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Abstract

Linear Relational Embedding (LRE) was introduced (Paccanaro and Hinton, 1999) as a means of extracting
a distributed representation of concepts from relational data. The original formulation cannot use negative infor-
mation and cannot properly handle data in which there are multiple correct answers. In this paper we propose an
extended formulation of LRE that solves both these problems. We present results in two simple domains, which
show that learning leads to good generalization.

1 Introduction

The problem that we are trying to solve, can be expressed as follows:

Let our universe of discourse consist of concepts and binary relations, and our data consists of triplets of the form
(concept1, relation, concept2). We would like to learn distributed representations of the concepts
and the relations that allow good generalization.

We say that the system has good generalization if, after being shown only some of the possible triplets, it is
able to complete any triplet, i.e. answer correctly the third element of any triplet, given the first two. In order to
achieve this, such a system must come up with a sensible distributed representation of the objects and the relations,
a representation which captures some of their semantic features.

There have been several attempts to tackle this problem. Multidimensional Scaling (Kruskal, 1964; Young and
Hamer, 1987) attempts to find a representation of the concepts as vectors in multi-dimensional space, such that
similar concepts are mapped onto vectors which are close to each other. The biggest limitation of this technique
is that it only deals with the relation of similarity, and therefore it cannot take into account other relations which
could be present in the data.

Latent Semantic Analysis (LSA) (Deerwester et al., 1990; Landauer and Dumais, 1997; Landauer et al., 1998)
assumes that the similarity among two concepts is reflected in the way in which they co-occur across contexts.
Again, this technique is limited by the fact that it only deals with the relation of similarity, now expressed in the
form of co-occurrence.

Another attempt was by Hinton (1986) , where he showed how the distributed patterns of activities in a multi-
layer perceptron network trained using the backpropagation algorithm (Rumelhart et al., 1986), could make explicit
the semantic features of concepts and relations present in the data. Unfortunately, the system had problems in
generalizing when many triplets were missing from the training set. Moreover there was no guarantee that the
semantic features extracted for a given concept would be the same independent of the position of the concept
within the triplet.

The original version of LRE (Paccanaro and Hinton, 1999) represents concepts using n-dimensional vectors,
relations as (n � n) matrices, and the operation of applying relation to concept1 in order to obtain con-
cept2 as a matrix-vector multiplication. The goal of learning is to find suitable vectors and matrices such that for
each triplet, concept2 is the vector closest to the result obtained by multiplying together relation and con-
cept1. This is achieved by maximizing an appropriate discriminative goodness function (see eq. 1). Learning is
fast and the system usually reaches a configuration which gives good generalization. There are some shortcomings
however, and to explain them better we shall introduce two toy problems with which we are going to play later.

The number problem: the concepts are integer numbers and the relations are operations among numbers.
In the examples presented here we shall use integers in the set N = [1 : : :10], while the set of operations is
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Figure 1: Two isomorphic family trees. The symbol “=” means “married to”

O = f+1;�1;+2;�2;+3;�3;+4;�4;+0g. Our data is constituted of all the possible triplets (num1; op; num2)
where num1; num2 2 N , op 2 O, and num2 is the result of applying operation op to number num1, such as
f(1;+1; 2); (4;+3; 7); : : :g.

The family tree problem: this problem is the one used by Hinton (1986). Figure 1 shows two family trees.
All the information in these trees can be represented in simple propositions of the form (person1, re-
lation, person2). Using the relations father, mother, husband, wife, son, daughter,
uncle, aunt, brother, sister, nephew, niece there are 112 of such triplets in the two trees.

Now let us analyze two shortcomings in the original LRE formulation. First, it cannot deal with incomplete
data, since it has no way to indicate that it does not know how to complete a triplet. For example in the number
problem, when asked to complete the triplet (9, +3, ?) it will always return as its answer the vector which happens
to be the closest to the result of multiplying the matrix representing the relation +3 and the vector representing
number 9. In this case the appropriate answer would instead be something like “I do not know” or “I do not know
the name of that concept” since number 12 does not belong to the universe of discourse. The same thing happens if
we ask “who is the father of Christopher” in the family tree problem: the system always comes up with an answer
from among its familiar concepts.

The second shortcoming in the original formulation of LRE appears in those cases in which a triplet has more
than one correct completion (i.e. when the data contains triplets which differ only in the third element). In these
cases, the system cannot clearly indicate how many correct answers there are and which ones they are. We do find
that the answers are correctly ordered. For example, the two vectors closest to the result of multiplying matrix
aunt and vector Colin are Margaret and Jennifer, but the system has no way to indicate that they are both
correct, and that they are the only correct answers.

In the next section we describe a new version of LRE that is able to solve both these problems.

2 An improved version of Linear Relational Embedding

Let us assume that our data containsN distinct concepts andM binary relations. As before, we decide to represent
each concept with an n-dimensional vector, and each relation with an (n � n) matrix. We call V = f~v 1; :::; ~vNg
the set of vectors, and R = fR1; :::; RMg the set of matrices. The operation that relates a pair f~v i; Rjg to a vector
~vk is the matrix-vector multiplication, Rj � ~vi.

Let P = f~vpi ; Rp
j ; ~v

p
kgPp=1 indicate the set of all the triplets, where ~vi; ~vk 2 V and Rj 2 R. Let N =

f~vqs ; Rq
t ;?gQq=1 indicate the set of all the triplets, where ~vs 2 V , Rt 2 R and ? indicates the fact that the result of

applying relation Rt to ~vs does not belong to V . In other words, P represents positive information, which relates
concepts in the dataset, whileN represents negative information, which says that the correct completion of a triplet
(concept1, relation, ?) is not a concept among the ones available in the dataset.



In the original version of LRE, the goal of learning was to find suitable vectors and matrices such that for each
triplet f~vpi ; Rp

j ; ~v
p
kg 2 P, ~vpk is the vector closest to Rp

j � ~vpi , while N was not considered. This version of LRE
employed N distinct Gaussians, each centered on a vector representing a concept, and with standard deviation
equal to 1=

p
2; for each triplet in P the probability that the vector Rp

j � ~vpi was generated from the Gaussian
centered on ~vpk was maximized, while the probability that it came from any other Gaussian was minimized. This
was achieved by maximizing a discriminative goodness function:
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where vi(j) indicates the component i of vector j, m i;j
(k) indicates the component (i; j) of matrix k, and �v , �m

are (weight decay) parameters (see Paccanaro and Hinton (1999) for details).
In this paper we introduce a version of LRE in which for each relation R we have a mixture of N Gaussians

and an un-normalized Uniform distribution. Each of the Gaussians is centered on a vector representing a con-
cept, and has temperature TR (i.e. standard deviation equal to

p
TR=2 ). The Uniform distribution has value

1

2�
p
TR=2

exp(�r2R=TR). Now we can use both positive and negative information to learn a distributed represen-

tation of the data. For each triplet in P we maximize the probability that the vector R p
j � ~vpi is generated from the

Gaussian centered on ~vpk while minimizing the probability that it comes from any other Gaussian or the Uniform
distribution. At the same time, for each triplet inN we maximize the probability that the vectorR q

j �~vqi is generated
from the Uniform distribution while minimizing the probability that it comes from any of the Gaussians.

The discriminative goodness function becomes:
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whereCp is the number of triplets in P having the first two elements equal to the ones of p, but differing in the third
one. To understand why we need to introduce this factor, let us consider a set of C triplets, each having the same
first two elements, ~a and R, but differing in the third element, which we shall call ~bi with i = 1 : : : C. We would
like our system to assign equal probability to each of the correct answers, and therefore the discrete probability
distribution that we want to approximate can be written as:

P~x =
1

C

CX

i=1

Æ(~bi � ~x) (3)

where Æ is the discrete delta function and ~x ranges over the vectors in V . Our system implements the discrete
distribution
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is the normalization factor. The Kullback-Leibler divergence between P ~x and Q~x, can be written as:
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Thus, minimizing KL(PkQ) amounts to minimizing:
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for every ~u that is a solution to the triplet, which is exactly what we do when we maximize eq.2.
In this version of LRE, the Uniform distribution is taking care of the “don’t know” symbol? and is competing

with all the other Gaussians, each of which is representing a vector constituting an answer in our dataset. The
Uniform distribution has the value that a Gaussian with temperature TR would have at a distance rR from the
mean. This is equivalent to saying that, given the point R p

j � ~vpi , all and only the vectors representing correct
answers must be found within an n-dimensional sphere of radius rR centered at that point. In this way the system
can handle both incomplete information and multiple correct answers: if no vector is inside the sphere we interpret
this as the system answering “I don’t know”, while if a triplet can be completed in more than one way, all correct
completions should be inside the sphere.

During our experiments, we maximizedG using gradient ascent. Since temperatures must be constrained to be
positive, they were learned using unconstrained optimization in the log domain. Learning is fast, though it is more
prone to get stuck in local optima than the original version of LRE, so the parameters of the learning algorithm
need to be tuned more carefully; on the other hand the problem that we are trying to solve is more complex. One
effective method of performing the optimization is conjugate gradient. We have also developed an alternative
optimization method which is faster and less likely to get trapped in local optima when the task is difficult. The
objective function is modified to include a temperature that is annealed during the search. This method uses a line
search in the direction of steepest ascent of the modified objective function.

3 Results

This section reports some of the results we obtained applying the new version of LRE to the Number Problem and
Family Tree Problem presented earlier. After training the system, we presented it with each possible question and
checked if it would give us the correct answers i.e. we checked that for any pair (~v i; Rj) we would obtain all and
only the correct completions or the “don’t know” answer. We looked at how well the system learned the whole set
of data and how well it generalized to unseen triplets, after being trained on a subset of them.

Number Problem - LRE is able to solve the problem using two dimensions. To understand the solution it
finds, let us look at figure 2a, which shows the vectors after learning together with the answers given by the system
to each question (~vi; Rj). The vectors are represented by points on the plane and we plotted a solid line connecting
each vector representing a number to the one representing the next number. The dots in the figure represent the
answers to questions in P, while the crosses represent the result of multiplying R j � ~vi if (~vi; Rj ;?) 2 N. The
matrices representing the operations turn out to be (almost) orthogonal, with all the rows having (roughly) the same
norm. Therefore each can be decomposed into a constant factor which multiplies an orthonormal matrix. Thus we
understand how this solution works: applying a certain operation to a number amounts to rotating and scaling its
vector, so that if falls close enough to the vector which is the correct solution.

This method is able to generalize well. We trained the system with just 70 triplets chosen randomly from the
90 in the training set, and yet achieved perfect results during testing on all the 90 cases.

Notice how the solid line connecting the vectors forms a spiral, and that the cross clusters are placed on the
“continuation” of the spiral, along both directions. The system anticipates where the vectors for those numbers
ought to be placed, if it had some information about them. To verify this, let us look at what happens if we take
out the information about a particular number in our set, i.e. if we eliminate all the triplets in N containing that
number, and we transform all the triplets in P containing that number into triplets in N. Figure 2b shows the
vectors which are found, together with the answers of the system, after we eliminated all the information about
number 7 in the training data. Notice how a cluster of crosses indicates where number 7 should go. If we now add
the information about number 7 to the training data and continue the training, we see that in very few iterations the
vector representing number 7 is placed exactly where it is supposed to go (fig.2c). It was interesting to verify that
only one triplet in P is infact enough for the system to correctly position number 7. Figure 2d shows the solution
obtained starting from the solution shown in fig.2b and training using only triplet (6;+1; 7).

Family Tree Problem - LRE is able to find a solution for the Family Tree Problem that satisfies all the 296
triplets (112 in P and 184 inN) using five dimensions. Diagrams of the solution vectors representing each persons
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Figure 2: Vectors obtained after learning the number problem with numbers [1 : : : 10], operations
f+1;�1;+2;�2;+3;�3;+4;�4;+0g. The dots are the result of the multiplication Rj � ~vi for each triplet
f~vi; Rj ; ~vkg 2 P. The crosses are the result of the multiplication Rj � ~vi for each triplet f~vs; Rt;?g 2 N. In
all cases the system answered correctly to all the questions in the data set. (a) All the 90 triplets were used for
training. (b) The information about number 7 was omitted. (c) The system was trained using the complete data set,
starting from the configuration shown in (b). (d)The system was trained using only the triplet (6;+1; 7) starting
form the configuration shown in (b).
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Figure 3: Diagrams of the vectors obtained for the family tree problem.



are shown in fig.3. White rectangles stand for positive components, black for negative ones, and the area of the
rectangle encodes the magnitude of the component. Notice how the vectors representing the Italian people are
perfectly symmetric to the ones representing their English counterparts.

Generalization is very good: the system is able to generalize perfectly when 26 cases are randomly omitted
from the 296 triplets during training. It is thus able to spell out that Charlotte has exactly two uncles, and that
they are Arthur and Charles, even if it had never been taught that Charles is an uncle of Charlotte. It
is worth pointing out that in order to do this the system has to discover structure implicit in the data since correct
generalization is not possible using only the pairwise correlations between terms in the triplets. It has to use the
implicit information in the other triplets to figure out both the meaning of the relation uncle and the relative
position of Charlotte, Charles and Arthur in the family tree, and then use this information to make the
correct inference.

4 Conclusions

In this paper we introduced a refinement of LRE which can extract a distributed representation of concepts and
relations from data making use of both positive and negative information. This new version also handles data in
which there are multiple correct answers. The method is quite simple and generalizes well, even if learning is not
as straightforward as in the original LRE case.

Its biggest limitation is that it deals only with binary relations. In order to overcome this problem we are going
to use higher-dimensional tensors instead of vectors and matrices.
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