From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

1

Extracting Effective and Admissible State Space Heuristics
from the Planning Graph

XuanLong Nguyen‘& Subbarao Kambhampati

Department of Computer Science and Engineering

Arizona State University, Tempe AZ 85287-5406
Email: {xuanlong,rap@asu.edu

Abstract

Graphplan and heuristic state space planners such as
HSP-R and UNPOP are currently two of the most effec-
tive approaches for solving classical planning problems.
These approaches have hither-to been seen as largely or-
thogonal. In this paper, we show that the planning graph
structure that Graphplan builds in polynomial time, pro-
vides a rich substrate for deriving more effective heuris-
tics for state space planners. Specifically, we show that
the heuristics used by planners such as HSP-R and UN-
POP do badly in several domains due to their failure to
consider the interactions between subgoals, and that the
mutex information in the planning graph captures exactly
this interaction information. We develop several families
of heuristics, some aimed at search speed and others at
optimality of solutions. Our empirical studies show that
our heuristics significantly out-perform the existing state
space heuristics.

Introduction

problems where there are strong interactions between sub-
goals. Furthermore, these independence assumptions also
make the heuristics inadmissible, precluding any guarantees
about the optimality of solutions found. In fact, the authors
of UNPOP and HSP/HSP-R planners acknowledge that tak-
ing the subgoal interactions into account in a tractable fashion
to compute more robust and/or admissible heuristics remains
a challenging problerfi7; 3.

In this paper, we show that the planning graph datastructure
computed in polynomial-time as part of the Graphplan algo-
rithm, provides a general and powerful basis for the derivation
of state space heuristics that take subgoal interactions into ac-
count. In particular, the so-called “mutex” constraints of the
planning graph provide a robust way of estimating the cost
of achieving a set of propositions from the initial state. The
heuristics derived from the planning graph are then used to
guide state space search on the problem, in a way similar to
HSP-R[2]. Note that this means we no longer use Graph-
plan’s exponential time CSP-style solution extraction phase.

We will describe several families of heuristics that can be

The last few years have seen a number of attractive angerived from the planning graph structure and demonstrate
scaleable approaches for solving deterministic planning probyeir significant superiority over the existing heuristic estima-

lems. Prominent among these are “disjunctive” planners, e

emplified the Graphplan algorithm of Blum & Fui4f, and

heuristic state space planners, exemplified by McDermott’

UNPOP[17] and Bonet & Geffner's HSP-R plannel8;

Xors. We will provide results of empirical studies establishing

that state space planners using our best heuristics easily out-

$erform both HSP-R and Graphplan planners. Our develop-

ment focuses both on heuristics that speedup search without

2]. The Graphplan algorithm can be seen as solving the plang, aranteeing admissibility (such as those currently used in
ning problem using CSP techniques. A compact CSP encodisp_R and UNPOP), and on heuristics that retain admissi-
ing of the planning problem is generated using a polynomialyjjity and thus guarantee optimality. In the former case, we
time datastructure called “planning grafi9]. On the other i 'show that our best heuristic estimators are more robust
hand, UNPOP, HSP, HSP-R are simple state space planne{§ are able to tackle many problem domains that HSP-R

where the w_orlq state is considered explicitly. These planne'rgoes poorly (or fails), such as the grid, travel, and mystery
rely on heuristic estimators to evaluate the goodness of chilygmains used in the AIPS-98 competitidre).

dren states. As such, it is not surprising that heuristic state
search planners and Graphplan-based planners are generagl |

seen as orthogonal approach23. leati H i which olanni h
In UNPOP, HSP and HSP-R, the heuristic can be seen dP/ication of the way in which planning graph can serve as a
estimating the number of actions required to reach a state (eril_ch basis for derivation of families of heuristic estimators. It

ther from the goal state or the initial state). To make the comis known in the search literature that admissible and effective

putation tractable, these heuristic estimators make strong aljeuristics are hard to compute unless the interactions between

sumptions about the independence of subgoals. Because LI'bgoaIS are considered aggressifefl. Our work shows

these assumptions, state search planners often thrash badiy/ Planning graph and its mutex constraints provide a pow-
erful way to take these interactions into account. Since mutex

propagation can be seen as a form of directed partial consis-
tency enforcement on the CSP encoding corresponding to the

hile our empirical results are themselves compelling, we
ieve that the more important contribution of our work is the

*Copyright(©2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

planning graph, our work also firmly ties up the CSP and stata certain extent. Their simple suggestion to make the heuris-

search views of planning. tic admissible is to replace the summation with the “max”
The rest of the paper is organized as follows. Section Zunction.

reviews the HSP-R planner and highlights the limitations of - -

its “sum” heuristic. These limitations are also shared to deuristic 2 (Max heuristic) h(S) := maxpes h(p)

large extent by other heuristic state search planners such asTyis neuristic. however. is often much less informed than

UNPOP. Section 3 discusses how the Graphplan’s planningye sum heuristic as it grossly underestimates the cost of
graph can be used to measure the subgoal interactions. Seghieving a given state.

tion 4 is the heart of the paper. It develops several families of improve the informedness of the sum heuristic, HSP-R

heuristics, some aimed at search speed and some at solutig,nts the notion of mutex relations first originated in Graph-

optimality. Each of these heuristic families are empirically 521 blanning araph. But unlike Graphplan. oshatic propo-
evaluated in comparison to HSP-R heuristic and their reIativ% b ggrapn. phplan, oshatic prop

deoff i d. Section 5 di he related itional mutexegaka binary invariants) are computed. Two
tradeoffs are explicated. Section 5 discusses the related wor ropositionsy and ¢ form a static mutex when they cannot

and section 6 summarizes the contributions of ourwork. pq1h pe present in any state reachable from the initial state.
o , . Since the cost of any set containing a mutex pair is infinite,
2 Limitation of the HSP-R’s sum heuristic we define a variation of the sum heuristic called the “sum

HSP-R[2] is currently one of the fastest heuristic state searcinutex” heuristic as follows:

planners. It casts planning as search throughréiggession Heuristic 3 (Sum Mutex heuristic)

spaceof world stated19]. In regression state space search,;, gy .— oo i f 3 + t I h

the states can be thought of as setsutigoalsThe heuristic () := 00 if 3pqes st mutex(p,q) else ZPES ()

value of a state5 is the estimated cost (number of actions) In practice, the Sum Mutex heuristic turns out to be much

needed to achievé from the initial state. It is important to more powerful than the sum heuristic and HSP-R implemen-

note that since the cost of a stafeis computed from the tation uses it as the default.

initial state and we are searching backward from the goal Before closing this section, we provide a brief summary of

state, the heuristic computation is done only once for eackhe procedure of computing mutexes used in H$2-RThe

state. Then, HSP-R follows a variation of A* search algo-pasic idea is to start with a large set of “potential” mutex pairs

rithm, calledGreedy Best Firstvhich uses the cost function and iteratively weed out those pairs that cannot be actually

f(S) = g(S) + w = h(S), where g(S) is the accumulated mutex. The sefi/, of potential mutexes is union of saf 4

cost (number of actions when regressing from goal state) angk all pairs of propositiongp, ¢), such that for some actian

h(S) is the heuristic value of statg. _ in A, pin Add(a) andq in Del(a), and setMp of all pairs
The heuristic is computed under the assumption that the: ¢), such that for somé, ¢) in M4 and some actioa, r in

propositions constituting a state are strictly independentprec(a) andp in Add(a). This already precludes from con-

Thus the cost of a state is estimated as the sum of the cosideration potential mutexes, s), wherer ands are not in

for each individual proposition making up that state. the add, precondition and delete lists of any single action. As
Heuristic 1 (Sum heuristic) A(S) = h we shall see below, this turns out to be an important limitation
() 1(S) ZPGS (v) in several domains.

The heuristic cost(p) of an individual propositiorn is
computed using a iterative procedure that is run to fix poin2.1 A pathological example that showcases the
as follows. Initially, each propositiop is assigned a cost limitations of sum mutex heuristic
0 if it is in the initial statel, andoo otherwise. For each
instantiated action, let Add(a), Del(a) and Prec(a) be its
Add, Delete and Precondition lists. For each actiothat
adds some propositign h(p) is updated as:

The sum mutex heuristiosed by HSP-R, while shown to be
powerful in domains where the subgoals are relatively inde-
pendent such as logistics and gripper doméa#s thrashes
badly in problems where there is rich interaction between ac-
o tions and subgoal sequencing. Specifically, when a subgoal
h(p) := min{h(p), 1 + h(Prec(a))} () that can be achieved early but that must be deleted much later
Where h(Prec(a)) is computed using the sum heuristic when other subgoals are achieved, the sum heuristic is un-
(heuristic 1). The updates continue until the h values of allable to recognize this interaction. To illustrate this, consider a
the individual propositions stabilize. This computation cansimple problem from the grid domalti7] shown in Figure 1:
be done before the backward search actually begins, and ty@iven a 3x3 grid. The initial state is denoted by two propo-
ically proves to be quite cheap. sitions at(0,0) and key(0,1) and the goal state is denoted by 2
Because of the independence assumption, the sum heurisabgoals at(0,0) and key(2,2) (See figure 1). Notice the sub-
turns out to be inadmissible (overestimating) when there argoal interaction here: When key(2,2) is first achieved, at(0,0)
positive interactions between subgoals (i.e achieving somis no longer true. There are three possible actions: the robot
subgoal may also help achieving other subgoals), and lesaoves from one square to an adjacent square, the robot picks
informed (significantly underestimating) when there are negup a key if there is such a key in the square the robot currently
ative interactions between subgoals (i.e achieving a subgoatsides, and the robot drops the key at the current square. One
deletes other subgoals). Bonet and Geffi##provide two obvious solution is: The robot goes from (0,0) to (0,1), picks
separate improvements aimed at handling these problems tp the key at (0,1), moves to (2,2), drops the key there, and

Prop list Action list Prop list Action list Prop list

Goal state (6) Level O Level O Level 1 Level 1 Level 2
Key(2,2), At(0,0)
noop
Drop_key(2 Move(0y,0,0) 0,0,0)
7 m - - Move(0,0,0,1)
1(2,2), At(0,0),™ -
e ™) (e 00) Qe) {
% (6) 7 @) Move(0,0,1,0)
(a) Grid Problem (b) Regression Search
Key(0,1)/ —— noop

Figure 1: A simple grid problem and the first level of regres-
sion search on it. Figure 2: Planning Graph for the 3x3 grid problem

finally moves back to (0,0). This is in fact the optimal 10- . . h hi . d
action plan. We have run (our Lisp implementation of) HSp-2f MUtex constraints, contains mﬁuc of shuc Information, an
R planner on this problem and no solution was found after fan be used to compute more effective heuristics.

hour (generating more than 400,000 nodes, excluding those SraPhplan algorithnil] works by converting the planning
pruned by the mutex computation). The original HSP-R Writ_problem specifications into a planning graph. Figure 2 shows

ten in C also runs out of memory (250MB) on this problem, part of the planning graph constructed for the 3x3 grid prob-

. . lem shown in Figure 1. As illustrated here, a planning graph
It is easy to see how HSP-R goes wrong. First of all, aCs an ordered graph consisting of two alternating structures,

cording the mutex computation procedure described abov%alled “oroposition lists” and “action lists”. We start with
‘é";nﬁg? ba::ﬁ ;t;‘ gf;t-ggtemt \l’JVQrin éhu?[Loggfé?s?;lieiqggrr:’ ff_‘ue initial state as the zeroth level proposition list. Given a
tation cannot detecjt the t qe of rﬁutex that says that the roE level planning graph, the extension of the structure to level
X yp y DO 1 1 involves introducing all actions whose preconditions are
can also notbe in any other square as well (because there is Pesent in that" level proposition list. In addition to the ac-

single action that can place a robot from a square to anothgjy s given in the domain model, we consider a set of dummy
sqllilare lno"t adjacEnt tohv.vh?re' It gurrir;tly re&des)h . “noop” actions, one for each condition in thé level propo-
ow lets see how this limitation osum mutex Neuristic qjsiqn |ist (the condition becomes both the single precondition

winds up fatally misguiding the search. Given the subgoal$, 4 effect of the noop). Once the actions are introduced, the
(at(0,0), key(2,2)), the search engine has three potential ag;;qnsition list at levek + 1 is constructed as just the union
tions over which it can regress the goal state (see Figure 1b}t ¢ oftects of all the introduced actions. Planning-graph
TW°| of tgeose— m dovr? fr%md(oal) or .(1’0|)(to (0'0;_3“’9 tr?.e;‘ub'maintains the dependency links between the actions at level
goal at(0,0), and the third—dropping key at (2,2), which re+."\ 'y a4 their preconditions in levéd proposition list and
quires the precondition at(2,2)-gives the subgoal key(2,2)ir effects in levek + 1 proposition list.

If either of the move actions is selected, then after the re- The critical asset of the planning graph, for our purposes

gression the robot would be at either (0,1) or (1,0), and th . : ; :
would increase the heuristic value because the cost of at(O?ﬁJthe efficient marking and propagation of mutex constraints

! , ring the expansion phase. The propagation starts at level
orat(1,0) s 1 (greater than the cost of at(0,0)). If we pick the, "\ i the actions that are statically interfering with each

dropping action, then after regression, we have a state th@iher i.e., their preconditions and effects are inconsistent) la-
has both at(0,0) (the regressed first subgoal), and at(2,2) (ﬂ'beeled(hﬁ'tex. l\[/)lutexes are then propagated from this Igvel

precondition of drop key at (2,2) action). While we can se : : :))
that this is an inconsistent state, the mutex computation eﬁgrward by using two simple propagation rules: Two propo

ployed by HSP-R does not detect this (as explained above itions at levelk are marked mutex if all actions at level

L o AT ; that support one proposition are pair-wise mutex with all
Moreover, the heuristic value for this invalid state is actually, oo tr?gt supporE: thpe second pfoposition Two actions

smaller compared to the other two states corresponding to 'Sk level k + 1 are mutex if they are statically interfering

thresslmn ovgrtthe move atcr:]tlo?s. Th'hs. cr?_rppletely misguideq it one of the propositions (preconditions) supporting the
€ planner into wrong patns, from which It NEVer reCOVerS. gt 5ction is mutually exclusive with one of the proposi-

HSP-R also fails or worsens the performance for similarisns supporting the second action. Figure 2 shows a part
reasons in the travel, mystery, and grid, blocks world, €ight¢ the planning graph for the robot problem specified in Fig-

puzzle domairid 6]. ure 1. The curved lines with x-marks denote the mutex rela-
tions. The planning graph can be seen as a CSP encldding
3 Exploiting the structure of Graphplan’s 27], with the mutex propagation corresponding to a form of

; directed partial 1- and 2-consistency enforceniéd}. The
planning graph CSP encoding can be solved using any applicable CSP solv-
In the previous section, we showed the type of problemsng methods (a special case of which is the Graphplan’s back-
where ignoring the (negative) interaction between subgoals iward search procedure).

the heuristic often lead the search into wrong directions. On Normally, Graphplan attempts to extract a solution from
the other hand, Graphplan’s planning graph, with its weattihe planning graph of lengthand will expand it to level+ 1

only if that solution extraction process fails. Graphplan algo- Subsection 4.1 is concerned with effective heuristics with-
rithm can thus guarantee that the solution it findsggimal out consideration of the solution optimality. We set= 1 in

in terms of number of steps. To make the optimality hold inall experimental results described in this subsection, except
terms of number of actions (a step can have multiple actionsfpr the parallel domains (e.g rocket, logistics and gripper)
we need to start with a planning graph thagésial [9]. A se- where the heuristics work best (in terms of speed) with 5

rial planning graphs a planning graph in which every pair of 1. Subsection 4.2 is concerned with improving admissible
non-noop actions at the same level are marked mutex. Theeuristics for finding optimal solutions. To make the compar-
additional action mutexes propagate to give additional propoisons meaningful, all the planners are implemented in Allegro
sitional mutexes. A planning graph is saidiével off when commonlisp, and share most of the critical data structures.
there is no change in the action, proposition and mutex listyhe empirical studies are conducted on a 500 MHz Pentium-

between two consecutive levels. II'with 512 meg RAM, running Linux. All the times reported
Based on the above mutex computation and propagatioinclude both heuristic computation time and search time, un-
rules, the following properties can be easily verified: less specified otherwise.

1. The number of actions required to achieve a pair of
propositions is no less than the number of proposition levg 1 Extracting effective heuristics
els to be expanded until the two propositions both appear and
arenot mutexn the planning graph. We are now ready to extract heuristics from the planning
2. Proposition pairs that remain mutex at the level whergyraph. Unless stated otherwise, we will assume that we have
the planning graph levels off can never be achieved starting serial planning graph that has been expanded until it has
from initial state. leveled off (without doing any solution extraction). In this
3. The set of actions present in the level where the plansection, we will concentrate on the effectiveness, without in-
ning graph levels off contains all actions that are applicablesisting on the admissibility of the heuristics.

to states reachable from the initial state. Given a setS of propositions, denotév(S) as the index
The three observations above give a rough indication as tef the first level in thdeveled seriaplanning graph in which

how the information in the planning graph after it levels off, all propositions inS appear and are non-mutexed with one

can be used to guide state search planners. The first obseihother. If no such level exists, thén(S) = co. Similarly,

vation shows that the level information in planning graph candenotelev(p) as the index of the first level that a proposition

be used to estimate the cost of achieving a set of propositiong.comes into the planning graph. It takes only a small step

Furthermore, the set dével-specificpropositional mutexes from the observations made in the previous section to arrive

help give a finer distance estimate. The second observatiait our first heuristic:

shows that once the planning graph levels off, all mutexes in

the final level arestaticmutexes. The third observation shows Heyristic 4 (Set-level heuristic) i(S) := lev(S)

a way to extract a finer (smaller) set of applicable actions to

be considered by the regression search, since a new action isconsider the set-level heuristic in the context of the robot

introduced into a level only if all of its preconditions appear example in previous section. In the planning graph, the sub-

in the previous level and are non-mutexed, and all actiongoal key(2,2) first comes into the planning graph at the level

presentin a level are also presentin the next level. 6, however at that level this subgoal is mutexed with another
subgoal at(0,0), and the planning graph has to be expanded
4 Extracting heuristics from planning graph 4 more levels until both subgoals are present and non-mutex.

o . o Thus the cost estimate yielded by this heuristic is 10, which
Before we go on to describing a set of effective heuristics exis exactly the true cost achieving both subgoals.

tracted from the planning graph, let us briefly describe how | s easy to see that set-level heuristiamissible Sec-

these heuristics are used and evaluated. All the heuristic&no”y it can be significantly more informed than theax
extracted from the planning graph as well as the HSP-R'syo ristic because the max heuristic is only equivalent to the
sum heuristic are plugged into tiameregression search en- |eyg| that a single proposition first comes into the planning
gine using a variation of A* search’s cost functigS) = graph. Thirdly, a by-product of the set-level heuristic is that it
9(S) +w*h(S). _ _ _already subsumes much of the static mutex information used

We tested the heuristics on a variety of planning domainsyy, the’Sum Mutex heuristic. Moreover, the propagated mu-
These include several well-known benchmark domains sucfgyes in the planning graph wind up being more effective in
as the blocksworld, rocket, logistics, 8-puzzle, gripper, mySyetecting static mutexes that are missed by HSP-R. In the
tery, grid and travel. Some of these were used in the AIPS-98ntext of the robot example, HSP-R can only detect that a
competition[16]. These domains are believed to representopot cannot be at squares adjacent to its current square, but
different types of planning difficulty. Problems in the rocket, sing planning graph, we are able to detect that the robot can-
logistics and gripper domains are typical of those where thg gt pe at any square other than its current square.

subgoals are relatively independent. The grid, travel and Table 1 and 2 show that the set-level heuristic performs rea-
mystery domains add to logistic domains the hardness of thg 1\ \vell in domains such as grid, mystery, travel and 8-
“topological” combinatorics, while the blocksworld and 8- ' '

puzzle domains also have very rich interactions between ac-

tions and subgoal sequencing. !See[14] for the role ofw in BFS.

Problem| sum-mutex| set-lev| adj-sum interesting. We find out that this knowledge may be largely
bw-large-c| >500000 | >500000| 8224 domain-dependent. For example, for= 1, the partition-
rocket-ext-a 769 | >500000 658 1 heuristic exhibits similar behavior comparedstam-mutex
ait-log-a 2978 | >500000] 2224 heuristic in domains where the subgoals are fairly indepen-
8p?12§|5§£ 1233 >5gggg(l) 1218 dent (e.g gripper, logistics, rocket), and it is clearly better than
8puzzle3 5899 1047 1364 sum-mutex in all other domains except the blocks world (see
fravel-1 4122 25 20 table 2). o
grid3 | >200000 29 1151 Fork = |S], we have theset-leveheuristic, which is very
grid4 | >200000 iz 1148 good in a complementary set of domains, compared with the
aips-gridl| >200000 108 835 sum-mutex heuristic. -
mprime-1| _>500000 125 96 For k = 2, we implemented a simple pairwise partition

Table 1: Number of nodes (states) generated by different heuris-SChem.e as follows: The bas[q idea is, in order to a\(0|d un-
tics, excluding those pruned by mutex computation derestimating, we put propositions of greatest levels into dif-

ferent partitions. Given a s& = {p1, p2, ..., pn}. Suppose

puzzlé compared to the standard GraphplaMany ofthese lev(p1) < lev(pz) < ... < lev(py). We partition
problems prove intractable for HSP-R's sum-mutex heuristic.S = {p1,pn} U {p2,pn—1} U ... U{P[(n—1)/2], P[(n+1)/2)]}-
We attribute this performance of the set-level heuristic to thexs Taple 2 shows, the resulting heuristic exhibits interest-
way the negative interactions between subgoals are accountggy pehavior: It can solve many problems that are either in-
for by the level information. o _ tractable by thesum heuristior theset-level heuristic
Interestingly, the set-level heuristic fails in the domains that |t \ould be interesting to have a fuller account of behavior
the sum heuristidypically does well, such as rocket world of the family ofpartition-k heuristicsvith respect to different
and logistics, where the subgoals are fairly independent orohlem domains. Another related idea is to consider “adap-
each other. Closely examining the heuristic values revealgye partition” heuristics that do not insist on equal sized par-
ten underestimates the real cost in these domains. A relatgghq only if they are mutexes in the planning graph. We intend
problem is that the range of numbers that the cost of a set g, pursue these ideas in future work.
propositions can take is limited to integers less than or equal] o
to the length of the planning graph. This range limitation4-1.2 Adjusted Sum Heuristics o o
leads to a practical problem as these heuristics tend to atta¢ffe now consider improving the sum heuristic by considering
the same numerical cost to many qualitatively distinct state€?0th negative and positive interactions among propositions.
forcing the search to resort to arbitrary tie breaking. irst of aII_, it is simple to embed _the sum heuristic value into
To overcome these limitations, we pursue two families ofthe planning graph. We maintain a cost value for each new
heuristics derived by generalizing the set-level heuristic. Th@roposition. Whenever a new action is introduced into the
first family, called “partition-k” heuristics, attempt to improve Planning graph, we update the value for that proposition using
the estimate of the cost of a set in terms of costs of its partith€ same updating rule 1 in Section 2.
tions. The second family, called “adjusted sum” heuristics We are now interested in estimating the castt(S) for
attempt to improve the sum heuristic by considering the in2chieving a setS = {pi,ps,...,pn}. As before, suppose
teractions among subgoals. These are described in the nége(p1) < lev(pz) < ... < lev(p,). Under the assumption

two subsections. that all propositions are independent, we havel(S) :=
N o cost(S — p1) + cost(pr). Sincelev(pr) < lev(S — p1),
4.1.1 Partition-k heuristics propositionp; is possibly achieved before the s&t— p;.

To avoid underestimating and at the same time keep track dflow, we assume that there are still no positive interactions,
the interaction between subgoals, we want to partition the sdfut there are negative interactions between the propositions.
S of propositions into subsets, each of which kadements: Therefore, upon achieving — p;, subgoalp; may have

S =51 US,...USy, (if k£ does not divideS|, one subset will been deleted and needs to be achieved again. This infor-
have less thai elements). Ideally, we want a partitioning mation can be extracted from the planning graph. Accord-
such that elements within each subSetnay be interacting ing to the planning graph, s&t — p; and S are possibly
with each other, but the subsets are independent of each othachieved at levelev(S — p;) and levellev(S), respectively.
Thus we have the following heuristic: If lev(S — p1) # lev(S) that means there is some interac-
Heuristic 5 (Partition-k heuristic) h(S) = ¥ lev(S)), tion between achievin§ — p; and achieving,, because the

i o planning graph has to expand upltw(S) to achieve both
wheres, ..., Sm are k-sized partitions of. S — p; andp;. To take this negative interaction into account,

The quesjion of deciding the partioning paramét,eanpl we assign:
how to partition the sef whenl < k < [S|, however,is .st(S) := cost(S —p1) +cost(p1)+ (lev(S) —lev(S —p1))
(2)

28puzzle-1, 8puzzle-2 and 8puzzle-3 are two hard and one eas . .
eight puzzle problems of solution length 31, 30 and 20, respectively, pplyl.ng this formula toS — py, S — p1 — p» and so on, we
Grid3 and grid4 are simplified from the grid problem at AIPS-98 erve.
competitions by reducing number of keys and grid’s size. cost(S) :== Z cost(p;) + lev(S) — lev(py)

3Graphplan implemented in Lisp by M. Peot and D. Smith. pi€S

| Problem]| Graphplan]] Sum-mutex]| set-lev | partition-1] partition-2 | adj-sum | combo| adj-sum2]
bw-large-b[| 18/379.25]] 18/132.50]] 18/10735.48 - 18/79.18] 22/65.62] 22/63.57] 18/87.11
bw-large-c - - - - - | 30/724.63| 30/444.79| 28/738.00
bw-large-d - - - - - - - | 36/2350.71
rocket-ext-a - 36/ 40.08 - 32/4.04 32/10.24 40/6.10 34/ 4.72 40/ 43.63
rocket-ext-b - 34/ 39.61 - 32/4.93 32/10.73| 36/14.13 32/7.38| 36/554.78
att-log-a - 69/ 42.16 - | 65/10.13 - | 63/16.97| 65/11.96 56/36.71
att-log-b - 67/56.08 - | 69/20.05 - | 67/32.73] 67/19.04 61/53.28
gripper-20 - 59/ 90.68 - | 59/39.17 - | 59/20.54| 59/20.92 59/38.18
8-puzzlel|| 31/2444.22| 33/196.73| 31/4658.87| 35/80.05| 47/172.87| 39/78.36| 39/119.54| 31/ 143.559
8-puzzle2|| 30/ 1545.66| 42/224.15|] 30/2411.21| 38/96.50| 38/105.40| 42/103.70| 48/50.45| 30/348.27
8-puzzle3 20/50.56|| 20/202.54 20/68.32| 20/ 45.50 20/54.10| 24/77.39| 20/63.23 20/ 62.56
travel-1 9/0.32 9/5.24 9/0.48 9/0.53 9/0.62 9/0.42 9/0.44 9/0.53
grid3 16/ 3.74 - 16/14.09| 16/55.40 16/46.79| 18/21.45| 19/18.82 16/ 15.12

grid4 18/21.30 - 18/32.26| 18/86.17| 18/126.94| 18/37.01| 18/37.12 18/ 30.47
aips-grid1 || 14/311.97 - 14/659.81| 14/870.02| 14/1010.80| 14/679.36| 14/640.47| 14/739.43
mprime-1 4/17.48 - 4/743.66| 4/78.730 4/ 622.67 4/76.98 4/79.55 4/ 722.55

Table 2: Number of actions/ Total CPU Time in seconds. The dash (-) indicates that no solution was found in 3 hours or 250MB.

Sincelev(p,) = maxy,cs lev(p;) as per our setup, we have (assuming unit cost for the selected actia)
the following heuristic: costy(S) := 1+ costp(S + Prec(as) — Add(as)) (3)

Heuristic 6 (Adjusted-sum heuristic) The positive interactions are accounted for by this regres-
h(S) ==X, cs cost(p;) + lev(S) — maxy,es lev(p;) sion in the sense that by subtractidgid(as) from S, any
' . o proposition that is co-achieved wher is achieved is not

Tqble 1 and 2 show that this heuristic does very yvell acrosgounted in the cost computation. Sinke(Prec(as)) is
all different types of problems that we have considered. Tastrictly smaller thariev(ps), recursively applying equation 3
understand the robustness of the heuristic, notice that the firgj jts right hand side will eventually reduce to statewhere
term in its formula} is exactly theumhe_uristic value3 while lev(Sp) = 0, whose costost,(Sp) is O.
the second term is theet-level heuristicand the thirdap- It is interesting to note that the repeated reductions in-

proximatelythe maxheuristic. Therefore, we have volved in computing-ost,(S) indirectly extract a sequence
of actions (thezs selected at each reduction), which would
hadjsum(S) ~ hsum(S) + hlev (S) - hmam(s) (S)

have ach_ievgd the sét from the initial state if 'gher_e were
Itis simple to see that when there is strictly no negative inter’© Negative interactions. In this sensest,(:5) is similar
actions among propositionsie, (S) = hmae(S). Thus, in in spirit to (and is inspired by) the “relaxed plan” heuristic
the formula forfagisum (S), hsum(S) is the estimated cost €CENtly proposed by Hoffmésl.

of achievingS under theindependencassumption, while R€PIACING sun () with cost,(S) in the definition of
hieo(S) — hmas (S) accounts for the additional cost incurred adjsum, We get an improved version of adjusted sum heuris-
by thenegativenteractions. tic that takes into account both positive and negative interac-

Note that the solutions solved by adjusted sum are IongetrlonS among propositions.

than those provided by other heuristics in many problemsHeuristic 7 (Adjusted-sum2 heuristic)
The reason for this is that the first terd,,,(S) = h(S) = cost,(S) + (lev(S) — maxy, eslev(pi)), where
3" .es cost(p;) actually overestimates, because in many do<ost,(S) is computed using equation (3).
mains achieving some subgoal typically also helps achieve Table 2 shows that adjusted-sum2 heuristic can solve all
others. We are interested in improving th€justed-sum types of problem considered. The heuristic is only slightly
heuristic by replacing the first term in its formula by an- worse compared with the adjusted-sum in term of speed, but
other estimatiorost, (S) that takes into account this type of gives a much better solution quality. In our experiments, with
positiveinteractions while ignoring the negative interactionsthe exception of problems in the rocket domains, the adjusted-
(which are anyway accounted for by other two terms). sum2 heuristic value is usually admissible and often gives op-

Since there are no negative interactions, once a subgoal iénal or near optimal solutions.
achieved, it will never be deleted again. Furthermore, the or- Finally, another way of viewing the adjusted-sum heuristic
der of achievement of the subgoalsc S would be roughly is that, it is composed df;.,,,, (S), which is good in domains
in the order oflev(p;). Let ps be the proposition irf such ~ Where subgoals are fairly independent, and (), which is
thatlev(ps) = max,,cs lev(p;). ps will possibly be the last good in a complement set pf domains (see_ tab[e 2). Thus the
proposition that is achieved ifi. Letas be an action in the summation of them may yield a combination dfferential
planning graph that achieves in the levellev(ps), where — power effective in wider range of problems, while discarding
ps first appears. (If there are more than one, none of therthe third termh,,,,,.(S) may sacrifice the solution quality.
would be noop actions, and we would select one randomly.) Heuristic 8 (Combo heuristic)

By regressingS over actionag, we have stateS + h(S) := hsum(S) + hiev(S), Where hgy,, (S) is the sum
Prec(as) — Add(as). Thus, we have the recurrent relation heuristic value and,., (.5) is the set-level heuristic value.

Problem | Len - ma¥ = Set-le¥el Ewl meTmO GP Problem | Normal PG| Bi-level PG || Speedup
st Ime st ime st ime
Bpuzzle-1| 31 — | 14 | 4658 | 28 | 1801 || 2444 bw-large-b | 22/ 63.57 28/ 20.05 e
Bpuzzle2| 30 | 10 T 22111 28 891 || 1545 bw-large-c | 30/ 444.79 38/ 114.88 4x
8puzzle-3| 20 8 144 | 10 68 | 19 50 50 bw-large-d - | 44/11442.14 100x
bw-large-a | 12 6 34 8 21 | 12 16 14 rocket-ext-a 34/4.72 34/1.26 4x
bw-large-b 18 8 - 10 10735 16 1818 433 rocket-ext-b 32/7.38 34/ 1.65 %
bwlargec| 28 | 12 - 14 - [20 - -
I e ETR I W o e B attloga| 65/11.96 6412.27 Bx
gridd | 18 | 10 33 | 18 30 | 18 22 72 att-log-b 67/ 11.09 70/ 3.58 3x
rocket-ext-a - 5 - 6 -1 - - gripper-20| 59/ 20.92 59/7.26 3X
Table 3: Column titled “Len” shows the length of the found op- 8puzzle-1| 39/119.54] 39/20.20 6x
timal plan (in number of actions). Column titled “Est” shows the 8puzzle-2| 48/50.45 48/7.42 7X
heuristic value the distance from the initial state to the goal state. 8puzzle-3| 20/63.23] 20/10.95 6x
Column titled “Time” shows CPU time in seconds. “GP” shows the travel-1 9/0.44 11/0.12 4x
CPU time forSerial Graphplan grid-3 19/ 18.82 17/3.04 6X
grid-4 18/ 37.12 18/ 14.15 3x
Surprisingly, as shown in table 2 the Combo heuristic is even aips-grid-1| 14/640.47] 14/163.01 4x
slightly faster than adjusted-sum heuristic across all type of mprime-1 4/79.55 4/67.75 1x

problems while the solution quality remains comparable. Table 4: Total CPU time improvement from efficient heuristic

o)) o computation fotCombo heuristic
4.2 Finding optimal plans with admissible

heuristics we expand the planning graph to next level.

We now focus on admissible heuristics that can be used to Table 3 shows the performance of the set-level heuristic

: " L ; using a planning graph adorned with learned memos. We
produce optimal plans. Traditionally, efficient generation Ofnote that the heuristic value (of the goal state) as computed by

gggmfﬂn?tlar}i[g]aliaﬁgﬁgﬁ]dpgttgte aa}ttpegitrl]c;gulp thtgte Gefgr?_mgthis heuristic is significantly better than the set-level heuris-
Y. o ic operating on the vanilla planning graph. For example in

plan algorithm is guaranteed to find optimal plans when the; uzzle2, the normal set-lev heuristic estimates the cost to
planning graph serial. In contrast, none of the known eﬁidenac%ieve th'e goal as 12, while using memos pushes the cost to
state space plannelis7; 3; 2; 20 can guarantee optimal so- 28, which is quite close to the true optimal value of 30. This

lutions. : ; X ;
improved informedness results in a speedup in all problems

In fact, it is very hard to find an admissible heuristic that X . :
is effective enough to be useful across different planning dol/® considered (up to 3x in the 8-puzzle2, 6x in bw-large-b),

mains. As mentioned earlier, [13], Bonet et al. introduced gvgnbaftsr ad(;lling thﬁ time for memo computation using lim-
X - X - .~ ited backward search.

the max heuristichat is admissible. In the previous section, :

we introduced theset-levelheuristic that is admissible and h \We glso (.:?]mrf) ared_ tlhg perr:‘olrmancr? %f tlh c twodset-level

showed that it is significantly better than the max heuristic, euristics with the serial Graphplan, which also produces op-

We tested the set-level heuristic on a variety of domains ugimal plans. The set-level heuristic is better in the 8-puzzle

ing A* search’s cost functiorf (S) = g(S) + h(S). The re- problems, but not as good in the blocks world problems (See

sults are shown in table 3, and clearly establish that :set-levé"flble 3). Further analysis is needed to explain these resuits.
heuristic is significantly more effective than max heuristic. . .
Grid, travel, mprime are domains where the set-level heuris® Discussion on related work
tic gives very close estimates (see table 2). Optimal searclihere are a variety of techniques for improving the effi-
is less effective in domains such as the 8-puzzle and blocksiency of planning graph construction in terms of both time
world problem. Domains such as logistics, gripper remairand space, including bi-level representations that exploit the
intractable under reasonable limits in time and memory. structural redundancy in the planning grajdtt], as well
The main problem once again is that the set-level heuristias (ir)relevance detection techniques such as HFgDthat
still hugely underestimates the cost of a set of propositionggnore irrelevant literals and actions while constructing the
The reason for this is that there are mamgiry(n > 2) level- planning graph. These techniques can be used to improve the
specificmutex constraints present in the planning graph, thatost of our heuristic computation. In fact, in one of our re-
are never marked during planning graph construction, andent experiments, we have used a bi-level planning graph as a
thus cannot be used by set-level heuristic. This suggests thaasis for our heuristics. Preliminary results show significant
identifying and using higher-level mutexes can improve thespeedups (up to 7x) in all problems, and we are also able to
effectiveness of the set-level heuristic. solve more problems than before because our planning graph
Propagating all higher level mutexes is likely to be an in-takes less memory (See table 4).
feasible ided[1; 9 (as it essentially amounts to full con- The set of mutex constraints play very important role in
sistency enforcement of the underlying CSP). A seeminglymproving the informedness of our graph-based heuristics.
zanier idea is to use a limited run of Graphplan’s own back-The level-specifianutexes can be used to give finer (longer)
ward search, armed with EHI11], to detect higher level mu- distance estimates, whiktaticmutexes help prune more in-
texes in the form of “memos”. We have done this by restrict-valid and/or unreachable states. Thus, our heuristics can be
ing the backward search to a limited number of backtracksmproved by detecting more mutexes. Indeed, more level-
lim = 1000. Thislim can be increased by a facter> 1 as specific mutexes can be discovered through more sophisti-

cated mutex propagation ruledl , while binary and/or higher in a systematic fashion.
order static mutexes can be discovered using a variety of difAcknowledgements.We thank Minh B. Do, Biplav Srivas-
ferent techniqud§; 21; 4. tava, Romeo S. Nigenda, Hector Geffner and loannis Refani-
Several researchef8; 20 have considered thpositive dis for helpful discussions and feedbacks. Thanks are also
interactions while ignoring the negative interactions amonglue to Terry Zimmerman for providing with us his fast bi-
subgoals to improve the heuristics in many problem domaindevel planning graph expansion code. This research is sup-
Hoffman [8] uses the length of the first relaxed plan foundported in part by NSF young investigator award (NYI) IRI-
in a relaxed planning graph (without mutex computation) a9457634, ARPA/Rome Laboratory planning initiative grant
the heuristic value. Refanidig0] essentially extracts the co- F30602-95-C-0247, Army AASERT grant DAAH04-96-1-
achieveness relation among subgoals from the first relaxe@247, AFOSR grant F20602-98-1-0182 and NSF grant IRI-
plan to account for the positive interactions. These heuris9801676.
tics were reported to provide both significant speedups and
improved solution quality. References
Concomitant with our work, Haslum & Geffnd7] con- [1] A.Blumand M.L. Furst. Fast planning through planning graph
sidered computing admissible state space heuristic based on analysis.Artificial Intelligence 90(1-2). 1997.

dynamic programming approach. Interestingly, their most ef{5] g ponet and H. Geffner. Planning as heuristic search: New
fective max-paiteuristic is closely related to our admissible results. InProc. ECP-991999.

Set-lgvel heuristic. Spe_cifically, the heuri_Sti.C value uDdaﬁnqS] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action
rule in max-pair heuristic has an effect similar to that of the™ ™ sgjection mechanism for planning. Rtoc. AAAI-97 1997.

ml'J:tiG;‘]X ﬁrosvagatlr?n F:,lrgcfddur%m tri]rs ptlk?nrrl:ngr?rt?ph. xtract &4] M. Do, S. Kambhampati and B. Srivastava. Investigating the
ally, we concentrated on using the heuristics extracte effect of relevance and reachability constraints on SAT encod-

from the planning graph to drive a state search procedure. In ings of planning. To appear KIPS-20002000.
contrast[12] considers the possibility of using such heuris- 5

tics to drive Graphplan’s own backward search. Their result‘l,
show that some of the same ideas can be used to derive effe[%]
tive variable and value ordering strategies for Graphplan.

M. Fox and D. Long. Automatic inference of state invariants
in TIM. JAIR Vol. 9. 1998.
A. Gerevini and L. Schubert. Inferring state constraints for
domain-independent planning. Rroc. AAAI-98 1998.

: [71 P.Haslum and H. Geffner. Admissible Heuristics for Optimal
6 Qonclusmn . Planning. To appear IAIPS-20002000.
In this paper, we showed that the planning graph StrUCturﬁE}] J. Hoffman. A Heuristic for Domain Independent Planning
used by Graphplan provides a rich source of effective as we and its Use in an Enforced Hill-climbing Algorithm. Technical
as admissible heuristics. We described a variety of heuristic ~ Report No. 133, Albert Ludwigs University.
families, that use the planning graph in different ways to €s{g] 5. kambhampati, E. Lambrecht, and E. Parker. Understanding
timate the cost of a set of propositions. Our empirical studies = and extending graphplan. Rroc. ECP-971997.
show that many of our heuristics have attractive tradeoffs iy,]

. . . e . 0 S. Kambhampati. Challenges in bridging plan synthesis
comparison with existing heuristics. In particular, we pro- paradigms. IrProc. IJCAI-97 1997.

vided three heuristics—"adjusted-sum’, “adjusted-sum2”ang 1 g mphampati. EBL & DDB for GraphplarProc. 1JCAI-

combo” that are clearly superior to the sum mutex heuristic 99.1999

used by HSP-R across a large range of problems, includin
. J . 5 2] S. Kambhampati and R.S Nigenda. Distance based goal order-

those that have hither-to been intractable for HSP-R. Stat@ ing heuristics for Graphplan. To appearAtPS-20002000.

search planners using these heuristics out-perform both HSP- o _ _

R and Graphplan. We are also one of the first to focus on findL3 fR' Korf anld LI ITDaylorAi'R?'gg fgé'éna' solutions to the twenty-

ing effectiveand admissible heuristics for state search plan- ~_ 'oUf puzzi€. In=roc. AAALZR 556. _

the normal planning graph, or a planning graph adorned with 62:41-78, 1993. o _

a limited number of higher level mutexes is able to providel15 D. Long and M. Fox. Efficient implementation of the plan

quite reasonable speedups while guaranteeing admissibility. ~ 9raph in STAN.JAIR 10(1-2) 1999.

Our approach provides an interesting way of incorporat{1€] D. McDermott. Aips-98 planning competition results. 1998.
ing the strength of two different planning regimes (disjunc-[17] D. McDermott. Using regression graphs to control search in
tive vs. conjunctive searcld and views (planning as CSP planning. Artificial Intelligence 109(1-2):111-160, 1999.
vs. planning as state search) that have hither-to been consigg] B. Nebel, Y. Dimopoulos and J. Koehler. Ignoring irrelevant
ered orthogonal. We use the efficient directed consistency en- facts and operators in plan generatiéttoc. ECP-97
forcement provided by the .Graphplan’S planning _graph CONf19] N. Nilsson. Principles of Artificial Intelligence Tioga, 1980.
struction to develop heuristics capable of accounting for suby. I tanidi d lah . A domain ind q

| interactions. We then use the heuristics to guide a sta{éo | Refanidis and |. Viahavas. GRT: A domain independent

goa ; : . heuristic for strips worlds based on greedy regression tables.
search engine. In contrast to Graphplan, our approachis able |, pyoc. ECP-991999.

to avoid the costly CSP-style searches in the non-solutio 1] J. Rintanen. An iterative algorithm for synthesizing invariants
bearing levels of the planning graph. In contrast to HSP- y y g y 9 '

. . . To appear irAAAI-200Q 2000.

and UNPOP, our approach is able to provide much more in: 3 D. Weld. R q i ai planni ine1999
formed heuristics that take subgoal interactions into accourlgd D- Weld. Recent advances in ai plannirg.magazine)

