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Abstract
Defect density and defect size distributions (DDSDs) are key
parameters used in IC yield loss predictions. Traditionally,
memories and specialized test structures have been used to
estimate these distributions. In this paper, we propose a strat-
egy to accurately estimate DDSDs for shorts in metal layers
using production IC test results.

1 Introduction
Yield loss estimation for nanoscale integrated circuits (ICs) is
a central element of any Design for Manufacturability (DFM)
activity. There are many reasons for yield loss; some of them
are well understood and have sufficiently accurate models,
while others are very elusive and hard to characterize [1]. To-
day’s yield-related research addresses a large spectrum of rea-
sons for yield loss, ranging from discovering new yield loss
mechanisms to the architecture of the databases that store test
results. Much attention is paid to modeling systematic yield
loss. This work, however, addresses a narrow but important
niche within the yield loss spectrum [2]. It proposes a new
approach needed for accurate tuning of the critical area yield
model—a workhorse of modern yield learning strategies [1].

Tuning yield models is very important, but is frequently an
underinvested activity. Simply, the large variability of actual
yield requires that yield model parameters are well character-
ized are frequently updated. This paper provides a blue print
of a system that can automate characterization of parameters
of a critical area-based model using already available wafer
sort test results. The scope of this paper is limited to spot de-
fects causing shorts. The relatively narrow focus is dictated
by two reasons. First, it is important that the physics of the in-
vestigated yield loss mechanism are well understood; which
is indeed the case for shorts. Second, spots of extra conduct-
ing material are still a major reason for IC malfunctions.

This paper is organized as follows. In the next section we
propose a strategy for achieving the objectives of this paper.
Then we formalize this strategy and explain the mathematical
details of our approach. Finally, we describe an initial sim-
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ulation experiment, which we have conducted to assess the
validity of our methodology.

2 Proposed Approach
The objective of the research reported in this paper is to find
the best approximation of key attributes of spot defects re-
sponsible for yield loss in an IC of interest. The most im-
portant characteristic of spot defects are densities of defects
in all IC layers. It is intuitively obvious that defects of dif-
ferent sizes will have a different impact on the nature of IC
functionality (e.g., some small defects may be harmless al-
together). Hence, we need to obtain both defect density and
size distributions (DDSDs) for all layers of interest1.

The strategy for achieving this goal is straightforward
[3, 4] and is based on the simple observation that each harm-
ful spot defect is likely to affect a specific, usually small, set
of IC nodes, that are in the immediate neighborhood of the
defect. Hence, a set of defects causing the same unique cir-
cuit response must have similar geometrical characteristics.
Note that the probability of each unique circuit response can
be determined from the tester results. Consequently, we can
claim that test results can provide estimates of probabilities
of occurrence of defects with specific geometrical attributes.

Note now that if we had a simulator capable of comput-
ing probabilities of test results in terms of attributes of de-
fects of interest, we could manipulate the space of defect at-
tributes such that the probabilities of simulated and real test
responses are identical. We could then claim that the set of
the defect attributes determined in this way represents the at-
tributes of real defects in the process. Of course, the validity
of the above claim is guarded by a set of conditions, which
must be met. In this paper we propose a defect characteriza-
tion methodology, which follows the above line of thought.
That is, we develop and apply a simulation strategy that pre-
dicts probabilities of test failures given a DDSD, and then
seek agreement between the test results measured by a tester
and the simulated test results.

More precisely, the key challenge of the DDSD extraction

1Inspired by [2, 3]
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strategy discussed in this paper is the development of a mod-
eling technique that relates failures detected on output pins of
the analyzed IC to geometries of the defect and the IC layout.
In the subsequent sections, we describe two transformations
that are needed to model such a relationship. First, we ex-
plain how to model the dependency between the probabilities
of defects and probabilities of logic level circuit faults, and
then between faults and failures of IC outputs.

3 Microevents and Macroevents
A spot of extra conducting material deposited in a metal layer
may introduce an extra, unwanted connection between non-
equipotential metal regions in this layer. In the vast majority
of cases, such a connection will affect the electrical behav-
ior of the circuit. We call any instance of such a short [5],
which connects two or more non-equipotential metal islands,
a microevent. Each microevent involves a set of circuit nodes,
S = {n1, n2, . . . , nm}, that are shorted by the spot defect of
a specific radius.

We define a macroevent to be the set of all microevents
that exist for the same set of circuit nodes S. Note that there
may be many microevents involving S in different layers for
different defect radii. So each macroevent is described by
a collection of independent microevents. Hence, the proba-
bility of a macroevent involving S is the sum of microevent
probabilities involving S. It will be shown in the next section
that the probability of a single, independent macroevent can
be calculated using the critical area yield model [6].

3.1 Probability of a Microevent

The vulnerability of an IC to random spot defects is highly
dependent on the layout. The concept of critical area was
developed to provide a metric of sensitivity of a design to
defects [6, 7]. Critical area is the region of the layout where
if a spot defect of radius r occurs, a circuit fails.

The critical area yield model was derived from the well-
known Poisson yield model. It has the form

Yj = exp

[
−

∫ ∞

0
Cj(r)Dj(r)dr

]
(1)

where Yj is the probability that the defect causing the IC to
fail did not occur in layer j, r is the defect radius, Cj(r) is
the critical area function of layer j, and Dj(r) is the defect
density and size distribution (DDSD) for layer j.

This model has been successfully used in the past [8, 9],
and more recently was re-evaluated and shown to still be
highly effective [1, 10]. In this paper we use exactly the same
model but with a redefined notion of critical area. Simply,
we are defining critical area as the region containing the cen-
ters of all defects causing one specific microevent. This way,
the yield in the above formula is equivalent to the probability
of a microevent of interest not occurring (or the yield of the
microevent).

3.2 Probabilities of Macroevents
A number of techniques for critical area extraction have been
proposed in the last twenty years [11, 12]. In the research
discussed in this paper, we used the mask engine SiCat from
PDF Solutions, which uses polygon operations to measure
critical area for all microevents that can occur for a range of
defect radii [rmin, rmax].

Since our intermediate goal is to obtain a list of
macroevents along with their associated probabilities of oc-
currence, we first perform critical area analysis to determine
what microevents can occur, and simultaneously measure
their critical area. Since a macroevent is the set of all mi-
croevents shorting the same circuit nodes, we can combine
the critical area functions for each microevent to form critical
area functions for each layer associated with the macroevent.
Finally, using the critical area yield model, we can find the
probability of each macroevent on our list. Equation (3) in
Section 5.1 shows the probability of a macroevent not occur-
ring.

4 Logic-Level Modeling
As discussed in Section 2, in the subsequent stage of our
modeling we must find a mapping between the list of
macroevents and test responses of the IC of interest. We
define this mapping as a matrix T which is calculated by
simulating all macroevents over a set of test vectors. In or-
der to save simulation time due to the scale of the prob-
lem (even a small circuit will have hundreds of thousands
of macroevents), macroevents are modeled using logic-level
faults. To accurately model the macroevents at the logic-
level, an accurate gate-level model of the IC design must first
be derived.

4.1 From Layout to Logic
The challenge in creating an accurate gate-level model is
that typical standard-cell representations abstract away the
internal detail of the cell, causing important signal lines to
be omitted from the logic-level netlist. Therefore, we map
standard-cell layouts to the logic-level descriptions that cap-
ture the structure of static CMOS gates inside the cell using
the gate primitives {NAND, NOR and NOT}. Now, rather
than ignoring internal standard-cell metal routing during mi-
croevent extraction, gate outputs within a standard cell that
are routed in metal layers are given global names and consid-
ered in the same way as standard cell pins. This means that
any metal in the layout that is a CMOS gate output can now
be mapped to a specific node in the logic-level netlist.

An AND gate illustrates the problem. Its typical CMOS
implementation is a NAND gate followed by a NOT gate. If
the output of the NAND gate is routed in metal, then there
may be microevents that involve this internal signal line. The
layout-to-logic mapping utilized here allows this signal line
found in the layout to be correlated to the corresponding sig-
nal line in the logic netlist, thus leading to a more accurate
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fault model. Without this mapping, there is no basis for
forming a logic-level fault model including the internal signal
lines. Note, however, that there may still be metal structures
inside some standard cells that are not mapped to the logic
level, an issue we are addressing in future work.

4.2 Fault Modeling
A macroevent represents a short that may involve two or more
signal lines. Two-line shorts are commonly modeled using
bridging faults [13]. Since the macroevents formed from mi-
croevents extracted from the layout may involve more than
two lines, causing feedback or non-feedback behavior, more
complex fault models are required to represent their behavior.
In this paper, the voting bridge fault model is used along with
pull-up/down network drive strengths for every standard cell.

The voting works by summing the drive strengths of all
lines in the macroevent driven to logic 0 and logic 1, and com-
paring the summed strengths. The logic value with greater
drive strength is imposed on all lines, causing all lines origi-
nally driven to the opposite value to have an error. Fault tu-
ples [14], a generalized fault representation mechanism, are
used to implement the voting model described above. Despite
the measures taken to accurately model the macroevents, the
behavior of real spot defects is still unpredictable, and can be
a possible source of error.

4.3 Fault Simulation
FATSIM [15], a concurrent fault simulator for fault tuples,
is used to simulate the macroevents, which are modeled as
bridge faults. To determine which macroevents are detected
by which test vectors, no fault dropping is used during simu-
lation. The resulting data is stored in the T matrix, which has
the following form:

T =




t1,1 t1,2 · · · t1,M

...
...

tV,1 tV,2 · · · tV,M



 , (2)

where V is the number of test vectors simulated, M is the
total number of macroevents, and ts,i is a 1 (0) indicating
that macroevent i is detected (undetected) by test vector s.

Accuracy of the T matrix is crucial to the overall accuracy
of the proposed DDSD extraction approach. If macroevents
cannot be modeled well, and hence cannot be simulated cor-
rectly, it can lead to a poor-quality T matrix. It is possible,
for example, that a more rigorous simulation (e.g., transistor-
level spice simulation) or actual fab data could lead to greater
accuracy in the T matrix, but such a gain comes at the ex-
pense of increased simulation time. In future work, we plan
to analyze the impact of the T matrix on the accuracy of the
DDSD extraction.

5 DDSD Extraction Theory
This section presents the mathematical background on how
the macroevent probability from critical area yield theory can

be combined with the empirical yield from wafer sort testing
to extract the DDSDs for the metal layers of interest.

5.1 Macroevent Probabilities
Using the critical area yield model [6, 16], the probability
pM

i of a macroevent i not occurring in any layer can be cal-
culated as

pM
i =

L∏

j=1

[
exp

(
−

∫ rmaxj

rminj

Ci,j(r)Dj(r)dr

)]
, (3)

where [rminj , rmaxj ] is the interval of defect radii in layer
j, Dj(r) is the DDSD and Ci,j(r) is the critical area func-
tion associated with macroevent i for its microevents in layer
j.

Note that Ci,j(r) and Dj(r) are continuous functions.
To reduce complexity, the integral be can approximated by
splitting the range of defect sizes [rminj , rmaxj ] for each
layer j into Nj defect size bins of varying width. Using bins
allows the extraction of DDSDs that do not follow any pre-
defined distribution model, such as the standard power-law
distribution [7].

The probability of macroevent i not occurring can now be
expressed as

pM
i = exp



−
L∑

j=1

Nj∑

k=1

Ca
i,j,kDa

j,k∆rj,k



 , (4)

where ∆rj,k are the widths of the k = 1 . . . Nj defect size
bins in layer j, and Ca

i,j,k and Da
j,k are the discretized, ap-

proximated versions of the continuous critical area functions
and DDSDs, respectively.

5.2 Yield Per Test
To estimate the probability of a macroevent occurring, test
results are used. The T matrix determines the set of
macroevents that can be detected by each test vector. Com-
bining the simulated test results, ts,i, from the T matrix with
Equation (4) leads to the modeled probability of vector s
not failing:

pV
s = exp



−
M∑

i=1

ts,i

L∑

j=1

Nj∑

k=1

Ca
i,j,kDa

j,k∆rj,k



 .

(5)
From the tester, the probability for vector s not failing, p̂s,

is the observed yield per test vector. It can be empirically
measured using

p̂s = 1 − ns/n (6)

where n is the total number of tested ICs, and ns is the num-
ber of times vector s fails2.

2Due to tester memory limitations and the high cost of test time, only test
results up to the first or first few failing pattern are typically available. The
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5.3 DDSD Extraction

This section presents the final steps to actually extract the
DDSD. The problem is formulated using matrices to make
solving such a system more tractable3.

The key idea centers around abandoning the concept of in-
dividual DDSDs per layer. Hence, the defect densities of all
defect size bins of all layers are concatenated into a single
vector D̃a with X=(

∑L
j=1 Nj) components. This vector

contains DDSD information for all layers.
The critical area functions Ca

i,j,k, which depend on three
variables i, j, and k, can be now be represented as a two-
dimensional (M ×X)-matrix C̃a, where M represents the
number of macroevents and again X is the total number of
DDSD components to be extracted for all layers.

After applying a logarithmic transformation to both the
empirical and the modeled yields per test vector, the system
consists of X variables, D̃a

1 , . . . , D̃a
X that are used to ap-

proximate the DDSD in each layer j by minimizing the fol-
lowing expression:

min
D̃a

||ln(p̂V ) + AD̃a||2, (7)

where the A matrix is generated by multiplying the T matrix
and the re-structured critical area matrix C̃a, and p̂V is a
vector of the empirically measured yields per test.

Minimizing Equation (7) determines the value for each D̃a
x

that leads to the least error between the empirical and the the-
oretically predicted yield per test vector using the critical are
yield model. To uniquely minimize Equation (7), the num-
ber of equations (V ) must be greater than the number of un-
knowns (X).

Hence, the minimization problem can be stated as a linear
regression analysis where the number of test vectors is the
sample size of the regression, the entries in the columns of
the A matrix are the independent variables (regressors), the
yields per test (p̂V ) are the dependent variables (response),
and the unknown defect densities (D̃a) are the regression co-
efficients to be determined by the regression analysis. Re-
gression analysis of this form can be performed with many
available tools.

6 Simulation Experiment
In this section, a simulation-based experiment to demon-
strate the viability of the proposed methodology is presented.
Specifically, defects based on a presumed DDSD are inserted
into a chosen demonstration circuit, and the resulting yield
per test vector is measured via tester emulation. The DDSD
for each layer is then extracted using the proposed methodol-
ogy, and compared against the inserted DDSD.

proposed strategy can be easily adapted to account for this as shown in [4].
3A more detailed description is provided in [4].

6.1 Demonstration Circuit
The demonstration circuit for this experiment is based on the
ISCAS’85 benchmark circuit c3540. The circuit is first log-
ically optimized and then technology-mapped for a 0.18µm
standard-cell library. The final design utilizes five metal lay-
ers and covers an area of approximately 100 µm×100 µm.

Considering the defect densities exhibited by modern IC
manufacturing, a single c3540 design is very small and is
likely free of any random spot defects. To obtain a reason-
able demonstration circuit for simulation, 10,000 instances
of c3540 are “combined” to generate a total die area of ap-
proximately 1 cm2. We assume, however, that each instance
of c3540 retains its controllability and observability, allow-
ing the entire die to still be tested with a test set for a sin-
gle instance of c3540. Although this approach increases the
amount of total critical area for the demonstration circuit, it
lacks the design diversity found in circuits of similar sizes.
Nevertheless, the impact of design diversity on the DDSD
extraction methodology is not the prime focus of this initial
experiment and is therefore left to future work.

Given this demonstration circuit, the next step in the simu-
lation experiment involves macroevent extraction, modeling,
and simulation to generate the T matrix. The extraction stage
finds critical area functions, Ca

i,j,k, for defect sizes ranging
from 0.2-2µm for metal layers one through four, and 0.35-
2µm for metal layer five. For each metal layer, the critical
area function was sampled over the defect size range at 50 nm
intervals, which results in a total of 182 critical area points.
The lower bounds of the defect sizes utilized in the extraction
is determined by the minimum line spacing, and the upper
bound is meant to capture a significant portion of the tail of
the inserted DDSD. The total discretized critical area func-
tion (sum of critical area functions of all the microevents in-
volving the layer) for each of the five metal layers, Ca

j,k for
one instance of c3540 is shown as the 182 white symbols in
Figure 1. The 19 larger symbols are explained in Section 6.3.

A 100% SSL fault coverage test set consisting of 155
test patterns is used as the production test set. Finally, the
macroevents are fault simulated against the test set using FAT-
SIM [15] to generate the T matrix.

6.2 Tester Emulation
The proposed DDSD extraction methodology utilizes struc-
tural test results in the form of yield per test vector. In the
absence of tester data from real ICs for this initial experi-
ment, we use an emulation approach to generate the yields per
test. Defects are first generated according to a stochastic Pois-
son process (independent events) and follow the well-known
power-law defect size distributions with the defect densities4

shown in Table 1.
Based on the assumption of statistical independence of the

4The injected defect densities are assumed higher than the levels typically
found in real manufacturing lines. This was done to reduce the simulation
time required for tester emulation.
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Figure 1: Critical area functions (white symbols) extracted from
all metal layers of a single instance of c3540. The black symbols
represent the critical area functions after combining a range of defect
size bins.

m1 m2 m3 m4 m5
D0 [cm−2] 1 2 2 1 3
p 3 4 3 2 3

Table 1: Injected DDSDs for this experiment follow the power-
law distribution with the power parameter p and peak-probability
parameter X0 = 0.05µm for each metal layer. D0 [cm−2] rep-
resents the defect density.

defects, the occurrence of macroevents can also be consid-
ered as an independent Poisson process. Consequently, the
frequency of occurrence of each macroevent for each die is
governed by a Poisson process with a rate determined by the
critical area function associated with the macroevent and the
assumed DDSDs. The rate of occurrence for the number
of macroevents per die for the sample size analyzed in this
experiment (50,000) is shown in Table 2. Two main obser-
vations can be made from Table 2: 1) 50,000 dice is likely
an adequate sample size, since the rate of occurrence of the
number of macroevents per die closely follows the rates ex-
pected from Poisson theory, and 2) (only) a small percentage
of the simulated dice are affected by multiple macroevents
(defects).

Macroevents per die 0 1 2 3
Number of dice 94.17% 5.67% 0.15% 0.01%

Table 2: The rate of occurrence for the number of macroevents per
die for a sample size of 50,000 dice.

At this stage, it is known which macroevent(s), if any, oc-
curs on each die. The yield per test vector is subsequently
obtained by simply inspecting the T matrix. The yield per
test for each test varies slightly around an average of 98%.

For dice with multiple macroevents, it is assumed that a test
that detects any of the individual macroevents will cause the

test to fail for the die neglecting any potential masking effects
among macroevents. Nevertheless, this simplification does
not have a significant impact on the yields per test vector,
since the number of dice with multiple macroevents is very
small (≈0.15%).

6.3 Extraction of DDSD
In Section 5.3, the DDSD extraction process was formulated
as a minimization problem to be solved using linear regres-
sion analysis. In this section, the details of the regression
analysis procedure used for extraction of the DDSD for the
demonstration circuit are described.

As described in Section 6.1, the total number of defect size
bins for all layers is 182. The individual defect densities in
these 182 bins make up the DDSD vector D̃a to be solved for
in Equation (7). However, given that there are only 155 test
vectors, only 155 yields per test (p̂V ) can be obtained. Con-
sequently, there are more unknowns than equations, which
makes the minimization an under-determined problem with
an infinite number of solutions.

To reduce the number of unknowns from 182, sample
points for defect sizes are lumped together into fewer, wider
bins. The bins are shown in Figure 1 separated by vertical
lines. The number of bins for all five metal layers totals to
19. The critical area functions are recalculated for the new
bins and are shown as the larger, black symbols in Figure 1.
These new critical area functions are reflected in a new A ma-
trix. Note that the T matrix is not at all affected by binning
and therefore does not have to be regenerated. Using the de-
fect size bin configuration of Figure 1, the unknown DDSDs,
D̃a, are found using principal component regression (PCR).
95% confidence intervals for the extracted DDSDs are ob-
tained using standard bootstrapping techniques.

The final extracted results of the analysis for three of the
five metal layers are shown in Figure 2. The white triangles
show the 19 extracted DDSD components that make up D̃a,
while the small circles indicate the DDSD components that
were inserted for the experiment. While not perfect, the in-
serted DDSD and the extracted DDSD correlate well—a pos-
itive and promising result.

Also shown in Figure 2 are the 95% confidence intervals
for each DDSD component. Some of the confidence intervals
are quite large. The source of this problem can be traced
to the properties of the A matrix, where the columns are
highly correlated. This multi-colinearity problem is an open
research problem that suggests an opportunity for ATPG to
generate test sets that have desirable properties for the pro-
posed DDSD extraction methodology and therefore is a focus
of our future work.

7 Conclusions
A novel methodology has been described to extract the de-
fect density and size distribution (DDSD) for all layers of a
process using the product being manufactured. Microevent
extraction from the layout to form macroevents, high-fidelity
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Figure 2: Assumed and extracted DDSDs for three of the five metal layers and the corresponding 95% confidence intervals.

fault modeling and simulation, and empirical tester results
were combined to form a system of equations that are solved
using linear regression to derive the DDSD. A simulation ex-
periment seems to indicate that the approach will work, and
certainly merits further investigation.

Significantly, the proposed methodology does not require
the extra effort of designing, fabricating, and testing special
test structures, but instead uses the existing product being
manufactured and available test results. In other words, we
use an ordinary digital circuit as a virtual test structure to
extract DDSDs for short type defects, which thus far has been
accomplished using test structures and memory only.

Our strategy offers a unique opportunity for fabless com-
panies to gain insight into the fabrication of their chips. Now,
such companies can independently compute defect character-
istics about their product, and improve their design yield by
tuning their design for a given fabline.

However, in the face of a real, industrial design, challenges
arise that were not addressed in this paper. Noise in the test
results caused by defect types other than shorts or even multi-
ple shorts, limited ATE resources for storing pass/fail results,
and more accurate defect modeling and simulation are among
those challenges and are currently being investigated.

8 Acknowledgments
The authors would like to thank Dennis Ciplickas, Mariusz
Niewczas, and many others from PDF Solutions for useful
discussions that helped define the objectives of this work,
and for providing access to SiCat. We would also like to
acknowledge the financial support of the Semiconductor Re-
search Corporation under contract number 1172.001.

References
[1] J. Kibarian, “The nature of yield ramping: Keeping ahead of evolu-

tion,” International Test Conference, Keynote Address, 2005.
[2] Y. J. Kwon and D. M. H. Walker, “Yield Learning via Functional Test

Data,” International Test Conference, pp. 626–635, Oct. 1995.
[3] W. Maly, “Spot Defect Size Measurements Using Results of Func-

tional Test for Yield Loss Modeling of VLSI IC,” White Paper, CMU,

Sep. 2004.
[4] J. E. Nelson, T. Zanon, R. Desineni, J.G. Brown, N. Patil, W. Maly,

and R. D. Blanton, “Extraction of Defect Densities and Size Distribu-
tions from Wafer Probe Test Results,” CSSI Technology Report #05-02,
Carnegie Mellon University, Feb 2005.

[5] J. Khare, D. Feltham and W. Maly, “Accurate Estimation of Defect-
Related Yield Loss in Reconfigurable VLSI Circuits,” IEEE Journal of
Solid State Circuits, vol. 8, no. 2, pp. 146–156, Feb. 1993.

[6] W. Maly and J. Deszczka, “Yield Estimation Model for VLSI Artwork
Evaluation,” Electronic Letters, vol. 19, no. 6, pp. 226–227, March
1983.

[7] C. H. Stapper, “Modeling of Integrated Circuit Defect Sensitivities,”
IBM Journal of Research and Development, vol. 27, no. 6, pp. 549–
557, Nov. 1983.

[8] D. Schmitt-Landsiedel, D. Keitel-Schulz, J. Khare, S. Griep and
W. Maly, “Critical Area Analysis for Design Based Yield Improve-
ments of VLSI Circuits,” Quality and Reliability Engineering Interna-
tional, vol. 11, pp. 225–232, 1995.

[9] D. J. Ciplickas, X. Li and A. J. Strojwas, “Predictive Yield Modeling
of VLSICs,” Proc. of International Workshop on Statistical Metrology,
pp. 28–37, 2000.

[10] P. Simon, “Yield Modeling for Deep Sub-Micron IC Design,” Ph.D.
Thesis, Technical University of Eindhoven, 2001.

[11] G. A. Allan and A. J. Walton, “Efficient Critical Area Algorithms and
Their Application to Yield Improvement and Test Strategies,” in Proc.
of IEEE International Workshop on Defect and Fault Tolerance in VLSI
Systems, pp. 88–96, Oct. 1994.

[12] C. Ouyang and W. Maly, “Efficient Extraction of Critical Area in Large
VLSI ICs,” Proc. of IEEE International Workshop on Defect and Fault
Tolerance of VLSI Systems, pp. 301–304, 1996.

[13] K. C. Y. Mei, “Bridging and Stuck-at Faults,” IEEE Trans. on Com-
puters, vol. 23, no. 7, pp. 720–727, July 1974.

[14] R. D. Blanton, “Methods for Characterizing, Generating Test Se-
quences for, and Simulating Integrated Circuit Faults Using Fault Tu-
ples and Related Systems and Computer Program Products,” Dec.
2004, U.S. Patent No. 6,836,856.

[15] K. N. Dwarakanath, “Fault Tuples: A Paradigm for Universal Test
Analysis,” Technology Report. CMU-CAD 01-21, Carnegie Mellon
University, Nov. 2001.

[16] P. K. Nag and W. Maly, “Yield Estimation of VLSI Circuits,” Proc. of
TECHCON 90, pp. 267–270, Oct. 1990.

6


