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Abstract. Increasingly organizations are using process mining to under-
stand the way that operational processes are executed. Process mining
can be used to systematically drive innovation in a digitalized world.
Next to the automated discovery of the real underlying process, there
are process-mining techniques to analyze bottlenecks, to uncover hidden
inefficiencies, to check compliance, to explain deviations, to predict per-
formance, and to guide users towards “better” processes. Dozens (if not
hundreds) of process-mining techniques are available and their value has
been proven in many case studies. However, process mining stands or
falls with the availability of event logs. Existing techniques assume that
events are clearly defined and refer to precisely one case (i.e. process
instance) and one activity (i.e., step in the process). Although there are
systems that directly generate such event logs (e.g., BPM/WFM sys-
tems), most information systems do not record events explicitly. Cases
and activities only exist implicitly. However, when creating or using pro-
cess models “raw data” need to be linked to cases and activities. This
paper uses a novel perspective to conceptualize a database view on event
data. Starting from a class model and corresponding object models it is
shown that events correspond to the creation, deletion, or modification
of objects and relations. The key idea is that events leave footprints by
changing the underlying database. Based on this an approach is described
that scopes, binds, and classifies data to create “flat” event logs that can
be analyzed using traditional process-mining techniques.

1 Introduction

The spectacular growth of event data is rapidly changing the Business
Process Management (BPM) discipline [2, 10, 20, 29, 35, 45, 53]. It makes
no sense to focus on modeling, model-based analysis and model-based
implementation without using the valuable information hidden in infor-
mation systems [1]. Organizations are competing on analytics and only
organizations that intelligently use the vast amounts of data available
will survive [5].



Today’s main innovations are intelligently exploiting the sudden avail-
ability of event data. Out of the blue, “Big Data” has become a topic
in board-level discussions. The abundance of data will change many jobs
across all industries. Just like computer science emerged as a new disci-
pline from mathematics when computers became abundantly available,
we now see the birth of data science as a new discipline driven by the tor-
rents of data available in our increasingly digitalized world.3 The demand
for data scientists is rapidly increasing. However, the focus on data anal-
ysis should not obscure process-orientation. In the end, good processes
are more important than information systems and data analysis. The
old phrase “It’s the process stupid” is still valid. Hence, we advocate
the need for process scientists that will drive process innovations while
exploiting the Internet of Events (IoE). The IoE is composed of:

– The Internet of Content (IoC): all information created by humans
to increase knowledge on particular subjects. The IoC includes tra-
ditional web pages, articles, encyclopedia like Wikipedia, YouTube,
e-books, newsfeeds, etc.

– The Internet of People (IoP): all data related to social interaction.
The IoP includes e-mail, facebook, twitter, forums, LinkedIn, etc.

– The Internet of Things (IoT): all physical objects connected to the
network. The IoT includes all things that have a unique id and a
presence in an internet-like structure. Things may have an inter-
net connection or be tagged using Radio-Frequency Identification
(RFID), Near Field Communication (NFC), etc.

– The Internet of Locations (IoL): refers to all data that have a spatial
dimension. With the uptake of mobile devices (e.g., smartphones)
more and more events have geospatial attributes.

Note that the IoC, the IoP, the IoT, and the IoL partially overlap. For
example, a place name on a webpage or the location from which a tweet
was sent. See also Foursquare as a mixture of the IoP and the IoL.
It is not sufficient to just collect event data. The challenge is to exploit
it for process improvements. Process mining is a new discipline aiming
to address this challenge. Process-mining techniques form the toolbox of
tomorrow’s process scientist. Process mining connects process models
and data analytics. It can be used:

– to automatically discover processes without any modeling (not just
the control-flow, but also other perspectives such as the data-flow,
work distribution, etc.),

– to find bottlenecks and understand the factors causing these bottle-
necks,

– to detect and understand deviations, to measure their severity and
to assess the overall level of compliance,

– to predict costs, risks, and delays,
– to recommend actions to avoid inefficiencies, and
– to support redesign (e.g., in combination with simulation).

Today, there are many mature process-mining techniques that can be
directly used in everyday practice [1]. The uptake of process mining is

3 We use the term “digitalize” to emphasize the transformational character of digitized
data.



not only illustrated by the growing number of papers and plug-ins of the
open source tool ProM, there are also a growing number of commercial
analysis tools providing process mining capabilities, cf. Disco (Fluxicon),
Perceptive Process Mining (Perceptive Software, before Futura Reflect
and BPMone by Pallas Athena), ARIS Process Performance Manager
(Software AG), Celonis Process Mining (Celonis GmbH), ProcessAna-
lyzer (QPR), Interstage Process Discovery (Fujitsu), Discovery Analyst
(StereoLOGIC), and XMAnalyzer (XMPro).

Despite the abundance of powerful process-mining techniques and suc-
cess stories in a variety of application domains4, a limiting factor is the
preparation of event data. The Internet of Events (IoE) mentioned ear-
lier provides a wealth of data. However, these data are a not in a form
that can be analyzed easily, and need to be extracted, refined, filtered,
and converted to event logs first.

The starting point for process mining is an event log. Each event in
such a log refers to an activity (i.e., a well-defined step in some process)
and is related to a particular case (i.e., a process instance). The events
belonging to a case are ordered and can be seen as one “run” of the
process. Event logs may store additional information about events. In
fact, whenever possible, process-mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the
activity, the timestamp of the event, or data elements recorded with the
event (e.g., the size of an order).

If a BPM system or some other process-aware information system is used,
then it is trivial to get event logs, i.e., typically the audit trail provided
by the system can directly be used as input for process mining. However,
in most organizations one encounters information systems built on top of
database technology. The IoE depends on a variety of databases (classical
relational DBMSs or new “noSQL” technologies). Therefore, we provide
a database view on event data and assume that events leave footprints
by changing the underlying database. Fortunately, database technology
often provides so called “redo logs” that can be used to reconstruct
the history of database updates. This is what we would like to exploit
systematically.

Although the underlying databases are loaded with data, there are no ex-
plicit references to events, cases, and activities. Instead, there are tables
containing records and these tables are connected through key relation-
ships. Hence, the challenge is to convert tables and records into event
logs. Obviously, this cannot be done in an automated manner.

To understand why process-mining techniques need “flat event logs” (i.e.,
event logs with ordered events that explicitly refer to cases and activities)
as input, consider any process model in one of the mainstream process
modeling notations (e.g., BPMN models, BPEL specifications, UML ac-
tivity diagrams, and workflow nets). All of these notations present a
diagram describing the life-cycle of an instance of the process (i.e., case)
in terms of activities. Hence, all mainstream notations require the choice
of a single process instance (i.e., case) notion. Notable exceptions are

4 For example, http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_

mining_case_studies lists over 15 successful case studies in industry.



proclets [7] and artifacts [26], but these are rarely used and difficult to
understand by end-users. Therefore, we need to relate raw event data to
process instances using a single well-defined view on the process. This
explains the requirements imposed on event logs.
In this paper, we focus on the problem of extracting “flat event logs”
from databases. First, we introduce process mining in a somewhat more
detailed form (Section 2). Section 3 presents twelve guidelines for logging.
They point to typical problems related to event logs and can be used to
improve the recording of relevant events. Although it is vital to improve
the quality of logging, this paper aims to exploit the events hidden in
existing databases. We use database-centric view on processes: the state
of a process is reflected by the database content. Hence, events are merely
changes of the database. In the remainder we assume that data is stored
in a database management system and that we can see all updates of
the underlying database. This assumption is realistic (see e.g. the redo
logs of Oracle). However, how to systematically approach the problem of
converting database updates into event logs? Section 4 introduces class
and object models as a basis to reason about the problem. In Section 5
we show that class models can be extended with a so-called event model.
The event model is used to capture changes of the underlying database.
Section 6 describes a three-step approach (Scope, Bind, and Classify)
to create a collection of flat event logs. The results serve as input for
conventional process-mining techniques. Section 7 discusses related work
and Section 8 concludes this paper.

2 Process Mining

Process mining aims to discover, monitor and improve real processes by
extracting knowledge from event logs readily available in today’s infor-
mation systems [1].
Normally, “flat” event logs serve as the starting point for process mining.
These logs are created with a particular process and a set of questions
in mind. An event log can be viewed as a multiset of traces. Each trace
describes the life-cycle of a particular case (i.e., a process instance) in
terms of the activities executed. Often event logs store additional infor-
mation about events. For example, many process-mining techniques use
extra information such as the resource (i.e., person or device) executing
or initiating the activity, the timestamp of the event, or data elements
recorded with the event (e.g., the size of an order). Table 1 shows a small
fragment of a larger event log. Each row corresponds to an event. The
events refer to two cases (654423 and 655526) and have additional prop-
erties, e.g., the registration for case 654423 was done by John at two
past eleven on April 30th 2014 and the cost was 300 euro. An event may
also contain transactional information, i.e., it may refer to an “assign”,
“start”, “complete”, “suspend”, “resume”, “abort”, etc. action. For ex-
ample, to measure the duration of an activity it is important to have a
start event and a complete event. We refer to the XES standard [38] for
more information on the data possibly available in event logs.
Flat event logs such as the one shown in Table 1 can be used to conduct
four types of process mining [1].



Table 1. A fragment of an event log: each line corresponds to an event.

case id timestamp activity resource cost

654423 30-04-2014:11.02 register request John 300
654423 30-04-2014:11.06 check completeness of documents Ann 400
655526 30-04-2014:16.10 register request John 200
655526 30-04-2014:16.14 make appointment Ann 450
654423 30-04-2014:11.12 ask for second opinion Pete 100
654423 30-04-2014:11.18 prepare decision Pete 400
654423 30-04-2014:11.19 pay fine Pete 400
655526 30-04-2014:16.26 check completeness of documents Sue 150
655526 30-04-2014:16.36 reject claim Sue 100
. . . . . . . . . . . . . . .

– The first type of process mining is discovery. A discovery technique
takes an event log and produces a model without using any a priori
information. Process discovery is the most prominent process-mining
technique. For many organizations it is surprising to see that existing
techniques are indeed able to discover real processes merely based
on example behaviors stored in event logs.

– The second type of process mining is conformance. Here, an existing
process model is compared with an event log of the same process.
Conformance checking can be used to check if reality, as recorded in
the log, conforms to the model and vice versa.

– The third type of process mining is enhancement. Here, the idea is to
extend or improve an existing process model by directly using infor-
mation about the actual process recorded in some event log. Whereas
conformance checking measures the alignment between model and
reality, this third type of process mining aims at changing or ex-
tending the a priori model. For instance, by using timestamps in
the event log one can extend the model to show bottlenecks, service
levels, and throughput times.

– The fourth type of process mining is operational support. The key
difference with the former three types is that analysis is not done off-
line, but used to influence the running process and its cases in some
way. Based on process models, either discovered through process
mining or (partly) made by hand, one can check, predict, or recom-
mend activities for running cases in an online setting. For example,
based on the discovered model one can predict that a particular case
will be late and propose counter-measures.

The ProM framework provides an open source process-mining infras-
tructure. Over the last decade hundreds of plug-ins have been devel-
oped covering the whole process-mining spectrum. ProM is intended for
process-mining experts. Non-experts may have difficulties using the tool
due to its extensive functionality. Commercial process-mining tools such
as Disco, Perceptive Process Mining, ARIS Process Performance Man-
ager, Celonis Process Mining, QPR ProcessAnalyzer, Fujitsu Interstage
Process Discovery, StereoLOGIC Discovery Analyst, and XMAnalyzer
are typically easier to use because of their restricted functionality. These



(b) Disco (Fluxicon)(a) ProM

(c) Perceptive Process Mining (Perceptive Software) (d) Celonis Process Mining (Celonis GmbH)

Fig. 1. Four screenshots of different tools analyzing the same event log.

tools have been developed for practitioners, but provide only a fraction
of the functionality offered by ProM. Figure 1 shows four screenshots of
process-mining tools analyzing the same event log.
In this paper, we neither elaborate on the different process-mining tech-
niques nor do we discuss specific process-mining tools. Instead, we focus
on the event data used for process mining.

3 Guidelines for Logging

The focus of this paper is on the input side of process mining: event
data. Often we need to work with the event logs that happen to be
available, and there is no way to influence what events are recorded and
how they are recorded. There can be various problems related to the
structure and quality of data [1, 19]. For example, timestamps may be
missing or too coarse (only dates). Therefore, this paper focuses on the



“input side of process mining”. Before we present our database-centric
approach, we introduce twelve guidelines for logging. These guidelines
make no assumptions on the underlying technology used to record event
data.

In this section, we use a rather loose definition of event data: events
simply refer to “things that happen” and that they are described by ref-
erences and attributes. References have a reference name and an identi-
fier that refers to some object (person, case, ticket, machine, room, etc.)
in the universe of discourse. Attributes have a name and a value, e.g.,
age=48 or time=“28-6-2014 03:14:0”. Based on these concepts we define
our twelve guidelines. To create an event log from such “raw events” (1)
we need to select the events relevant for the process at hand, (2) events
need to be correlated to form process instances, (3) events need to be
ordered using timestamp information, and (4) event attributes need to
be selected or computed based on the raw data (resource, cost, etc.).
Such an event log can be used as input for a wealth of process-mining
techniques.

The guidelines for logging (GL1-GL12) aim to create a good starting
point for process mining.

GL1 Reference and attribute names should have clear semantics, i.e.,
they should have the same meaning for all people involved in creat-
ing and analyzing event data. Different stakeholders should interpret
event data in the same way.

GL2 There should be a structured and managed collection of reference
and attribute names. Ideally, names are grouped hierarchically (like
a taxonomy or ontology). A new reference or attribute name can
only be added after there is consensus on its value and meaning.
Also consider adding domain or organization specific extensions (see
for example the extension mechanism of XES [38]).

GL3 References should be stable (e.g., identifiers should not be reused
or rely on the context). For example, references should not be time,
region, or language dependent. Some systems create different logs de-
pending on the language settings. This is unnecessarily complicating
analysis.

GL4 Attribute values should be as precise as possible. If the value does
not have the desired precision, this should be indicated explicitly (e.g.,
through a qualifier). For example, if for some events only the date
is known but not the exact timestamp, then this should be stated
explicitly.

GL5 Uncertainty with respect to the occurrence of the event or its refer-
ences or attributes should be captured through appropriate qualifiers.
For example, due to communication errors, some values may be less
reliable than usual. Note that uncertainty is different from impreci-
sion.

GL6 Events should be at least partially ordered. The ordering of events
may be stored explicitly (e.g., using a list) or implicitly through an
attribute denoting the event’s timestamp. If the recording of times-
tamps is unreliable or imprecise, there may still be ways to order
events based on observed causalities (e.g., usage of data).



GL7 If possible, also store transactional information about the event
(start, complete, abort, schedule, assign, suspend, resume, withdraw,
etc.). Having start and complete events allows for the computation
of activity durations. It is recommended to store activity references
to be able to relate events belonging to the same activity instance.
Without activity references it may not always be clear which events
belong together, which start event corresponds to which complete
event.

GL8 Perform regularly automated consistency and correctness checks to
ensure the syntactical correctness of the event log. Check for missing
references or attributes, and reference/attribute names not agreed
upon. Event quality assurance is a continuous process (to avoid
degradation of log quality over time).

GL9 Ensure comparability of event logs over time and different groups
of cases or process variants. The logging itself should not change over
time (without being reported). For comparative process mining, it
is vital that the same logging principles are used. If for some groups
of cases, some events are not recorded even though they occur, then
this may suggest differences that do not actually exist.

GL10 Do not aggregate events in the event log used as input for the
analysis process. Aggregation should be done during analysis and
not before (since it cannot be undone). Event data should be as
“raw” as possible.

GL11 Do not remove events and ensure provenance. Reproducibility is
key for process mining. For example, do not remove a student from
the database after he dropped out since this may lead to mislead-
ing analysis results. Mark objects as not relevant (a so-called “soft
delete”) rather than deleting them: concerts are not deleted - they
are canceled, employees are not deleted - they are fired, etc.

GL12 Ensure privacy without losing meaningful correlations. Sensitive
or private data should be removed as early as possible (i.e., before
analysis). However, if possible, one should avoid removing correla-
tions. For example, it is often not useful to know the name of a
student, but it may be important to still be able to use his high
school marks and know what other courses he failed. Hashing can
be a powerful tool in the trade-off between privacy and analysis.

The above guidelines are very general and aim to improve the logging
itself. The main purpose of the guidelines is to point to problems related
to the input of process mining. They can be used to better instrument
software.

After these general guidelines, we now change our viewpoint. We aim
to exploit the hidden event data already present in databases. The con-
tent of the database can be seen as the current state of one or more
processes. Updates of the database are therefore considered as the pri-
mary events. This database-centric view on event logs is orthogonal to
the above guidelines.



4 Class and Object Models

Most information systems do not record events explicitly. Only process-
aware information systems (e.g., BPM/WFM systems) record event data
in the format shown in Table 1. To create an event log, we often need to
gather data from different data sources where events exist only implicitly.
In fact, for most process-mining projects event data need to be extracted
from conventional databases. This is often done in an ad-hoc manner.
Tools such as XESame [49] and ProMimport [34] provide some support,
but still the event logs need to be constructed by querying the database
and converting database records (row in tables) into events.
Moreover, the “regular tables” in a database only provide the current
state of the information system. It may be impossible to see when a
record was created or updated. Moreover, deleted records are generally
invisible.5 Taking the viewpoint that the database reflects the current state
of one or more processes, we define all changes of the database to be
events. Below we conceptualize this viewpoint. Building upon standard
class and object models, we define the notion of an event model. The
event model relates coherent set of changes to the underlying database
to events used for process mining.
Section 5 defines the notion of an event model. To formalize event models,
we first introduce and define class and object models.
A class model defines a set of classes that may be connected through rela-
tionships. UML class models [43], Entity-Relationship (ER) models [25],
Object-Role Modeling (ORM) models, etc. provide concrete notations
for the basic class model used in this paper.

Definition 1 (Unconstrained Class Model). Assume V to be some
universe of values (strings, numbers, etc.). An unconstrained class model
is a tuple UCM = (C,A,R, val , key , attr , rel) such that
– C is a set of class names,
– A is a set of attribute names,
– R is a set of relationship names (C ∩R = ∅),
– val ∈ A → P(V ) is a function mapping each attribute onto a set of

values.6 Va = val(a) is a shorthand and denotes the set of possible
values of attribute a ∈ A,

– key ∈ C → P(A) is a function describing the set of key attributes of
each class,

– attr ∈ C → P(A) is a function describing the set of additional
attributes of each class (key(c) ∩ attr(c) = ∅ for any class c ∈ C),

– rel ∈ R → (C × C) is a function describing the two classes involved
in a relation. Let rel(r) = (c1, c2) for relationship r ∈ R: rel1(r) = c1
and rel2(r) = c2 are shorthand forms to obtain the two individual
classes involved in the relationship.

5 Increasingly systems mark deleted objects as not relevant (a so-called soft delete)
rather than deleting them. In this way all intermediate states of the database can be
reconstructed. Moreover, marking objects as deleted instead of completely removing
them from the database is often more natural, e.g., concerts are not deleted – they
are canceled, employees are not deleted – they are fired, etc.

6 P(X) is the powerset of X, i.e., Y ∈ P(X) if Y ⊆ X.



Figure 2 shows a class model with classes C = {c1, c2, . . . , c8} and rela-
tionships R = {r1, r2, . . . , r8}. Classes and relationships also have longer
names, e.g., c1 is the class “concert hall”. We will use the shorter names
for a more compact discussion. In this example, each class has a sin-
gleton key, i.e., a single column serves as primary key. The keys are
highlighted in Figure 2 (darker color). For example, key(c1) = {hall id}
and attr(c1) = {name of hall , address} are the two additional (non-key)
attributes of class c1. rel(r4) = (c5, c2), i.e., relation r4 relates tickets
(c5) to concerts (c2). Figure 2 also shows cardinality constraints. These
are not part of the unconstrained class model. Later we will define con-
strained class models (Definition 4). However, before doing so, we need
to introduce some more notations.

band

booking

1 0..*

active_since : Date

booking_id : Booking_ID

band_name : Name

concert

concert_date : Date

concert hall

name_of_hall : Name

seat

row_no : Num

seat_no : Num

ticket

customer

customer_name : Name

address : Address

address : Address

address : Address

hall_id : Hall_ID

customer_id : Cust_ID

band_id : Band_IDconcert_id : Con_ID

seat_id : Seat_ID

start_time : Time

price : Euro

total_price : Euro

payment

amount : Euro

1..*0..*

1

1..*

1

0..*

1 0..*

1

1..*

1 0..* 0..1 0..*

ticket_id : Ticket_ID

0..*

payment_id : Pay_ID

r1

(location)

c1

birth_date : Date

c2 c3

c4 c5

c6 c7 c8

r3

(belongs_to)

r2

(playing)

r5

(belongs_to)

r4

(for_concert)

r6

(belongs_to)

r8

(for_booking)

r7

(booking_by)

additional constraint: 
there cannot be two 

tickets for the same seat 
and same concert 

additional constraint: the 
total price of a booking 
equals the sum of the 

individual tickets  

additional constraint: 
there cannot be two 
concerts on the same 

day in the same concert 
hall 

Fig. 2. Example of a constrained class model.

Definition 2 (Notations). Let CM = (C,A,R, val , key , attr , rel) be
an (unconstrained) class model.
– MCM = {map ∈ A 6→ V | ∀a∈dom(map) map(a) ∈ Va} is the set of

mappings,7

7 f ∈ X 6→ Y is a partial function, i.e., the domain of f may be any subset of X:
dom(f) ⊆ X.



– KCM = {(c,mapk) ∈ C ×MCM | dom(mapk) = key(c)} is the set of
possible key values per class,

– ACM = {(c,mapa) ∈ C×MCM | dom(mapa) = attr(c)} is the set of
possible additional attribute values per class,

– OCM = {(c,mapk,mapa) ∈ C ×MCM ×MCM | (c,mapk) ∈ KCM ∧
(c,mapa) ∈ ACM } is the set of objects,

– RCM = {(r,map1,map2) ∈ R × MCM × MCM | ∃c1,c2∈C rel(r) =
(c1, c2) ∧ {(c1,map1), (c2,map2)} ⊆ KCM } is the set of potential
relations.

A class model implicitly defines a collection of possible object models.
Each class c ∈ C may have multiple objects and each relationship r ∈ R

may hold multiple concrete object-to-object relations.

Definition 3 (Object Model). Let CM = (C,A,R, val , key , attr , rel)
be an (unconstrained) class model. An object model of CM is a tuple
OM = (Obj ,Rel) where Obj ⊆ OCM is a set of objects and Rel ⊆ RCM is
a set of relations. UOM (CM ) = {(Obj ,Rel) | Obj ⊆ OCM ∧ Rel ⊆ RCM }
is the set of all object models of CM .

The cardinality constraints in Figure 2 impose restrictions on object
models. For example, a ticket corresponds to precisely one concert and
each concert corresponds to any number of tickets (see annotations “1”
and “0..*” next to r4). Each ticket corresponds to precisely one booking
and each booking refers to at least one ticket (see annotations “1” and
“1..*” next to r6). In our formalizations we abstract from the actual
notation used to specify constraints. Instead, we assume a given set VOM
of valid object models satisfying all requirements (including cardinality
constraints).

Definition 4 (Constrained Class Model). A constrained class model
is a tuple CM = (C,A,R, val , key , attr , rel ,VOM ) such that UCM =
(C,A,R, val , key , attr , rel) is an unconstrained class model and VOM ⊆
UOM (UCM ) is the set of valid object models. A valid object model
OM = (Obj ,Rel) ∈ VOM satisfies all (cardinality) constraints including
the following general requirements:
– for any (r,mapk1,mapk2) ∈ Rel there exist c1, c2, mapa1, and mapa2

such that rel(r) = (c1, c2) and {(c1,mapk1,mapa1), (c2,mapk2,mapa2)} ⊆
Obj , i.e., the referenced objects exist,

– for any {(c,mapk,mapa1), (c,mapk,mapa2)} ⊆ Obj : mapa1 = mapa2,
i.e., keys are indeed unique.

All notations defined for unconstrained class models are also defined for
constrained class models. For any valid object model OM ∈ VOM it is
ensured that relations refer to existing objects and that there are not
two objects in the same class that have the same key values. Moreover,
all cardinality constraints are satisfied if OM ∈ VOM .
Definition 4 abstracts from the concrete realization of object and class
models in a database. However, it is easy to map any class model onto
a set of related tables in a conventional relational database system. To
do this foreign keys need to be added to the tables or additional tables



need to be added to store the relationships. For example, one may add
three extra columns to the table for c5 (“ticket”): concert id (for the
foreign key relating the ticket to a concert), seat id (for the foreign key
relating the ticket to a seat), and booking id (for the foreign key relating
the ticket to a booking). These columns realize respectively r4, r5, and
r6. In the case of a many-to-many relationship an additional table needs
to be added to encode the relations. In the remainder we abstract from
the actual table structure, but it is obvious that the conceptualization
agrees with standard database technology.

5 Events and Their Effect on the Object Model

Examples of widely used DataBase Management Systems (DBMSs) are
Oracle RDBMS (Oracle), SQL server (Microsoft), DB2 (IBM), Sybase
(SAP), and PostgreSQL (PostgreSQL Global Development Group). All of
these systems can store and manage the data structure described in Def-
inition 4. Moreover, all of these systems have facilities to record changes
to the database. For example, in the Oracle RDBMS environment, redo
logs comprise files in a proprietary format which log a history of all
changes made to the database. Oracle LogMiner, a utility provided by
Oracle, provides methods of querying logged changes made to an Ora-
cle database. Every Microsoft SQL Server database has a transaction
log that records all database modifications. Sybase IQ also provides a
transaction log. Such redo/transaction logs can be used to recover from
a system failure. The redo/transaction logs will grow significantly if there
are frequent changes to the database. In such cases, the redo/transaction
logs need to be truncated regularly.
This paper does not focus on a particular DBMS. However, we as-
sume that through redo/transaction logs we can monitor changes to the
database. In particular, we assume that we can see when a record is in-
serted, updated, or deleted. Conceptually, we assume that we can see the
creation of objects and relations (denoted by ⊕), the deletion of objects
and relations (denoted by ⊖), and updates of objects (denoted by ⊘).
Based on this we define the set of atomic and composite event types.

Definition 5 (Event Types). Let CM = (C,A,R, val , key , attr , rel ,VOM )
be a constrained class model. ETatomic = ETadd,obj∪ETadd,rel∪ETdel,obj∪
ETdel,rel ∪ETupd,obj is the set of atomic event types composed of the fol-
lowing pairwise disjoint sets:
– ETadd,obj = {(⊕, c) | c ∈ C} are the event types for adding objects,
– ETadd,rel = {(⊕, r) | r ∈ R} are the event types for adding relations,
– ETdel,obj = {(⊖, c) | c ∈ C} are the event types for deleting objects,
– ETdel,rel = {(⊖, r) | r ∈ R} are the event types for deleting relations,

and
– ETupd,obj = {(⊘, c) | c ∈ C} are the event types for updating objects.

ETcomposite(CM ) = P(ETatomic) \ {∅} is the set of all possible composite
event types of CM .

The atomic event type (⊕, c5) denotes the creation of a ticket and (⊕, r8)
denotes the linking of a payment to a booking. When updating the ad-
dress of a customer, the atomic event type (⊘, c6) is expected to occur.



When preparing for a new concert of an existing band in an existing con-
cert hall, we may observe the composite event type {(⊕, c2), (⊕, r1), (⊕, r2)},
i.e., creating a new object for the concert and relating it to the existing
concert hall and band.
The notion of atomic/composite event types naturally extends to con-
crete atomic/composite events. For an object creation event (⊕, c) we
need to specify (mapk,mapa), i.e., the new key and additional attribute
values. For deleting a relation (⊖, r) we need to specify (map1,map2),
i.e., the key values of each of the two objects involved in the relation.

Definition 6 (Events). Let CM = (C,A,R, val , key , attr , rel ,VOM )
be a constrained class model. Eatomic = Eadd,obj ∪ Eadd,rel ∪ Edel,obj ∪
Edel,rel ∪ Eupd,obj is the set of atomic events composed of the following
pairwise disjoint sets:
– Eadd,obj = {(⊕, c, (mapk,mapa)) | (c,mapk,mapa) ∈ OCM },
– Eadd,rel = {(⊕, r, (map1,map2)) | (r,map1,map2) ∈ RCM },
– Edel,obj = {(⊖, c,mapk) | (c,mapk) ∈ KCM },
– Edel,rel = {(⊖, r, (map1,map2)) | (r,map1,map2) ∈ RCM },and
– Eupd,obj = {(⊘, c, (mapk,mapa)) | (c,mapk,mapa) ∈ OCM }.

Ecomposite(CM ) = P(Eatomic) \ {∅} is the set of all possible composite
events of CM . fprt ∈ Eatomic → ETatomic is a function computing the
footprint of an atomic event: fprt((x, y, z)) = (x, y) maps an atomic
event (x, y, z) ∈ Eatomic onto its corresponding type (x, y) ∈ ETatomic.
The footprint function is generalized to composite events, i.e., fprt ∈
Ecomposite → ETcomposite such that fprt(CE) = {(x, y) | (x, y, z) ∈ CE}
for composite event CE.

Eatomic is the set of atomic events. Ecomposite(CM ) is the set of non-empty
composite events. fprt transforms atomic/composite events into the cor-
responding types. For example, fprt((⊕, r, (map1,map2))) = (⊕, r).
An event model annotates a constrained class model with event types
that refer to composite events. Figure 3 shows an event model that has
seven events. Event en3 models the deletion of a customer. The corre-
sponding composite event type is {(⊖, c6)}. Event en4 models the adding
of a concert. The corresponding composite event type is {(⊕, c2), (⊕, r1), (⊕, r2)}.

Definition 7 (Event Model). Let CM = (C,A,R, val , key , attr , rel ,VOM )
be a constrained class model. An event model is a tuple EM = (EN , type,VE)
where
– EN is a set of event names,
– type ∈ EN → ETcomposite(CM ) is a function mapping each event

name onto its composite event type,
– VE ⊆ EN × Ecomposite(CM ) is the set of valid events such that

for any (en,CE) ∈ VE: fprt(CE) = type(en). Moreover, for any
en ∈ EN there exists a CE such that (en,CE) ∈ VE.

Events should be of the right type and for each event name there is at
least one valid event. Note that events may have varying cardinalities,
e.g., one event may create five objects of the same class.
In Definition 7, we require fprt(CE) = type(en). Alternatively, one could
weaken this requirements to ∅ 6= fprt(CE) ⊆ type(en). This would allow
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Fig. 3. Example of an event model.



for the omission of certain events, e.g., in case the object already exists
it does not need to be created. Consider for example a new event en8

with type(en8) = {(⊕, c6), (⊕, c7), (⊕, r7)} that creates a booking and
the corresponding customer. If the customer is already in the database,
the composite event cannot contain the creation of the customer object
c6. Instead of defining two variants of the same events (with or without
creating a c6 object), it may be convenient to define one event that allows
for both variations. Case studies should show which requirement is more
natural (strong versus weak event typing).
Here, we assume an event model to be given. The event model may be
created by the analyst or extracted from the redo/transaction log of the
DBMS. We also assume that event occurrences (defined next) can be re-
lated to events in the event model. Future work aims at providing support
for the semi-automatic creation of event models and further investigat-
ing the relation with the redo/transaction logs in concrete systems like
Oracle.
An event occurrence is specified by an event name en, a composite event
CE , and a timestamp ts. A change log is a sequence of such event oc-
currences.

Definition 8 (Event Occurrence, Change Log). Let CM = (C,A,R,

val , key , attr , rel ,VOM ) be a constrained class model and EM = (EN , type,VE)
an event model. Assume some universe of timestamps TS. e = ((en,CE), ts) ∈
VE × TS is an event occurrence. EO(CM ,EM ) = VE × TS is the
set of all possible event occurrences. A change log L = 〈e1, e2, . . . , en〉
is a sequence of event occurrences such that time is non-decreasing,
i.e., L = 〈e1, e2, . . . , en〉 ∈ (EO(CM ,EM ))∗ and tsi ≤ tsj for any
ei = ((eni,CEi), tsi) and ej = ((enj ,CEj ), tsj) with 1 ≤ i < j ≤ n.

Next we define the effect of an event occurrence, i.e., the resulting object
model. If an event is not permissible, e.g., inserting an object for which
an object with the same key already exists, the object model does not
change.

Definition 9 (Effect of an Event). Let CM = (C,A,R, val , key ,
attr , rel ,VOM ) be a constrained class model and EM = (EN , type,VE)
an event model. For any two object models OM1 = (Obj 1,Rel1) and
OM2 = (Obj 2,Rel2) of CM and event occurrence e = ((en,CE), ts) ∈
EO(CM ,EM ), we denote OM1

e
→ OM2 if and only if

– Obj 2 = {(c,mapk,mapa) ∈ Obj 1 | (⊖, c,mapk) 6∈ CE ∧ ∀map′ (⊘, c, (mapk,

map′)) 6∈ CE}
⋃

{(c,mapk,mapa) ∈ OCM | (⊕, c, (mapk,mapa)) ∈
CE ∨ (⊘, c, (mapk,mapa)) ∈ CE},

– Rel2 = {(r,map1,map2) ∈ Rel1 | (⊖, r, (map1,map2)) 6∈ CE}
⋃

{(r,map1,

map2) ∈ RCM | (⊕, r, (map1,map2)) ∈ CE}, and
– {OM1 ,OM2} ⊆ VOM.

Event e is permissible in object model OM , notation OM1
e
→, if and

only if there exists an OM ′ such that OM
e
→ OM ′. If this is not the

case, we denote OM
e

6→, i.e., e is not permissible in OM. If an event is
not permissible, it will fail and the object model will remain unchanged.
Relation

e
⇒ denotes the effect of event e. It is the smallest relation such

that (a) OM
e
⇒ OM ′ if OM

e
→ OM ′ and (b) OM

e
⇒ OM if OM

e

6→.



The event occurrence e = ((en,CE), ts) as a whole is successful or not.

If OM
e

6→, then nothing changes. The current definition of OM1
e
→ is

rather forgiving, e.g., it allows for the deletion of an object that does not
exist. It only ensures that the result is a valid object model, but relations
e
→ and

e
⇒ can be made stricter if desired. Note that the atomic events in

CE occur concurrently if e is successful, i.e., the events do not depend
on each other.
Relation

e
⇒ is deterministic, i.e., OM1

e
⇒ OM2 and OM1

e
⇒ OM3 implies

OM2 = OM3 .

Definition 10 (Effect of a Change Log). Let CM = (C,A,R, val , key ,
attr , rel ,VOM ) be a constrained class model, EM = (EN , type,VE)
an event model, and OM0 ∈ VOM the initial valid object model. Let
L = 〈e1, e2, . . . , en〉 ∈ (EO(CM ,EM ))∗ be a change log. There exist ob-
ject models OM1 ,OM2 , . . . ,OMn ∈ VOM such that

OM0
e1⇒ OM1

e2⇒ OM2 . . .
en⇒ OMn

Hence, change log L results in object model OMn when starting in OM0 .

This is denoted by OM0
L
⇒ OMn .

The formalizations above provide operational semantics for an abstract
database system that processes a sequence of events. However, the goal
is not to model a database system. Instead, we aim to relate database
updates to event logs that can be used for process mining. Subsequently,
we assume that we can witness a change log L = 〈e1, e2, . . . , en〉. It is easy
to see atomic events. Moreover, various heuristics can be used to group
events into composite events (e.g., based on time, session id, and/or user
id). Definition 10 shows that this assumption allows us to reconstruct
the state of the database system after each event, i.e., the object model
OMi resulting from ei can be computed.

6 Approach: Scope, Bind, and Classify

Process-mining techniques require as input a “flat” event log and not
a change log as described in Definition 10. Table 1 shows the kind of
input data that process-mining techniques expect. Such a conventional
flat event log is a collection of events where each event has the following
properties:
– Case id: each event should refer to a case (i.e., process instance). If

an event is relevant for multiple cases, it should be replicated when
creating event logs.

– Activity: each event should be related to an activity. Events refer to
activity instances, i.e., occurrences of activities in the corresponding
process model.

– Timestamp: events within a case should be ordered. Moreover,
timestamps are not just needed for the temporal order: they are
also vital for measuring performance.

– Next to these mandatory attributes there may be all kinds of optional
event attributes. For example:



• Resource: the person, machine or software component execut-
ing the event.

• Type: the transaction type of the event (start, complete, sus-
pend, resume, etc.).

• Costs: the costs associated with the event.
• Customer: information about the person or organization for

whom or which the event is executed.
• Etc.

Dedicated process-mining formats like XES or MXML allow for the stor-
age of such event data. To be able to use existing process-mining tech-
niques we need to be able to extract flat event logs and not a change log
as defined in the previous section.
Let CM = (C,A,R, val , key , attr , rel ,VOM ) be a constrained class model,
EM = (EN , type,VE) an event model, and OM0 ∈ VOM the initial valid
object model. In the remainder we focus on the problem of converting
a change log L = 〈e1, e2, . . . , en〉 ∈ (EO(CM ,EM ))∗ into a collection of
conventional events logs that serve as input for existing process-mining
techniques. Given an event occurrence ei = ((eni,CEi), tsi), one may
convert it into a conventional event by taking tsi as timestamp and eni

as activity. However, an event occurrence needs to be related to zero or
more cases and the change log may contain information about multiple
processes. Hence, several decisions need to be made in the conversion
process. We propose a three-step approach: (1) scope the event data,
(2) bind the events to process instances (i.e., cases), and (3) classify the
process instances.

6.1 Scope: Determine the Relevant Events

The first step in converting a change log into a collection of conventional
events logs is to scope the event data. Which of the event occurrences in
L = 〈e1, e2, . . . , en〉 are relevant for the questions one aims to answer?
One way to scope the event data is to consider a subset of event names
ENs ⊆ EN . Recall that EN are all event names in an event model. In
Figure 3, EN = {en1, en2, . . . , en7}. Events may also be selected based
on a time window (e.g., “all events executed after May 21st” or “all
events belonging to cases that were complete in 2013”) or the classes
involved (e.g., “all events related to Metallica concerts”).

6.2 Bind: Relate Events to Process Instances

Process models always describe lifecycles of instances. For example, when
looking at any BPMN, EPC, or UML activity model there is the implicit
notion of a process instance (i.e., case). The process model is instantiated
once for each case, e.g., for an order handling process the activities always
operate on a specific purchase order. The notion of process instances is
made explicit in process-aware information systems, e.g., Business Pro-
cess Management (BPM) and Workflow Management (WfM) systems.
However, in most other systems the instance notion is implicit. Moreover,
the instance notion selected may depend on the questions one would like



to answer. Consider for example Figure 3. Possible instance notions are
concert, ticket, booking, customer, band, concert hall, seat, and pay-
ment. One could construct a process describing the lifecycle of tickets.
Such a lifecycle is different from the lifecycle of a concert or booking.
One could even consider discovering the lifecycle of chairs in a concert
hall by taking seat IDs as process instances.
Technically, we need to define a set of process instances PI (cases) and re-
late events to these instances: bind ⊆ VEs ×PI with VEs = {(en,CE) ∈
VE | en ∈ ENs} the subset of the valid events selected (without times-
tamps). Let pi ∈ PI be a process instance and ei = ((eni,CEi), tsi) an
event occurrence: event ei belongs to case pi if ((eni,CEi), pi) ∈ bind .
Note that bind is a relation and not a function. This way the same event
occurrence may yield events in different process instances. For example,
the cancelation of a concert may influence many bookings.
Relation bind allows us to associate events to cases. This, combined with
the timestamps and activity names, enables the construction of event
logs.

6.3 Classify: Relate Process Instances to Processes

After scoping and binding, we have a set of events related to process in-
stances. Since we can reconstruct the object model before and after each
event occurrence, we can add all kinds of optional element attributes.
Hence, we can create a conventional event log with a rich set of attributes.
However, as process-mining techniques mature it becomes interesting to
compare different groups of process instances [3]. Instead of creating one
event log, it is often insightful to create multiple event logs. For example,
to compare the booking process for two concerts we create two event logs
and compare the process-mining results.
To allow for comparative process mining, process instances are classified
using a relation class ⊆ PI ×CL with CL the set of classes. Consider for
example the study process of students taking a particular course. Rather
than creating one process model for all students, one could create (1) a
process model for students that passed and a process model for students
that failed, (2) a process model for male students and a process model for
female students, or (3) a process model for Dutch students and a process
model for international students. Note that class ⊆ PI × CL does not
require a strict partitioning of the process instances, e.g., a case may
belong to multiple classes.
In [3], the notion of process cubes was proposed to allow for comparative
process mining. In a process cube events are organized using different
dimensions. Each cell in the process cube corresponds to a set of events
that can be used to discover a process model, to check conformance, or
to discover bottlenecks. Process cubes are inspired by the well-known
OLAP (Online Analytical Processing) data cubes and associated opera-
tions such as slice, dice, roll-up, and drill-down [24]. However, there are
also significant differences because of the process-related nature of event
data. For example, process discovery based on events is incomparable
to computing the average or sum over a set of numerical values. More-
over, dimensions related to process instances (e.g. male versus female



students), subprocesses (e.g. group assignments versus individual assign-
ments), organizational entities (e.g. students versus lecturers), and time
(e.g. years or semesters) are semantically different and it is challenging
to slice, dice, roll-up, and drill-down process-mining results efficiently.
As mentioned before, we deliberately remain at the conceptual level and
do not focus on a particular DBMS. However, the “scope, bind, and
classify” approach allows for the transformation of database updates
into events populating process cubes that can be used for a variety of
process-mining analyses.

7 Related Work

The reader is referred to [1] for an introduction to process mining. Al-
ternatively, one can consult the Process Mining Manifesto [36] for best
practices and the main challenges in process mining. Next to the auto-
mated discovery of the underlying process based on raw event data, there
are process-mining techniques to analyze bottlenecks, to uncover hidden
inefficiencies, to check compliance, to explain deviations, to predict per-
formance, and to guide users towards “better” processes. Dozens (if not
hundreds) of process-mining techniques are available and their value has
been proven in many case studies. For example, dozens of process dis-
covery [1, 9, 11, 16, 32, 18, 22, 23, 27, 33, 39, 48, 51, 52] and conformance
checking [6, 13, 14, 15, 21, 28, 33, 41, 42, 47, 50] approaches have been
proposed in literature. However, this paper is not about new process-
mining techniques but about getting the event data needed for all of
these techniques. We are not aware of any work systematically transform-
ing database updates into event logs. Probably, there are process-mining
case-studies using redo/transaction logs from database management sys-
tems like Oracle RDBMS, Microsoft SQL server, IBM DB2, or Sybase
IQ. However, systematic tool support seems to be missing.
The binding step in our approach is related to topic of event correla-
tion which has been investigated in the (web) services [4]. In [8] and [17]
various interaction and correlation patterns are described. In [44] a tech-
nique is presented for correlating messages with the goal to visualize the
execution of web services. Also Nezhad et al. [40] developed techniques
for event correlation and process discovery from web service interaction
logs.
Most closely related seem to be the work on artifact-centric process
mining [12, 30, 31], process model repositories [46], event log extrac-
tion ([49, 34]), and process cubes [3]. However, none of these approaches
define an event model on top of a class model.

8 Conclusion

To drive innovation in an increasingly digitalized world, the “process sci-
entist” needs to have powerful tools. Recent advances in process mining
provide such tools, but cannot be applied easily to selections of the Inter-
net of Events (IoE) where data is heterogeneous and distributed. Process



mining seeks the “confrontation” between real event data and process
models (automatically discovered or hand-made). The fifteen case stud-
ies listed on the web page of the IEEE Task Force on Process Mining [37]
illustrate the applicability of process mining. Process mining can be used
to check conformance, detect bottlenecks, and suggest process improve-
ments. However, the most time-consuming part of process mining is not
the actual analysis. Most time is spent on locating, selecting, converting,
and filtering the event data. The twelve guidelines for logging presented
in this paper show that the input-side of process mining deserves much
more attention. Logging can be improved by better instrumenting sys-
tems. However, we can also try to better use what is already there and
widely uses: database systems. This paper focused on supporting the
systematic extraction of event data from database systems.

Regular tables in a database provide a view of the actual state of the
information system. For process mining, however, it is interesting to know
when a record was created, updated, or deleted. Taking the viewpoint
that the database reflects the current state of one or more processes,
we define all changes of the database to be events. In this paper, we
conceptualized this viewpoint. Building upon class and object models,
we defined the notion of an event model. The event model relates changes
to the underlying database to events used for process mining. Based on
such an event model, we defined the “scope, bind, and classify” approach
that creates a collection of event logs that can be used for comparative
process mining.

In this paper we only conceptualized the different ideas. A logical next
step is to develop tool support for specific database management systems.
Moreover, we would like to relate this to our work on process cubes [3]
for comparative process mining.
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