, the similarity measure
captures the likelihood of two visual signals being from one
data region.

3.1.3 Visual Signal Clustering

The pairwise similarity matrix can be fed into a spectral
clustering algorithm directly. We employ the normalized cut
spectral clustering algorithm developed by Shi et al. [14] to
produce the groups of visual signals with similar patterns.
A cluster containing n visual signals indicates that those
n visual signals are from the same data region with high
probability.

A data region contains multiple data records that use the
same HTML code template, and a template typically has
multiple HTML tags that differentiate the data attributes.
The size of a template is defined to be the number of unique
HTML tag paths involved in the template. Thus, a template
with size greater than n should correspond to a cluster con-
taining more than n visual signals. Given the fact that most
HTML code templates contain more than three HTML tags
that differentiate different data attributes, we assume that
the smallest size of a template is three. Thus, we need to
examine only the clusters containing three or more visual
signals. We call these clusters the essential clusters of the
document, and denote them by C = {C1, · · · , Cm}.

In the example shown in Figure 3, there are two clusters of
size greater than three produced by the spectral clustering
algorithm. These clusters correspond to the ground truth,
i.e., match the visual signals involved in the data regions
exactly, as shown in Figure 3(b), where each cluster corre-
sponds to one data region and contains a set of homogenous
data records, as shown in Figure 3(a).

3.2 Data Record Extraction
Visual signals that are grouped together in an essential

cluster C ∈ C should represent the same data region. Each
occurrence ok

i of visual signal si in C represents part of a
data record, an entire data record, or a set of data records.
The goal of data record extraction is to identify occurrences
that represent individual data records.

To find such occurrences, we introduce ancestor and de-
scendant relationships between visual signals. We say that
si is an ancestor of sj , denoted by si//sj , iff pi is a pre-
fix of pj . For example, /html/body/p is an ancestor of
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(a) Web page snapshot. (b) Unique HTML tag paths. (c) Pairwise similarity matrix.

(d) Visual signal vectors. Each row is a visual signal vector. Bright pixels correspond to 1s and dark pixels correspond to 0s.

Figure 3: Pairwise similarity matrix calculated based on Equation (3).

/html/body/p/a. We also employ the standard relationships
between occurrences oi and oj by viewing them as DOM
nodes: oi//oj (oi is an ancestor of oj in a DOM tree), and
oi < oj (oi is a predecessor of oj in the document order).

If si//sj then, for each oj ∈ Oj , there exists oi ∈ Oi such
that oi//oj , meaning that the HTML region represented by
si contains the region represented by sj . Recall that, if si

and sj are clustered together, they are in the same data re-
gion. Thus, an ancestor visual signal si is more likely to rep-
resent a set of entire data records while a descendant visual
signal sj is more likely to represent a set of data attributes.

Among the visual signals in an essential cluster C, there
is at least one visual signal that has no ancestor in C. We
call these visual signals the maximal ancestor visual signals.
The occurrences of maximal ancestor visual signals are con-
sidered first in data record extraction because they are more
likely to be individual data records. We discuss below how
to find the exact data record boundaries in two different
scenarios.

3.2.1 Single Maximal Ancestor Visual Signal

If there is only one maximal ancestor (say sm) in an essen-
tial cluster C, the occurrences oi

m are likely to be individual
data records. However, note that:

1. Not all of the occurrences are data records. Recall
that oi

m is one of the occurrences of tag path pm (e.g.,
/html/body/p). This path may be used for represent-
ing not only data records but also different regions.
Thus, we need to exclude occurrences that are used
for different purposes based on the following intuition:
A data record should consist of not only an occurrence
of sm but also occurrences of other visual signals in C
(that are descendants of sm).

2. An occurrence can contain multiple data records. For
example, product information on an e-commerce Web
page might be organized in multiple columns (e.g., Fig-
ure 5(a)). Let sR and sP be visual signals that rep-
resent rows of the product list and individual product
records, respectively. They are grouped together into
C. Because sR//sP , sR is the maximal ancestor and,
thus, we identify occurrences of sP as data records.

To address the above issues, we introduce the techniques of
record candidate filtering and record separation.

Record candidate filtering. Record candidate filtering
selects occurrences from Om that contain data records. The
intuition is as follows: If oi

m has many descendants that
are occurrences of other visual signals in C, oi

m is likely to
contain data records. Let Di

m(⊂ C) be a set of visual signals
that have occurrences in the descendants of oi

m. A greater
value of |Di

m| indicates that oi
m is a record candidate. We

assume further that not all of the visual signals in C are
equally important. If a visual signal appears in every data
record, it has high similarity to other visual signals in C.
Thus, we introduce a weighting factor for each visual signal
sj in Di

m based on its intra-cluster similarity in C and define
the record candidate score ρ of an occurrence oi

m by:

ρ(oi
m) =

∑

sj∈Di
m

∑

sk∈C

σ(sj , sk) (4)

where σ(sj , sk) is be calculated using Equation (3).
We filter out oi

m iff ρ(oi
m) < ρmax × α, where ρmax is the

maximum ρ score of occurrences of all the visual signals in
C. In our experiments, we chose α = 0.5.

To identify Di
m, we need to check if there is an occurrence

oj of a visual signal sj such that oi
m//oj for each sj in C.

Note that sm//sj because sm is the only maximal ancestor
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(a) Recovered ancestor and descendant
relationships within one cluster.

(b) Data record extraction results after filtering out the occurrences of the com-
mon ancestor visual signal.

Figure 4: Maximal ancestor visual signal containing one data record.

in C. Thus, we only need to check if oi
m < oj < o

(i+1)
m

to write oi
m//oj , which is done efficiently using the visual

signal vectors Sm and Sj .
Record separation. If the occurrences of the maximal

ancestors contain multiple data records, their direct descen-
dant should be able to better separate the data records. We
examine the DOM subtrees of the occurrences to determine
whether the child nodes are more likely to be individual data
records. First, they must be occurrences of the same visual
signal. Next, they must have a similar visual pattern so that
together they comprise a large visually repeating block. This
idea is similar to one employed in MDR [11] that checks if
a single row contains multiple data records. Whereas MDR
utilizes edit distance of tag structures, our method takes a
simpler approach that performs well in experiments. From
the rendered Web page, we retrieve the width and height of
all of the descendant visual signal occurrences. We calculate
their variances to determine whether the descendant node is
a better data record separator.

The record filtering and separation are performed repeat-
edly until no better separator is found. The results are the
atomic-level data records in a Web page.

Figure 4 shows an example where the maximal ancestor
represents the data record and no record separation is re-
quired. In the DBLP page, the publications of a researcher
are listed in a table and all of them are extracted correctly.
An example that requires record separation is shown in Fig-
ure 5. In this example, each row contains two product
records. Our algorithm extracts the visual signal corre-
sponding to a row as the maximal ancestor and then deter-
mines whether its direct descendant visual signal is a better
record separator.

3.2.2 Multiple Maximal Ancestor Visual Signals

When there are multiple maximal ancestors, there is no
single visual signal that captures the entire data record.
Typically, occurrences of these different maximal ancestors
are consecutive siblings that together represent a data record.

Our problem now is to identify a repeating pattern from a
sequence of occurrences from different signals. Our current
implementation uses a simple heuristic: The visual signal,

say sB , that occurs first is chosen as the record boundary.
The intuition is that the first component of a record is typi-
cally a mandatory part of the data (e.g., a title). An occur-
rence o of other maximal ancestor visual signals is a part of

the ith data record if oi
B < o < o

(i+1)
B . After forming the

data record candidates, we filter them as in Section 3.2.1.

3.3 Semantic-Level Nesting Detection
Nested lists are common on the Web. Usually, data records

are organized into semantic categories with an arbitrary
number of data records in each category. A description
might be attached to each category.

Our approach can capture such nesting through discovery
of non-consecutive lists of atomic-level data records. The
semantic categories are usually explicitly marked by HTML
tags, and data records inside one semantic category are con-
secutive in the HTML document. Thus, if the data records
are not consecutive, they might belong to different semantic
categories. Based on this intuition, we extract the nesting
structure as follows: If a visual signal occurs at each point
where the same set of data records is partitioned, the vi-
sual signal corresponds to a visual pattern that separates
two semantic categories. The text lying between the sets
of extracted data records is the description of the semantic
category. Using this rule, we extract both the “year” objects
and the “publication” objects in the DBLP page example, as
shown in Figure 6.

4. EXPERIMENTS

4.1 Experimental Setup
We evaluated both the effectiveness and the efficiency of

our algorithm using two data sets. We compare the perfor-
mance of our algorithm with that of MDR, an implemen-
tation of which was available on the Web. Implementation
of NET was not available, and EXALG is applicable only
when multiple Web page instances with the same structure
are available. Thus we do not compare the performance of
our algorithm with that of those algorithms.

Data set #1 was chosen from the testbed for information
extraction from the deep Web, collected by Yamada et al.
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(a) Web page snapshot.

(b) Recovered ancestor/descendant relationships within one cluster.

(c) Data record extraction results.

Figure 5: Maximal ancestor visual signal containing multiple data records.

(a) Nested objects. (b) Atomic-level objects.

Figure 6: Data record extraction result for nested lists.
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[18]. The testbed data has 253 Web pages from 51 Web
sites randomly drawn from 114,540 Web pages with search
forms. The data records in these Web pages are manually
labeled; the results are available online together with the
testbed data set. To provide a fair comparison between our
algorithm and the MDR algorithm [11], which is designed
for flat data records, we filtered out the Web pages with
nested structures in the testbed. The resulting data set #1
contains 213 Web pages from 43 Web sites.

Data set #2 was introduced mainly for the purpose of
evaluating our algorithm on nested list structures. Lack-
ing an existing test data set, we collected the Web pages
ourselves. Data set #2 contains 45 Web pages, each from
one Web site, randomly chosen from the domains of busi-
ness, education, and government. Each Web page contains
a two-level nested list structure. Both the atomic-level data
records and the nested data records are manually labeled.

Our experiments were carried out on a Pentium 4 com-
puter with a 3.2GHz CPU and 2G of RAM. Our Java im-
plementation of the algorithm utilizes the open source Web
renderer Cobra [6], which resolves ill-formed HTML and ex-
ecutes JavaScript for dynamic HTML pages.

4.2 Accuracy Analysis
The experimental results for our algorithm compared with

MDR [11] are shown in Figure 7. We ran both algorithms
for all of the Web pages in data set #1. The results are
aggregated based on the Web sites. The ground truth is
the set of data records in all Web pages from one Web site.
True positives are the set of data records correctly extracted
by the algorithms from that Web site. The perfect case
is that the true positives match the ground truth exactly.
False positives are the set of data records that the algorithm
incorrectly includes in the same list with the true positives.
To distinguish the false positives from the true positives,
we flip the sign of the false positives and show them in the
same figure. Generally speaking, our algorithm has more
true positives and fewer false positives compared with the
MDR algorithm. We also calculated the precision and recall

as given in Equations (5) and (6) for all of the Web sites.
The results are shown in Table 3. When none of the records
is detected, both |true positives| and |false positives| are
zero; hence, Equation (5) is ill-formed. We omit such cases
to calculate the average precision. The numbers in square
brackets are the average precision of both algorithms when
we define the precision to be zero in such a case.

Precision =
|true positives|

|true positives| + |false positives|
(5)

Recall =
|true positives|

|ground truth|
(6)

Table 3: Accuracy comparison for data set #1
Algorithm Average Precision Average Recall

Our algorithm 96.2% [90.4%] 93.1%
MDR 93.2% [59.8%] 61.8%

The experimental results for data set #2 show the perfor-
mance of our algorithm for nested list structures. We com-
pare each atomic-level data record and nested data record

Table 4: Experimental results for data set #2
Domain Ground Truth Our Results

Nested Atomic Nested Atomic
Business 46 415 46 415(1)
Education 215 1672 208(2) 1672(17)
Government 104 955 104(1) 954(1)

Overall Accuracy Measure
Nested Records Precision 98.9% Recall 98.1%
Atomic Records Precision 99.4% Recall 99.9%

extracted by our algorithm with the manually labeled ground
truth. The results of the comparison are shown in Table 4.
The ground truth numbers of data records for the Web pages
are listed in columns 2 and 3. The numbers of true positives
are listed in columns 4 and 5. The numbers of false posi-
tives are listed in parentheses if they are greater than zero.
There are 15 Web pages from the business domain, 15 Web
pages from the education domain, and 15 Web pages from
the government domain.

4.3 Time Complexity Analysis
The algorithm consists of three steps. We analyze the

time complexity for each step individually.
Detecting visually repeating information. In this

step, first we scan the Web page and extract the visual sig-
nals, which takes O(L) time, where L is the total number
of HTML tag occurrences in the Web page. Calculating
the pairwise visual signal similarity matrix and performing
spectral clustering on it takes O(M × L) + O(M3), where
M is the number of unique HTML tag paths in the Web
page. Thus, the step of visual repeating information detec-
tion takes O(M × L) + O(M3) time in total.

Data record extraction. In this step, first we retrieve
all of the occurrences of the common ancestors in the Web
page for each essential cluster. When filtering these occur-
rences, the algorithm visits all of the descendants. The total
number of HTML nodes visited is less than L. Thus, the time
complexity of this step is O(L).

Semantic-level nesting detection. In this step, we
examine the visual signals that appear at each point where
the data records are not consecutive. The number of HTML
tags visited is still less than L. Thus, the time complexity
of this step is O(L).

In total, the time complexity of the algorithm is O(M ×
L)+O(M3), where L is the total number of tag occurrences
and M is the number of unique tag paths in the Web page.

For comparison purposes, we also analyze the time com-
plexity of existing similarity-based approaches, MDR[11] and
NET[12]. These algorithms traverse a DOM tree and ap-
ply edit distance computation between sibling subtrees. Let
N be the number of children of each node. At the root,
the algorithms compute the edit distance between its chil-
dren with size L/N , taking O((L/N)2) time. MDR com-
putes the edit distance N times, and NET computes it N2

times in the worst case. At depth d, there are Nd trees,
each of which has N children of size L/Nd+1. The to-
tal cost is

∑

d(L/Nd+1)2NkNd = L2Nk−2 ∑

d(1/N)d <

L2Nk−2 × N/(N − 1) where k = 1 for MDR and k = 2
for NET. Thus, the time complexity of MDR and NET are
O(L2/N) and O(L2), respectively. From this analysis, we
conclude that MDR is efficient (O(L)) when the document
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Figure 7: Accuracy comparison between our algorithm and MDR for data set #1.

Figure 8: The number of unique tag paths does not
increase as the number of HTML tags increases.

Figure 9: Step 1 is linear in the document length.

structure is simple (and N is as large as L). However, if the
document structure is complex, MDR is not as scalable.

The key question then is how the number M of unique tag
paths, grows as L becomes large. If M does not scale up,
our algorithm is more scalable than NET, and even MDR
when the document is complex. Recall that our algorithm
and NET can detect nested structures whereas MDR cannot.
For the experimental data set, M stays small as L grows, as
shown in Figure 8. Thus, the complexity of our algorithm is
O(L) for practical data sets, i.e., it is linear in the document
length. Figure 9 shows that the completion time of Step 1
is linear in L.

On average, the total execution time of our algorithm for
one Web page is similar to the rendering time. We divide
the execution time into three parts based on the three steps
as presented in Table 5. Step 1 takes 47.95% of the total
time, and Steps 2 and 3 together take 52.05% of the total
time. Because Steps 2 and 3 are conducted for each essential
cluster, and there is no interaction between clusters, this
part of the algorithm can be parallelized.

Table 5: Execution time analysis
Function Average Time (ms) Percentage
Rendering 208.90 NA

Total execution time 328.73 100%
Step 1 157.63 47.95%
Step 2 72.99 22.20%
Step 3 98.11 29.84%

5. CONCLUSION AND FUTURE WORK
This paper presents a novel approach to data record ex-

traction from Web pages. The method first detects the visu-
ally repeating information on a Web page and then extracts
the data records. The notion of visual signal is introduced
to simplify the Web page representation as a set of binary
visual signal vectors instead of the traditional DOM tree. A
data record list corresponds to a set of visual signals that
appear regularly on the Web page. The normalized cut spec-
tral clustering algorithm is employed to find the visual signal
clusters. For each visual signal cluster, data record extrac-
tion and nested structure detection are conducted to extract
both atomic-level and nested-level data records.
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Experimental results on flat data record lists are compared
with a state-of-the-art algorithm. Our algorithm shows sig-
nificantly higher accuracy than the existing work. For data
record lists with a nested structure, we collected Web pages
from the domains of business, education, and government.
Our algorithm demonstrates high accuracy in extracting both
atomic-level and nested-level data records. The execution
time of the algorithm is linear in the document length for
practical data sets.

The algorithm depends only on the Web page structure
without examining the Web page content, which makes it a
domain-independent approach. The algorithm is suitable for
handling Web-scale data because it is fully automatic and
does not need any information other than the Web page.

In the future, we will extend this work to support data
attribute alignment. Each data record typically contains
multiple data attributes. Unfortunately, there is no one-to-
one mapping from the HTML code structure to the data
record structure. Identification of the data attributes offers
the potential of better use of the Web data.

The work presented here extracts data records from single
Web pages. However, the World Wide Web is composed
of billions of Web pages each with their own data records.
Future work will include integration of heterogeneous data
records across different Web pages.
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