
Extracting Effective and Admissible State Space Heuristics
from the Planning Graph

XuanLong Nguyen�& Subbarao Kambhampati
Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

Email: fxuanlong,raog@asu.edu

Abstract

Graphplan and heuristic state space planners such as
HSP-R and UNPOP are currently two of the most effec-
tive approaches for solving classical planning problems.
These approaches have hither-to been seen as largely or-
thogonal. In this paper, we show that the planning graph
structure that Graphplan builds in polynomial time, pro-
vides a rich substrate for deriving more effective heuris-
tics for state space planners. Specifically, we show that
the heuristics used by planners such as HSP-R and UN-
POP do badly in several domains due to their failure to
consider the interactions between subgoals, and that the
mutex information in the planning graph captures exactly
this interaction information. We develop several families
of heuristics, some aimed at search speed and others at
optimality of solutions. Our empirical studies show that
our heuristics significantly out-perform the existing state
space heuristics.

1 Introduction
The last few years have seen a number of attractive and
scaleable approaches for solving deterministic planning prob-
lems. Prominent among these are “disjunctive” planners, ex-
emplified the Graphplan algorithm of Blum & Furst[1], and
heuristic state space planners, exemplified by McDermott’s
UNPOP [17] and Bonet & Geffner’s HSP-R planners[3;
2]. The Graphplan algorithm can be seen as solving the plan-
ning problem using CSP techniques. A compact CSP encod-
ing of the planning problem is generated using a polynomial-
time datastructure called “planning graph”[9]. On the other
hand, UNPOP, HSP, HSP-R are simple state space planners
where the world state is considered explicitly. These planners
rely on heuristic estimators to evaluate the goodness of chil-
dren states. As such, it is not surprising that heuristic state
search planners and Graphplan-based planners are generally
seen as orthogonal approaches[22].

In UNPOP, HSP and HSP-R, the heuristic can be seen as
estimating the number of actions required to reach a state (ei-
ther from the goal state or the initial state). To make the com-
putation tractable, these heuristic estimators make strong as-
sumptions about the independence of subgoals. Because of
these assumptions, state search planners often thrash badly in

�Copyright c
2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

problems where there are strong interactions between sub-
goals. Furthermore, these independence assumptions also
make the heuristics inadmissible, precluding any guarantees
about the optimality of solutions found. In fact, the authors
of UNPOP and HSP/HSP-R planners acknowledge that tak-
ing the subgoal interactions into account in a tractable fashion
to compute more robust and/or admissible heuristics remains
a challenging problem[17; 3].

In this paper, we show that the planning graph datastructure
computed in polynomial-time as part of the Graphplan algo-
rithm, provides a general and powerful basis for the derivation
of state space heuristics that take subgoal interactions into ac-
count. In particular, the so-called “mutex” constraints of the
planning graph provide a robust way of estimating the cost
of achieving a set of propositions from the initial state. The
heuristics derived from the planning graph are then used to
guide state space search on the problem, in a way similar to
HSP-R[2]. Note that this means we no longer use Graph-
plan’s exponential time CSP-style solution extraction phase.

We will describe several families of heuristics that can be
derived from the planning graph structure and demonstrate
their significant superiority over the existing heuristic estima-
tors. We will provide results of empirical studies establishing
that state space planners using our best heuristics easily out-
perform both HSP-R and Graphplan planners. Our develop-
ment focuses both on heuristics that speedup search without
guaranteeing admissibility (such as those currently used in
HSP-R and UNPOP), and on heuristics that retain admissi-
bility and thus guarantee optimality. In the former case, we
will show that our best heuristic estimators are more robust
and are able to tackle many problem domains that HSP-R
does poorly (or fails), such as the grid, travel, and mystery
domains used in the AIPS-98 competition[16].

While our empirical results are themselves compelling, we
believe that the more important contribution of our work is the
explication of the way in which planning graph can serve as a
rich basis for derivation of families of heuristic estimators. It
is known in the search literature that admissible and effective
heuristics are hard to compute unless the interactions between
subgoals are considered aggressively[13]. Our work shows
that planning graph and its mutex constraints provide a pow-
erful way to take these interactions into account. Since mutex
propagation can be seen as a form of directed partial consis-
tency enforcement on the CSP encoding corresponding to the

From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

planning graph, our work also firmly ties up the CSP and state
search views of planning.

The rest of the paper is organized as follows. Section 2
reviews the HSP-R planner and highlights the limitations of
its “sum” heuristic. These limitations are also shared to a
large extent by other heuristic state search planners such as
UNPOP. Section 3 discusses how the Graphplan’s planning
graph can be used to measure the subgoal interactions. Sec-
tion 4 is the heart of the paper. It develops several families of
heuristics, some aimed at search speed and some at solution
optimality. Each of these heuristic families are empirically
evaluated in comparison to HSP-R heuristic and their relative
tradeoffs are explicated. Section 5 discusses the related work,
and section 6 summarizes the contributions of our work.

2 Limitation of the HSP-R’s sum heuristic
HSP-R[2] is currently one of the fastest heuristic state search
planners. It casts planning as search through theregression
spaceof world states[19]. In regression state space search,
the states can be thought of as sets ofsubgoals. The heuristic
value of a stateS is the estimated cost (number of actions)
needed to achieveS from the initial state. It is important to
note that since the cost of a stateS is computed from the
initial state and we are searching backward from the goal
state, the heuristic computation is done only once for each
state. Then, HSP-R follows a variation of A* search algo-
rithm, calledGreedy Best First, which uses the cost function
f(S) = g(S) + w � h(S), where g(S) is the accumulated
cost (number of actions when regressing from goal state) and
h(S) is the heuristic value of stateS.

The heuristic is computed under the assumption that the
propositions constituting a state are strictly independent.
Thus the cost of a state is estimated as the sum of the cost
for each individual proposition making up that state.

Heuristic 1 (Sum heuristic) h(S) :=
P

p2S h(p)

The heuristic costh(p) of an individual propositionp is
computed using a iterative procedure that is run to fix point
as follows. Initially, each propositionp is assigned a cost
0 if it is in the initial stateI , and1 otherwise. For each
instantiated actiona, letAdd(a), Del(a) andPrec(a) be its
Add, Delete and Precondition lists. For each actiona that
adds some propositionp, h(p) is updated as:

h(p) := minfh(p); 1 + h(Prec(a))g (1)

Whereh(Prec(a)) is computed using the sum heuristic
(heuristic 1). The updates continue until the h values of all
the individual propositions stabilize. This computation can
be done before the backward search actually begins, and typ-
ically proves to be quite cheap.

Because of the independence assumption, the sum heuristic
turns out to be inadmissible (overestimating) when there are
positive interactions between subgoals (i.e achieving some
subgoal may also help achieving other subgoals), and less
informed (significantly underestimating) when there are neg-
ative interactions between subgoals (i.e achieving a subgoal
deletes other subgoals). Bonet and Geffner[2] provide two
separate improvements aimed at handling these problems to

a certain extent. Their simple suggestion to make the heuris-
tic admissible is to replace the summation with the “max”
function.

Heuristic 2 (Max heuristic) h(S) := maxp2S h(p)

This heuristic, however, is often much less informed than
the sum heuristic as it grossly underestimates the cost of
achieving a given state.

To improve the informedness of the sum heuristic, HSP-R
adopts the notion of mutex relations first originated in Graph-
plan planning graph. But unlike Graphplan, onlystatic propo-
sitional mutexes(aka binary invariants) are computed. Two
propositionsp andq form a static mutex when they cannot
both be present in any state reachable from the initial state.
Since the cost of any set containing a mutex pair is infinite,
we define a variation of the sum heuristic called the “sum
mutex” heuristic as follows:

Heuristic 3 (Sum Mutex heuristic)
h(S) :=1 if 9p;q2S s:t: mutex(p; q) else

P
p2S h(p)

In practice, the Sum Mutex heuristic turns out to be much
more powerful than the sum heuristic and HSP-R implemen-
tation uses it as the default.

Before closing this section, we provide a brief summary of
the procedure of computing mutexes used in HSP-R[2]. The
basic idea is to start with a large set of “potential” mutex pairs
and iteratively weed out those pairs that cannot be actually
mutex. The setM0 of potential mutexes is union of setMA

of all pairs of propositionshp; qi, such that for some actiona
in A, p in Add(a) andq in Del(a), and setMB of all pairs
hr; qi, such that for somehp; qi in MA and some actiona, r in
Prec(a) andp in Add(a). This already precludes from con-
sideration potential mutexeshr; si, wherer ands are not in
the add, precondition and delete lists of any single action. As
we shall see below, this turns out to be an important limitation
in several domains.

2.1 A pathological example that showcases the
limitations of sum mutex heuristic

Thesum mutex heuristicused by HSP-R, while shown to be
powerful in domains where the subgoals are relatively inde-
pendent such as logistics and gripper domains[2], thrashes
badly in problems where there is rich interaction between ac-
tions and subgoal sequencing. Specifically, when a subgoal
that can be achieved early but that must be deleted much later
when other subgoals are achieved, the sum heuristic is un-
able to recognize this interaction. To illustrate this, consider a
simple problem from the grid domain[17] shown in Figure 1:
Given a 3x3 grid. The initial state is denoted by two propo-
sitions at(0,0) and key(0,1) and the goal state is denoted by 2
subgoals at(0,0) and key(2,2) (See figure 1). Notice the sub-
goal interaction here: When key(2,2) is first achieved, at(0,0)
is no longer true. There are three possible actions: the robot
moves from one square to an adjacent square, the robot picks
up a key if there is such a key in the square the robot currently
resides, and the robot drops the key at the current square. One
obvious solution is: The robot goes from (0,0) to (0,1), picks
up the key at (0,1), moves to (2,2), drops the key there, and

(a) Grid Problem

Key(2,2), At(0,0)Key(2,2), At(0,0)

Goal state (6)Goal state (6)

Drop_key(2,2)Drop_key(2,2) Move(0,1,0,0)Move(0,1,0,0) Move(1,0,0,0)Move(1,0,0,0)

At(2,2), At(0,0),At(2,2), At(0,0),
Have_keyHave_key

Key(2,2), At(1,0)Key(2,2), At(1,0)Key(2,2), At(0,1)Key(2,2), At(0,1)

(6)(6) (7)(7) (7)(7)

(b) Regression Search

Figure 1: A simple grid problem and the first level of regres-
sion search on it.

finally moves back to (0,0). This is in fact the optimal 10-
action plan. We have run (our Lisp implementation of) HSP-
R planner on this problem and no solution was found after 1
hour (generating more than 400,000 nodes, excluding those
pruned by the mutex computation). The original HSP-R writ-
ten in C also runs out of memory (250MB) on this problem.

It is easy to see how HSP-R goes wrong. First of all, ac-
cording the mutex computation procedure described above,
we are able to detect that when the robot is at a square, it
cannot be in an adjacent square. But HSP-R’s mutex compu-
tation cannot detect the type of mutex that says that the robot
can also not be in any other square as well (because there is no
single action that can place a robot from a square to another
square not adjacent to where it currently resides).

Now let’s see how this limitation ofsum mutex heuristic
winds up fatally misguiding the search. Given the subgoals
(at(0,0), key(2,2)), the search engine has three potential ac-
tions over which it can regress the goal state (see Figure 1b).
Two of these– move from (0,1) or (1,0) to (0,0)–give the sub-
goal at(0,0), and the third–dropping key at (2,2), which re-
quires the precondition at(2,2)–gives the subgoal key(2,2).
If either of the move actions is selected, then after the re-
gression the robot would be at either (0,1) or (1,0), and that
would increase the heuristic value because the cost of at(0,1)
or at(1,0) is 1 (greater than the cost of at(0,0)). If we pick the
dropping action, then after regression, we have a state that
has both at(0,0) (the regressed first subgoal), and at(2,2) (the
precondition of drop key at (2,2) action). While we can see
that this is an inconsistent state, the mutex computation em-
ployed by HSP-R does not detect this (as explained above).
Moreover, the heuristic value for this invalid state is actually
smaller compared to the other two states corresponding to re-
gression over the move actions. This completely misguides
the planner into wrong paths, from which it never recovers.

HSP-R also fails or worsens the performance for similar
reasons in the travel, mystery, and grid, blocks world, eight
puzzle domains[16].

3 Exploiting the structure of Graphplan’s
planning graph

In the previous section, we showed the type of problems
where ignoring the (negative) interaction between subgoals in
the heuristic often lead the search into wrong directions. On
the other hand, Graphplan’s planning graph, with its weath

At(0,0)

Key(0,1)

At(0,0)

Key(0,1)

At(0,0)

At(0,1)

At(1,0)

key(0,1)

noop

noop

noop

noop

x

Action list
Level 1

Prop list
Level 1

Action list
Level 0

Prop list
Level 0

Move(0,0,0,1)

Move(0,0,1,0)

x

Prop list
Level 2

Move(0,1,1,1)

At(1,1)

At(1,0)

At(0,1)

Move(1,0,1,1)

noop

noop

x

x

x
x

x

x

x
x

…...

x

…...

Pick_key(0,1) Have_key

~Key(0,1)x
x

x

x

x
x

Figure 2: Planning Graph for the 3x3 grid problem

of mutex constraints, contains much of such information, and
can be used to compute more effective heuristics.

Graphplan algorithm[1] works by converting the planning
problem specifications into a planning graph. Figure 2 shows
part of the planning graph constructed for the 3x3 grid prob-
lem shown in Figure 1. As illustrated here, a planning graph
is an ordered graph consisting of two alternating structures,
called “proposition lists” and “action lists”. We start with
the initial state as the zeroth level proposition list. Given a
k level planning graph, the extension of the structure to level
k+1 involves introducing all actions whose preconditions are
present in thekth level proposition list. In addition to the ac-
tions given in the domain model, we consider a set of dummy
“noop” actions, one for each condition in thekth level propo-
sition list (the condition becomes both the single precondition
and effect of the noop). Once the actions are introduced, the
proposition list at levelk + 1 is constructed as just the union
of the effects of all the introduced actions. Planning-graph
maintains the dependency links between the actions at level
k + 1 and their preconditions in levelk proposition list and
their effects in levelk + 1 proposition list.

The critical asset of the planning graph, for our purposes,
is the efficient marking and propagation of mutex constraints
during the expansion phase. The propagation starts at level
1, with the actions that are statically interfering with each
other (i.e., their preconditions and effects are inconsistent) la-
beled mutex. Mutexes are then propagated from this level
forward by using two simple propagation rules: Two propo-
sitions at levelk are marked mutex if all actions at level
k that support one proposition are pair-wise mutex with all
actions that support the second proposition. Two actions
at level k + 1 are mutex if they are statically interfering
or if one of the propositions (preconditions) supporting the
first action is mutually exclusive with one of the proposi-
tions supporting the second action. Figure 2 shows a part
of the planning graph for the robot problem specified in Fig-
ure 1. The curved lines with x-marks denote the mutex rela-
tions. The planning graph can be seen as a CSP encoding[11;
22], with the mutex propagation corresponding to a form of
directed partial 1- and 2-consistency enforcement[11]. The
CSP encoding can be solved using any applicable CSP solv-
ing methods (a special case of which is the Graphplan’s back-
ward search procedure).

Normally, Graphplan attempts to extract a solution from
the planning graph of lengthl, and will expand it to levell+1

only if that solution extraction process fails. Graphplan algo-
rithm can thus guarantee that the solution it finds isoptimal
in terms of number of steps. To make the optimality hold in
terms of number of actions (a step can have multiple actions),
we need to start with a planning graph that isserial [9]. A se-
rial planning graphis a planning graph in which every pair of
non-noop actions at the same level are marked mutex. These
additional action mutexes propagate to give additional propo-
sitional mutexes. A planning graph is said tolevel off when
there is no change in the action, proposition and mutex lists
between two consecutive levels.

Based on the above mutex computation and propagation
rules, the following properties can be easily verified:

1. The number of actions required to achieve a pair of
propositions is no less than the number of proposition lev-
els to be expanded until the two propositions both appear and
arenot mutexin the planning graph.

2. Proposition pairs that remain mutex at the level where
the planning graph levels off can never be achieved starting
from initial state.

3. The set of actions present in the level where the plan-
ning graph levels off contains all actions that are applicable
to states reachable from the initial state.

The three observations above give a rough indication as to
how the information in the planning graph after it levels off,
can be used to guide state search planners. The first obser-
vation shows that the level information in planning graph can
be used to estimate the cost of achieving a set of propositions.
Furthermore, the set oflevel-specificpropositional mutexes
help give a finer distance estimate. The second observation
shows that once the planning graph levels off, all mutexes in
the final level arestaticmutexes. The third observation shows
a way to extract a finer (smaller) set of applicable actions to
be considered by the regression search, since a new action is
introduced into a level only if all of its preconditions appear
in the previous level and are non-mutexed, and all actions
present in a level are also present in the next level.

4 Extracting heuristics from planning graph

Before we go on to describing a set of effective heuristics ex-
tracted from the planning graph, let us briefly describe how
these heuristics are used and evaluated. All the heuristics
extracted from the planning graph as well as the HSP-R’s
sum heuristic are plugged into thesameregression search en-
gine using a variation of A* search’s cost functionf(S) =
g(S) + w � h(S).

We tested the heuristics on a variety of planning domains.
These include several well-known benchmark domains such
as the blocksworld, rocket, logistics, 8-puzzle, gripper, mys-
tery, grid and travel. Some of these were used in the AIPS-98
competition[16]. These domains are believed to represent
different types of planning difficulty. Problems in the rocket,
logistics and gripper domains are typical of those where the
subgoals are relatively independent. The grid, travel and
mystery domains add to logistic domains the hardness of the
“topological” combinatorics, while the blocksworld and 8-
puzzle domains also have very rich interactions between ac-
tions and subgoal sequencing.

Subsection 4.1 is concerned with effective heuristics with-
out consideration of the solution optimality. We setw = 1 in
all experimental results described in this subsection, except
for the parallel domains (e.g rocket, logistics and gripper)
where the heuristics work best (in terms of speed) withw = 5
1. Subsection 4.2 is concerned with improving admissible
heuristics for finding optimal solutions. To make the compar-
isons meaningful, all the planners are implemented in Allegro
commonlisp, and share most of the critical data structures.
The empirical studies are conducted on a 500 MHz Pentium-
III with 512 meg RAM, running Linux. All the times reported
include both heuristic computation time and search time, un-
less specified otherwise.

4.1 Extracting effective heuristics

We are now ready to extract heuristics from the planning
graph. Unless stated otherwise, we will assume that we have
a serial planning graph that has been expanded until it has
leveled off (without doing any solution extraction). In this
section, we will concentrate on the effectiveness, without in-
sisting on the admissibility of the heuristics.

Given a setS of propositions, denotelev(S) as the index
of the first level in theleveled serialplanning graph in which
all propositions inS appear and are non-mutexed with one
another. If no such level exists, thenlev(S) = 1. Similarly,
denotelev(p) as the index of the first level that a proposition
p comes into the planning graph. It takes only a small step
from the observations made in the previous section to arrive
at our first heuristic:

Heuristic 4 (Set-level heuristic) h(S) := lev(S)

Consider the set-level heuristic in the context of the robot
example in previous section. In the planning graph, the sub-
goal key(2,2) first comes into the planning graph at the level
6, however at that level this subgoal is mutexed with another
subgoal at(0,0), and the planning graph has to be expanded
4 more levels until both subgoals are present and non-mutex.
Thus the cost estimate yielded by this heuristic is 10, which
is exactly the true cost achieving both subgoals.

It is easy to see that set-level heuristic isadmissible. Sec-
ondly, it can be significantly more informed than themax
heuristic, because the max heuristic is only equivalent to the
level that a single proposition first comes into the planning
graph. Thirdly, a by-product of the set-level heuristic is that it
already subsumes much of the static mutex information used
by the Sum Mutex heuristic. Moreover, the propagated mu-
texes in the planning graph wind up being more effective in
detecting static mutexes that are missed by HSP-R. In the
context of the robot example, HSP-R can only detect that a
robot cannot be at squares adjacent to its current square, but
using planning graph, we are able to detect that the robot can-
not be at any square other than its current square.

Table 1 and 2 show that the set-level heuristic performs rea-
sonably well in domains such as grid, mystery, travel and 8-

1See[14] for the role ofw in BFS.

Problem sum-mutex set-lev adj-sum
bw-large-c >500000 >500000 8224

rocket-ext-a 769 >500000 658
att-log-a 2978 >500000 2224
gripper 930 >500000 840

8puzzle-2 1399 51561 1540
8puzzle-3 2899 1047 1384

travel-1 4122 25 40
grid3 >200000 49 1151
grid4 >200000 44 1148

aips-grid1 >200000 108 835
mprime-1 >500000 125 96

Table 1: Number of nodes (states) generated by different heuris-
tics, excluding those pruned by mutex computation

puzzle2 compared to the standard Graphplan3. Many of these
problems prove intractable for HSP-R’s sum-mutex heuristic.
We attribute this performance of the set-level heuristic to the
way the negative interactions between subgoals are accounted
for by the level information.

Interestingly, the set-level heuristic fails in the domains that
the sum heuristictypically does well, such as rocket world
and logistics, where the subgoals are fairly independent of
each other. Closely examining the heuristic values reveals
that the set-level heuristic remains too conservative and of-
ten underestimates the real cost in these domains. A related
problem is that the range of numbers that the cost of a set of
propositions can take is limited to integers less than or equal
to the length of the planning graph. This range limitation
leads to a practical problem as these heuristics tend to attach
the same numerical cost to many qualitatively distinct states,
forcing the search to resort to arbitrary tie breaking.

To overcome these limitations, we pursue two families of
heuristics derived by generalizing the set-level heuristic. The
first family, called “partition-k” heuristics, attempt to improve
the estimate of the cost of a set in terms of costs of its parti-
tions. The second family, called “adjusted sum” heuristics
attempt to improve the sum heuristic by considering the in-
teractions among subgoals. These are described in the next
two subsections.

4.1.1 Partition-k heuristics
To avoid underestimating and at the same time keep track of
the interaction between subgoals, we want to partition the set
S of propositions into subsets, each of which hask elements:
S = S1 [S2:::[Sm (if k does not dividejSj, one subset will
have less thank elements). Ideally, we want a partitioning
such that elements within each subsetSi may be interacting
with each other, but the subsets are independent of each other.
Thus we have the following heuristic:

Heuristic 5 (Partition-k heuristic) h(S) :=
P

Si
lev(Si),

whereS1; :::; Sm are k-sized partitions ofS.

The question of deciding the partioning parameterk, and
how to partition the setS when1 < k < jSj , however, is

28puzzle-1, 8puzzle-2 and 8puzzle-3 are two hard and one easy
eight puzzle problems of solution length 31, 30 and 20, respectively.
Grid3 and grid4 are simplified from the grid problem at AIPS-98
competitions by reducing number of keys and grid’s size.

3Graphplan implemented in Lisp by M. Peot and D. Smith.

interesting. We find out that this knowledge may be largely
domain-dependent. For example, fork = 1, the partition-
1 heuristic exhibits similar behavior compared tosum-mutex
heuristic in domains where the subgoals are fairly indepen-
dent (e.g gripper, logistics, rocket), and it is clearly better than
sum-mutex in all other domains except the blocks world (see
table 2).

Fork = jSj, we have theset-levelheuristic, which is very
good in a complementary set of domains, compared with the
sum-mutex heuristic.

For k = 2, we implemented a simple pairwise partition
scheme as follows: The basic idea is, in order to avoid un-
derestimating, we put propositions of greatest levels into dif-
ferent partitions. Given a setS = fp1; p2; :::; png. Suppose
lev(p1) � lev(p2) � ::: � lev(pn). We partition
S = fp1; png [fp2; pn�1g [::: [fp[(n�1)=2]; p[(n+1)=2)]g:

As Table 2 shows, the resulting heuristic exhibits interest-
ing behavior: It can solve many problems that are either in-
tractable by thesum heuristicor theset-level heuristic.

It would be interesting to have a fuller account of behavior
of the family ofpartition-k heuristicswith respect to different
problem domains. Another related idea is to consider “adap-
tive partition” heuristics that do not insist on equal sized par-
titions. For example,p andq are put in the same partition if
and only if they are mutexes in the planning graph. We intend
to pursue these ideas in future work.

4.1.2 Adjusted Sum Heuristics
We now consider improving the sum heuristic by considering
both negative and positive interactions among propositions.
First of all, it is simple to embed the sum heuristic value into
the planning graph. We maintain a cost value for each new
proposition. Whenever a new action is introduced into the
planning graph, we update the value for that proposition using
the same updating rule 1 in Section 2.

We are now interested in estimating the costcost(S) for
achieving a setS = fp1; p2; :::; png. As before, suppose
lev(p1) � lev(p2) � ::: � lev(pn). Under the assumption
that all propositions are independent, we havecost(S) :=
cost(S � p1) + cost(p1). Sincelev(p1) � lev(S � p1),
propositionp1 is possibly achieved before the setS � p1.
Now, we assume that there are still no positive interactions,
but there are negative interactions between the propositions.
Therefore, upon achievingS � p1, subgoalp1 may have
been deleted and needs to be achieved again. This infor-
mation can be extracted from the planning graph. Accord-
ing to the planning graph, setS � p1 and S are possibly
achieved at levellev(S � p1) and levellev(S), respectively.
If lev(S � p1) 6= lev(S) that means there is some interac-
tion between achievingS � p1 and achievingp1, because the
planning graph has to expand up tolev(S) to achieve both
S � p1 andp1. To take this negative interaction into account,
we assign:
cost(S) := cost(S�p1)+cost(p1)+(lev(S)�lev(S�p1))

(2)
Applying this formula toS � p1; S � p1 � p2 and so on, we
derive:

cost(S) :=
X

pi2S

cost(pi) + lev(S)� lev(pn)

Problem Graphplan Sum-mutex set-lev partition-1 partition-2 adj-sum combo adj-sum2
bw-large-b 18/ 379.25 18/ 132.50 18/ 10735.48 - 18/ 79.18 22/ 65.62 22/ 63.57 18/ 87.11
bw-large-c - - - - - 30/ 724.63 30/ 444.79 28/ 738.00
bw-large-d - - - - - - - 36/ 2350.71

rocket-ext-a - 36/ 40.08 - 32/ 4.04 32/ 10.24 40/ 6.10 34/ 4.72 40/ 43.63
rocket-ext-b - 34/ 39.61 - 32/ 4.93 32/ 10.73 36/ 14.13 32/ 7.38 36/ 554.78

att-log-a - 69/ 42.16 - 65/ 10.13 - 63/ 16.97 65/ 11.96 56/36.71
att-log-b - 67/ 56.08 - 69/ 20.05 - 67/ 32.73 67/ 19.04 61/53.28

gripper-20 - 59/ 90.68 - 59/ 39.17 - 59/ 20.54 59/ 20.92 59/38.18
8-puzzle1 31/ 2444.22 33/ 196.73 31/ 4658.87 35/ 80.05 47/ 172.87 39/ 78.36 39/ 119.54 31/ 143.559
8-puzzle2 30/ 1545.66 42/224.15 30/ 2411.21 38/ 96.50 38/ 105.40 42/ 103.70 48/ 50.45 30/ 348.27
8-puzzle3 20/ 50.56 20/ 202.54 20/ 68.32 20/ 45.50 20/ 54.10 24/ 77.39 20/ 63.23 20/ 62.56

travel-1 9/ 0.32 9/ 5.24 9/ 0.48 9/ 0.53 9/ 0.62 9/ 0.42 9/ 0.44 9/ 0.53
grid3 16/ 3.74 - 16/ 14.09 16/ 55.40 16/ 46.79 18/ 21.45 19/ 18.82 16/ 15.12
grid4 18/ 21.30 - 18/ 32.26 18/ 86.17 18/ 126.94 18/ 37.01 18/ 37.12 18/ 30.47

aips-grid1 14/ 311.97 - 14/ 659.81 14/ 870.02 14/ 1010.80 14/ 679.36 14/ 640.47 14/ 739.43
mprime-1 4/ 17.48 - 4/ 743.66 4/ 78.730 4/ 622.67 4/ 76.98 4/ 79.55 4/ 722.55

Table 2: Number of actions/ Total CPU Time in seconds. The dash (-) indicates that no solution was found in 3 hours or 250MB.

Sincelev(pn) = maxpi2S lev(pi) as per our setup, we have
the following heuristic:

Heuristic 6 (Adjusted-sum heuristic)
h(S) :=

P
pi2S

cost(pi) + lev(S)�maxpi2S lev(pi)

Table 1 and 2 show that this heuristic does very well across
all different types of problems that we have considered. To
understand the robustness of the heuristic, notice that the first
term in its formula is exactly thesumheuristic value, while
the second term is theset-level heuristic, and the thirdap-
proximatelythemaxheuristic. Therefore, we have

hadjsum(S) � hsum(S) + hlev(S)� hmax(S)

It is simple to see that when there is strictly no negative inter-
actions among propositions,hlev(S) = hmax(S). Thus, in
the formula forhadjsum(S), hsum(S) is the estimated cost
of achievingS under theindependenceassumption, while
hlev(S)� hmax(S) accounts for the additional cost incurred
by thenegativeinteractions.

Note that the solutions solved by adjusted sum are longer
than those provided by other heuristics in many problems.
The reason for this is that the first termhsum(S) =P

pi2S
cost(pi) actually overestimates, because in many do-

mains achieving some subgoal typically also helps achieve
others. We are interested in improving theadjusted-sum
heuristic by replacing the first term in its formula by an-
other estimationcostp(S) that takes into account this type of
positiveinteractions while ignoring the negative interactions
(which are anyway accounted for by other two terms).

Since there are no negative interactions, once a subgoal is
achieved, it will never be deleted again. Furthermore, the or-
der of achievement of the subgoalspi 2 S would be roughly
in the order oflev(pi). Let pS be the proposition inS such
thatlev(pS) = maxpi2S lev(pi). pS will possibly be the last
proposition that is achieved inS. Let aS be an action in the
planning graph that achievespS in the levellev(pS), where
pS first appears. (If there are more than one, none of them
would be noop actions, and we would select one randomly.)

By regressingS over action aS , we have stateS +
Prec(aS) � Add(aS). Thus, we have the recurrent relation

(assuming unit cost for the selected actionaS)
costp(S) := 1 + costp(S + Prec(aS)�Add(aS)) (3)
The positive interactions are accounted for by this regres-

sion in the sense that by subtractingAdd(aS) from S, any
proposition that is co-achieved whenpS is achieved is not
counted in the cost computation. Sincelev(Prec(aS)) is
strictly smaller thanlev(pS), recursively applying equation 3
to its right hand side will eventually reduce to stateS0 where
lev(S0) = 0, whose costcostp(S0) is 0.

It is interesting to note that the repeated reductions in-
volved in computingcostp(S) indirectly extract a sequence
of actions (theaS selected at each reduction), which would
have achieved the setS from the initial state if there were
no negative interactions. In this sense,costp(S) is similar
in spirit to (and is inspired by) the “relaxed plan” heuristic
recently proposed by Hoffman[8].

Replacinghsum(S) with costp(S) in the definition of
hadjsum, we get an improved version of adjusted sum heuris-
tic that takes into account both positive and negative interac-
tions among propositions.
Heuristic 7 (Adjusted-sum2 heuristic)
h(S) := costp(S) + (lev(S) � maxpi2S lev(pi)), where
costp(S) is computed using equation (3).

Table 2 shows that adjusted-sum2 heuristic can solve all
types of problem considered. The heuristic is only slightly
worse compared with the adjusted-sum in term of speed, but
gives a much better solution quality. In our experiments, with
the exception of problems in the rocket domains, the adjusted-
sum2 heuristic value is usually admissible and often gives op-
timal or near optimal solutions.

Finally, another way of viewing the adjusted-sum heuristic
is that, it is composed ofhsum(S), which is good in domains
where subgoals are fairly independent, andhlev(S), which is
good in a complement set of domains (see table 2). Thus the
summation of them may yield a combination ofdifferential
power effective in wider range of problems, while discarding
the third termhmax(S) may sacrifice the solution quality.
Heuristic 8 (Combo heuristic)
h(S) := hsum(S) + hlev(S), wherehsum(S) is the sum
heuristic value andhlev(S) is the set-level heuristic value.

Problem Len max set-level w/ memo GP
Est Time Est Time Est Time

8puzzle-1 31 - 14 4658 28 1801 2444
8puzzle-2 30 10 - 12 2411 28 891 1545
8puzzle-3 20 8 144 10 68 19 50 50

bw-large-a 12 6 34 8 21 12 16 14
bw-large-b 18 8 - 10 10735 16 1818 433
bw-large-c 28 12 - 14 - 20 - -

grid3 16 16 13 16 13 16 5 4
grid4 18 10 33 18 30 18 22 22

rocket-ext-a - 5 - 6 - 11 - -

Table 3: Column titled “Len” shows the length of the found op-
timal plan (in number of actions). Column titled “Est” shows the
heuristic value the distance from the initial state to the goal state.
Column titled “Time” shows CPU time in seconds. “GP” shows the
CPU time forSerial Graphplan

Surprisingly, as shown in table 2 the Combo heuristic is even
slightly faster than adjusted-sum heuristic across all type of
problems while the solution quality remains comparable.

4.2 Finding optimal plans with admissible
heuristics

We now focus on admissible heuristics that can be used to
produce optimal plans. Traditionally, efficient generation of
optimal plans has received little attention in the planning
community. In[9] Kambhampatiet. al.point out that Graph-
plan algorithm is guaranteed to find optimal plans when the
planning graph serial. In contrast, none of the known efficient
state space planners[17; 3; 2; 20] can guarantee optimal so-
lutions.

In fact, it is very hard to find an admissible heuristic that
is effective enough to be useful across different planning do-
mains. As mentioned earlier, in[3], Bonet et al. introduced
themax heuristicthat is admissible. In the previous section,
we introduced theset-levelheuristic that is admissible and
showed that it is significantly better than the max heuristic.
We tested the set-level heuristic on a variety of domains us-
ing A* search’s cost functionf(S) = g(S) + h(S). The re-
sults are shown in table 3, and clearly establish that set-level
heuristic is significantly more effective than max heuristic.
Grid, travel, mprime are domains where the set-level heuris-
tic gives very close estimates (see table 2). Optimal search
is less effective in domains such as the 8-puzzle and blocks
world problem. Domains such as logistics, gripper remain
intractable under reasonable limits in time and memory.

The main problem once again is that the set-level heuristic
still hugely underestimates the cost of a set of propositions.
The reason for this is that there are manyn-ary(n > 2) level-
specificmutex constraints present in the planning graph, that
are never marked during planning graph construction, and
thus cannot be used by set-level heuristic. This suggests that
identifying and using higher-level mutexes can improve the
effectiveness of the set-level heuristic.

Propagating all higher level mutexes is likely to be an in-
feasible idea[1; 9] (as it essentially amounts to full con-
sistency enforcement of the underlying CSP). A seemingly
zanier idea is to use a limited run of Graphplan’s own back-
ward search, armed with EBL[11], to detect higher level mu-
texes in the form of “memos”. We have done this by restrict-
ing the backward search to a limited number of backtracks
lim = 1000. This lim can be increased by a factor� > 1 as

Problem Normal PG Bi-level PG Speedup
bw-large-b 22/ 63.57 28/ 20.05 3x
bw-large-c 30/ 444.79 38/ 114.88 4x
bw-large-d - 44/11442.14 100x

rocket-ext-a 34/ 4.72 34/ 1.26 4x
rocket-ext-b 32/ 7.38 34/ 1.65 4x

att-log-a 65/11.96 64/ 2.27 5x
att-log-b 67/ 11.09 70/ 3.58 3x

gripper-20 59/ 20.92 59/ 7.26 3x
8puzzle-1 39/ 119.54 39/ 20.20 6x
8puzzle-2 48/ 50.45 48/ 7.42 7x
8puzzle-3 20/ 63.23 20/ 10.95 6x

travel-1 9/ 0.44 11/ 0.12 4x
grid-3 19/ 18.82 17/ 3.04 6x
grid-4 18/ 37.12 18/ 14.15 3x

aips-grid-1 14/ 640.47 14/ 163.01 4x
mprime-1 4/ 79.55 4/ 67.75 1x

Table 4: Total CPU time improvement from efficient heuristic
computation forComboheuristic

we expand the planning graph to next level.
Table 3 shows the performance of the set-level heuristic

using a planning graph adorned with learned memos. We
note that the heuristic value (of the goal state) as computed by
this heuristic is significantly better than the set-level heuris-
tic operating on the vanilla planning graph. For example in
8-puzzle2, the normal set-lev heuristic estimates the cost to
achieve the goal as 12, while using memos pushes the cost to
28, which is quite close to the true optimal value of 30. This
improved informedness results in a speedup in all problems
we considered (up to 3x in the 8-puzzle2, 6x in bw-large-b),
even after adding the time for memo computation using lim-
ited backward search.

We also compared the performance of the two set-level
heuristics with the serial Graphplan, which also produces op-
timal plans. The set-level heuristic is better in the 8-puzzle
problems, but not as good in the blocks world problems (See
table 3). Further analysis is needed to explain these results.

5 Discussion on related work
There are a variety of techniques for improving the effi-
ciency of planning graph construction in terms of both time
and space, including bi-level representations that exploit the
structural redundancy in the planning graph[15], as well
as (ir)relevance detection techniques such as RIFO[18] that
ignore irrelevant literals and actions while constructing the
planning graph. These techniques can be used to improve the
cost of our heuristic computation. In fact, in one of our re-
cent experiments, we have used a bi-level planning graph as a
basis for our heuristics. Preliminary results show significant
speedups (up to 7x) in all problems, and we are also able to
solve more problems than before because our planning graph
takes less memory (See table 4).

The set of mutex constraints play very important role in
improving the informedness of our graph-based heuristics.
Thelevel-specificmutexes can be used to give finer (longer)
distance estimates, whilestaticmutexes help prune more in-
valid and/or unreachable states. Thus, our heuristics can be
improved by detecting more mutexes. Indeed, more level-
specific mutexes can be discovered through more sophisti-

cated mutex propagation rules[4] , while binary and/or higher
order static mutexes can be discovered using a variety of dif-
ferent techniques[6; 21; 5].

Several researchers[8; 20] have considered thepositive
interactions while ignoring the negative interactions among
subgoals to improve the heuristics in many problem domains.
Hoffman [8] uses the length of the first relaxed plan found
in a relaxed planning graph (without mutex computation) as
the heuristic value. Refanidis[20] essentially extracts the co-
achieveness relation among subgoals from the first relaxed
plan to account for the positive interactions. These heuris-
tics were reported to provide both significant speedups and
improved solution quality.

Concomitant with our work, Haslum & Geffner[7] con-
sidered computing admissible state space heuristic based on
dynamic programming approach. Interestingly, their most ef-
fectivemax-pairheuristic is closely related to our admissible
set-level heuristic. Specifically, the heuristic value updating
rule in max-pair heuristic has an effect similar to that of the
mutex propagation procedure in the planning graph.

Finally, we concentrated on using the heuristics extracted
from the planning graph to drive a state search procedure. In
contrast,[12] considers the possibility of using such heuris-
tics to drive Graphplan’s own backward search. Their results
show that some of the same ideas can be used to derive effec-
tive variable and value ordering strategies for Graphplan.

6 Conclusion
In this paper, we showed that the planning graph structure
used by Graphplan provides a rich source of effective as well
as admissible heuristics. We described a variety of heuristic
families, that use the planning graph in different ways to es-
timate the cost of a set of propositions. Our empirical studies
show that many of our heuristics have attractive tradeoffs in
comparison with existing heuristics. In particular, we pro-
vided three heuristics– “adjusted-sum”, “adjusted-sum2” and
“combo” that are clearly superior to the sum mutex heuristic
used by HSP-R across a large range of problems, including
those that have hither-to been intractable for HSP-R. State
search planners using these heuristics out-perform both HSP-
R and Graphplan. We are also one of the first to focus on find-
ing effectiveandadmissible heuristics for state search plan-
ners. We have shown that the set-level heuristic working on
the normal planning graph, or a planning graph adorned with
a limited number of higher level mutexes is able to provide
quite reasonable speedups while guaranteeing admissibility.

Our approach provides an interesting way of incorporat-
ing the strength of two different planning regimes (disjunc-
tive vs. conjunctive search)[10] and views (planning as CSP
vs. planning as state search) that have hither-to been consid-
ered orthogonal. We use the efficient directed consistency en-
forcement provided by the Graphplan’s planning graph con-
struction to develop heuristics capable of accounting for sub-
goal interactions. We then use the heuristics to guide a state
search engine. In contrast to Graphplan, our approach is able
to avoid the costly CSP-style searches in the non-solution
bearing levels of the planning graph. In contrast to HSP-R
and UNPOP, our approach is able to provide much more in-
formed heuristics that take subgoal interactions into account

in a systematic fashion.
Acknowledgements.We thank Minh B. Do, Biplav Srivas-
tava, Romeo S. Nigenda, Hector Geffner and Ioannis Refani-
dis for helpful discussions and feedbacks. Thanks are also
due to Terry Zimmerman for providing with us his fast bi-
level planning graph expansion code. This research is sup-
ported in part by NSF young investigator award (NYI) IRI-
9457634, ARPA/Rome Laboratory planning initiative grant
F30602-95-C-0247, Army AASERT grant DAAH04-96-1-
0247, AFOSR grant F20602-98-1-0182 and NSF grant IRI-
9801676.

References
[1] A. Blum and M.L. Furst. Fast planning through planning graph

analysis.Artificial Intelligence. 90(1-2). 1997.
[2] B. Bonet and H. Geffner. Planning as heuristic search: New

results. InProc. ECP-99, 1999.
[3] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action

selection mechanism for planning. InProc. AAAI-97, 1997.
[4] M. Do, S. Kambhampati and B. Srivastava. Investigating the

effect of relevance and reachability constraints on SAT encod-
ings of planning. To appear inAIPS-2000, 2000.

[5] M. Fox and D. Long. Automatic inference of state invariants
in TIM. JAIR. Vol. 9. 1998.

[6] A. Gerevini and L. Schubert. Inferring state constraints for
domain-independent planning. InProc. AAAI-98, 1998.

[7] P. Haslum and H. Geffner. Admissible Heuristics for Optimal
Planning. To appear inAIPS-2000, 2000.

[8] J. Hoffman. A Heuristic for Domain Independent Planning
and its Use in an Enforced Hill-climbing Algorithm. Technical
Report No. 133, Albert Ludwigs University.

[9] S. Kambhampati, E. Lambrecht, and E. Parker. Understanding
and extending graphplan. InProc. ECP-97, 1997.

[10] S. Kambhampati. Challenges in bridging plan synthesis
paradigms. InProc. IJCAI-97, 1997.

[11] S. Kambhampati. EBL & DDB for Graphplan.Proc. IJCAI-
99.1999.

[12] S. Kambhampati and R.S Nigenda. Distance based goal order-
ing heuristics for Graphplan. To appear inAIPS-2000, 2000.

[13] R. Korf and L. Taylor. Finding optimal solutions to the twenty-
four puzzle. InProc. AAAI-96, 1996.

[14] R. Korf. Linear-space best-first search.Artificial Intelligence,
62:41-78, 1993.

[15] D. Long and M. Fox. Efficient implementation of the plan
graph in STAN.JAIR, 10(1-2) 1999.

[16] D. McDermott. Aips-98 planning competition results. 1998.
[17] D. McDermott. Using regression graphs to control search in

planning.Artificial Intelligence, 109(1-2):111–160, 1999.
[18] B. Nebel, Y. Dimopoulos and J. Koehler. Ignoring irrelevant

facts and operators in plan generation.Proc. ECP-97.
[19] N. Nilsson.Principles of Artificial Intelligence. Tioga, 1980.
[20] I. Refanidis and I. Vlahavas. GRT: A domain independent

heuristic for strips worlds based on greedy regression tables.
In Proc. ECP-99, 1999.

[21] J. Rintanen. An iterative algorithm for synthesizing invariants.
To appear inAAAI-2000, 2000.

[22] D. Weld. Recent advances in ai planning.AI magazine, 1999.

