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Abstract: - The fatigue feature extraction using the Short-Time Fourier Transform (STFT) and wavelet transform 

approaches are presented in this paper. The transformation of the time domain signal into time-frequency domain 

computationally implemented using the STFT and Morlet wavelet methods provided the signal energy distribution 

display with respect to the particular time and frequency information. In this study, cycles with lower energy content 

were eliminated, and these selections were based on the signal energy distribution in the time representation. The 

simulation results showed that the Morlet wavelet was found to be a better approach for fatigue feature extraction. The 

wavelet-based analysis obtained a 59 second edited signal with the retention of at least 94 % of the original fatigue 

damage. The edited signal was 65 seconds (52 %) shorter than length of the edited signal that was found using the 

STFT approach. Hence, this fatigue data summarising algorithm can be used for accelerating the simulation works 

related to fatigue durability testing. 
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1   Introduction 
Occasionally, fatigue signals measured from critical 

automotive parts have variable amplitude patterns with 

mean value of the data that change with time (each 

pattern has different statistical value). They contain a 

large percentage of small amplitude cycles and the 

fatigue damage for these cycles can be small. For this 

reason, in many cases, the signal was edited by 

removing these cycles in order to produce representative 

and meaningful yet economical testing [1-2]. 

     In a fatigue life assessment, fatigue signal extraction 

is described as a method for fatigue data editing which 

leads to summarising a fatigue signal. The method is 

performed by segment identification and extraction of 

those that contribute to the more fatigue damaging 

events of a metallic material. On the other hand, 

segments containing lower amplitude cycles are omitted, 

since these data type theoretically gave minimal or no 

fatigue damage. This process generates a new shortened 

signal, for which this signal type can be used to reduce 

the testing time and costs for fatigue testing [3]. Two 

key factors are suggested for achieving an efficient 

design and modification processes to ensure adequate 

fatigue life assessment, i.e.: the signal statistical 

parameters and the fatigue damage should be as accurate 

as possible and the component durability tests should be 

as short as possible. 

     Several fatigue data editing approaches have been 

introduced in various domains: time, peak and valley, 

frequency, cycles, damage, and histogram [4]. The most 

commonly applied procedures in the research literature 

have been based on time and frequency domains. One of 

the new approaches that was developed for the fatigue 

signal extraction is the one in time-frequency domain. 

Previously, the time-frequency approach had been 

applied to the problem of fatigue signal extraction, but 

only for the purpose of spike removal and de-noising 

[5]. Among the time-frequency domain analyses that 

have been used widely in engineering problems are 

Short-time Fourier Transform (STFT) and wavelet 

transform (WT) 

     The STFT or windowed Fourier transform is one of 

the methods for transforming the time domain signal 

into the time-frequency domain [6]. In addition, the 

STFT adopted the Fourier transform to analyze only a 

small section of the signal at one specific time. Finally, 

the STFT provides information on when and at what 

frequency a signal occurs. However, this information is 

only obtained with limited precision determined by the 

size of the window. Many signals require a more 

flexible approach, in order to determine more accurately 

either time or frequency [7]. 

     With the advances in digital signal processing 

research, there has been an increasingly strong interest 

in the related application for fatigue life assessment of 

automotive components. During the last decade, an 

improved signal processing technique, called the WT, 

has been frequently used in the field of vibrational 

diagnostics and also in fault detection. In addition, the 

wavelet coefficient analysis has also have been applied 

to detect fatigue transverse cracks in rotors. Its peak 

absolute value is highly sensitive to the depth of crack 

WSEAS TRANSACTIONS on SIGNAL PROCESSING
S. Abdullah, T. E. Putra, M. Z. Nuawi, 
Z. M. Nopiah, A. Arifin, L. Abdullah

ISSN: 1790-5052 91 Issue 3, Volume 6, July 2010

mailto:shahrum@vlsi.eng.ukm.my


and even a very shallow crack can be detected. The rotor 

is not required to stop and the detection process is 

applied for a rotating shaft makes the methodology more 

versatile, convenient and unambiguous [8]. 

     In order to obtain the appropriate technique for the 

fatigue strain signal extraction, the STFT and WT 

approaches were utilized to transform the time domain 

signal into time-frequency domain and trace the lower 

energy cycles contained in the original signal. Those 

segments were then removed from the original signal in 

order to gain a new edited signal containing the higher 

energy cycles. Segments which have been removed have 

minimal or no fatigue damaging potential. Therefore, the 

original fatigue damage can be retained in the edited 

signal produced at the end of the process. The 

effectiveness of these techniques was validated based on 

the fatigue damaging retention in the shortened signals. 

     This STFT-based fatigue feature extraction algorithm 

was previously developed by Abdullah et al [9]. Since 

the WT has been found to be theoretically better than the 

STFT in the time-frequency localisation, it gave a 

motivation to the authors for developing a similar data 

extraction approach in the WT. Therefore, a new 

algorithm for fatigue feature extraction using the Morlet 

wavelet was developed. The WT results were compared 

to the findings using the STFT extraction approach in 

order to see the suitability approach in fatigue history 

editing. 

 

 

2   Literature Background 
 

 

2.1 The STFT 
The STFT is performed by dividing the signal into small 

sequential or overlapping data frames. Then, Fast 

Fourier Transform (FFT) has been applied to each data 

frame. The output of successive STFT can provide a 

time–frequency representation of the signal. In order to 

accomplish this, the signal is truncated into short data 

frames by multiplying it by a window so that the 

modified signal is zero outside the data frame. In order 

to analyse the whole signal, the window is then 

translated into a time and reapplied to the signal. 

     For the resolution, the length of the window used in 

this method is fixed on every time and frequency axis. 

Window size used will determine the obtained 

resolution, where small windows present good time 

resolution, and longer windows represent good 

frequency representations [10]. 

     The STFT is composed by the local spectra of 

segments of the primary function, as viewed through a 

translating window of fixed shape. The local spectra at 

all points on the primary time axis constitute the STFT. 

Generally, the STFT is expressed as [11]: 

 

 




 diftwthftSTFT )2exp()()(),(               (1) 

 

where h is the primary function, τ is the time, and f is the 

frequency. The position of the translating window w is 

determined by t, which has the same units as τ. If w is 

replaced with the value of 1, the STFT reduces to H, i.e. 

the Fourier transform of h. The modulus of the STFT is 

also known as the spectrogram.  

 

 

2.2 The Morlet wavelet 
This approach is probably the most recent solution to 

overcome the nonstationary signals. This time-frequency 

technique is applied by cutting time domain signal into 

various frequency components through the compromise 

between time and frequency-based views of the signal. It 

presents information in both time and frequency domain 

in a more useful form [12-14].  

     The WT analysis is started with a basic function 

(called the mother wavelet) scaled and translated to 

represent the signal being analysed [15]. The transform 

shifts a window along the signal and calculates the 

spectrum for every position. The process is repeated 

many times with a slightly shorter (or longer) window 

for every new cycle. The result will be a collection of 

time-frequency representations of the signal with 

different resolutions. The WT provides information on 

when and at what frequency the change in signal 

behaviour occurs [12]. 

     Obviously, the WT represents a windowing 

technique with variable-sized regions. This technique 

allows the use of long time intervals (more precise low 

frequency information) and shorter regions (high 

frequency information). It means the wavelet method 

solves the resolution problem because the window 

length is long for low frequency and short for high 

frequency. Therefore, the frequency resolution is good 

for low frequency (at high scales) and the time 

resolution is good at high frequency (at low scales). The 

major advantage is the ability to analyse a localized area 

of larger signal, also known as local analysis [7]. 
     The wavelet decomposition calculates a resemblance 
index between the signal being analysed and the 
wavelet, called the coefficient. It is the result of 
regression of an original signal produced at different 
scales and different sections on the wavelet. It represents 
the correlation between the wavelet and a section of the 
signal. If the index is large, the resemblance is strong, 
otherwise it is slight. Generally, the wavelet coefficient 
C is expressed with the following integral [7]: 
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     The Morlet wavelet is one of functions that are 

generally used in the Continuous Wavelet Transform 

(CWT) analyses [16]. The WT of any time-varying 

signal f(t) is defined as the sum of all of the signal time 

multiplied by a scaled and shifted version of the wavelet 

function ψ(t) [10]. The CWT is expressed by the 

following integral: 

 

     



 dtttfCWT baba ,,                                                 (3) 

 

The parameter a represents the scale factor which is a 

reciprocal of frequency, the parameter b indicates the 

time shifting or translation factor, and t is time.  

     Ψa,b (t) denotes the mother wavelet, i.e. [17]: 
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     In addition, the wavelet coefficient indicates how the 

energy in the signal is distributed in the time-frequency 

plane [8]. The energy spectrum (the energy density over 

frequency) is plotted in order to observe the signal 

behaviour and its content gives significant information 

about the random signal pattern. 

 

 

2.3 Fatigue Life Assessment 
There are three major approaches to predicting fatigue 

life namely stress-life, strain-life, and fracture 

mechanics. At below the transition point (approximately 

1000 cycles), the ε-N-based approach is appropriate 

method and is commonly used to predict fatigue life for 

ductile materials at relatively short fatigue life. The 

crack initiation method relates the plastic deformation 

that occurs at a localized region where fatigue cracks 

begin to the durability of the structure under influence 

of mean stress [18]. 

     Current industrial practice uses the Palmgren-Miner 

[19-20] linear cumulative damaging rule normally 

associated with the established strain-life fatigue 

damaging models. The total strain amplitude εa is 

produced by the combination of elastic and plastic 

amplitudes, i.e.: 

 

paeaa               (6) 

 

where εea is the elastic strain amplitude and εpa is the 

plastic strain amplitude. The elastic strain amplitude is 

defined by: 

 

 bf

f

ea N
E

2

,
                  (7) 

 

while the plastic strain amplitude is given as: 

 

 c
ffpa N2'             (8) 

 

where Nf is the numbers of cycle to failure for a 

particular stress range and mean, σ’f is the fatigue 

strength coefficient, b is the fatigue strength exponent, 

ε’f is the fatigue ductility coefficient, c is the fatigue 

ductility exponent and E is the material modulus of 

elasticity. 

     Combining Equations (7) and (8) gives the Coffin-

Manson relationship [21-22], which is mathematically 

defined as: 

 

   cff

b

f

f
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            (9)  

 

which is essentially Equation (6) above and is the 

foundation of the strain-life approach. 

     The fatigue damage caused by each cycle of repeated 

loading is calculated by reference to material life curves, 

such as S-N or ε-N curves. The fatigue damage D for one 

cycle and the total fatigue damage ΣD caused by cycles 

are expressed respectively as [19-20]: 

 

fN
D

1
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where Ni is the numbers of cycle within a particular 

stress range and mean. 

     Fatigue damage has value in the range (0-1) where 

zero denotes no damage (extremely high or infinite 

number of cycles to failure) and 1 means total failure 

(one cycle to failure). 

 

 

2.4 Signal Statistical Parameters 

In the case of the fatigue research, a signal consists of a 

measurement of cyclic loads, i.e. force, strain, and stress 

against time. A time series typically consists of a set of 

observations of a variable being taken at equally spaced 
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intervals of time. Global signal statistical parameters are 

frequently used to classify random signals and monitor 

the pattern of analysed signals. For a signal with a 

numbers of data point n in a sampled sequence, the 

mean x is given by: 

 






n
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x

1
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     For a fatigue signal, the calculation of the root-mean-

square (r.m.s.) and the kurtosis are important in order to 

retain a certain amount of the signal amplitude range 

characteristics. The r.m.s. value is the signal 2
nd

 

statistical moment used to quantify the overall energy 

content of the oscillatory signal. The r.m.s relationship is 

defined as: 
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     The kurtosis is the signal 4
th
 statistical moment. In 

engineering field, it is used as a measure of 

nongaussianity for detection of fault symptoms since it 

is highly sensitive to spikiness or outlier signal among 

the instantaneous values. Mathematically, the kurtosis 

expression is defined as [23]: 
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where xj is the amplitude of signal.  

      

     In some definitions of the kurtosis, a deduction of 3.0 

is added to the definition in order to maintain the 

kurtosis of a Gaussian distribution to be equal to zero. 

For clarity and convenience, in this study the original 

definition of the kurtosis, where the Gaussian 

distribution has a kurtosis value is approximately 3.0, 

was used for the analysis. Therefore, a kurtosis value of 

higher than 3.0 indicates the presence of more extreme 

values than the one that should be found in a Gaussian 

distribution [3]. This situation indicated that the fatigue 

damage is higher than Gaussian stresses due to higher 

amplitude fatigue cycles [24]. 

 

 

2.5 Fatigue Feature Extraction 
This fatigue signal summarising algorithm uses peak to 

peak amplitude range as a parameter to determine gate 

value for the eliminating process. The value obtained 

from the wavelet coefficient amplitude at a cut off point 

or fatigue limit of the particular material is used to slice 

the original signal. The extracted segment identification 

is performed by searching the events start and finish 

points which define the temporal extent of the extracted 

segment. The identification is based on energy loss 

concept, i.e. selected segments are at the start and finish 

points. The example of the segment identification is 

described in Fig. 1. In the figure, the selected segment is 

at gate value of 400 με
2
/Hz. Start point is a valley point 

if the peak before is higher than the peak after the point. 

While the finish point is selected if peak after is higher 

than peak before the point. This concept is performed by 

[3] based on transient vibration where start and finish 

points are selected based on transient form. The points 

are determined based on the signal where the shortening 

in signal background occurs.  

      

 

Fig. 1 The extracted segment identification 
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     After all the segments are identified, the fatigue time 

history is then sliced in order to remove lower wavelet 

coefficient amplitudes (less than the gate value) 

contained in the original time history range. For this 

reason, the majority of the original fatigue damage is 

retained in the edited signal. All extracted segments (the 

complete section between the start and the end of the 

segments) selected based on time location of the wavelet 

coefficient amplitude are then combined together to 

produce a new mission time history. The mission signal 

replicates the signal statistical parameter and total 

fatigue damaging characteristics of the original time 

history. The optimum gate value is accordingly 

determined and it is based on the effectiveness of 

retaining the characteristics of the original signal in the 

mission signal. Ideally, the signal has shorter time length 

but is equivalent in the characteristic values. 
 

 

3   Methodology 
In this study, the input signal was measured at a front 

lower suspension arm of a passenger car driven over a 

public road surface (Fig. 2). The signal was a variable 

amplitude loading sampled at 200 Hz for 32,000 data 

points. It gave the total signal record length of 160 

seconds. The collected signal was recorded using a 

fatigue data acquisition system containing many small 

amplitude and high frequency in the signal background, 

as illustrated in Fig. 3.a for the time series and Fig. 3.b 

for its Power Spectral Density (PSD). For the fatigue 

damaging calculation, the selected material for the 

simulation purpose was the SAE1045 carbon steel shaft. 

It was chosen as a common material used in automotive 

industries for fabricating a vehicle lower suspension arm 

structure [25]. The material properties and their 

definitions are given in Table 1 [26]. 

 

 

 
Fig. 2. Data collection: (a) a section of the test track, (b) the data acquisition set-up 

 

 

 

 
Fig. 3. (a) the time history plot of the original test signal, (b) the Power Spectral Density (PSD) 
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Table 1: The mechanical properties of the SAE1045 

carbon steel shaft  

Properties Values 

Ultimate tensile strength, Su (MPa) 

Modulus of elasticity, E (GPa) 

Fatigue strength coefficient, σ’f (MPa) 

Fatigue strength exponent, b 

Fatigue ductility exponent, c  

Fatigue ductility coefficient, ε’f 

621 

204 

948 

-0.092 

-0.445 

0.26 

 

     For solving the subject matters of this paper, the 

fatigue data editing using the STFT and Morlet wavelet 

methods was based on the following main stages: the 

time-frequency analysis, the generation of a new edited 

signal, and fatigue damaging analysis. Computational 

algorithms based on the STFT and the Morlet wavelet 

were developed in order to analyze the signal according 

to the fatigue damaging calculation and also to remove 

amplitude containing lower power. The locations of 

fatigue damaging event were identified according to the 

higher power level in time domain plot. 

     For the eliminating process, the magnitude of time 

domain spectrum level was used as the parameter to set 

the gate value. Various gate values were used in order to 

exhibit the effectiveness of the edited signal with respect 

to the fatigue damaging retention. It means that, the 

segments with amplitude level below the gate value 

were eliminated from the time domain signal based on 

the location in the time history distribution. The segment 

with magnitude higher than the gate value was sliced as 

the retained segment. The sliced segment identification 

was performed by searching the two inversion points 

(one on either side of peak value). The retained 

segments, selected based on time location of the sliced 

segment, were joined to produce the new edited signal. 

For this reason, the majority of the original fatigue 

damage is related in the edited signal. The flowchart of 

both methods is illustrated in Fig. 4. 

 

 

 
 

Fig. 4. Simplified flowchart of the computational fatigue data editing algorithm using the STFT and Morlet wavelet 

 

 

4   Results and Discussions 
In this analysis, the signal in time domain was converted 

into time-frequency domain using the STFT method. 

The time history signal was separated into a number of 

windows using the Gaussian window with window size 

of 128. The number of overlaps used in order to provide 
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the high resolution in the time representation was 120. 

For each window, the Fourier transform was applied for 

the calculation of the signal energy contained in each 

window. The energy calculation was gained from the 

PSD that produced the spectrogram of the STFT.  

     Using a specific commercial software package, the 

STFT plot of the original fatigue signal showed a two 

dimensional view of the signal energy distribution, as 

observed in the time-frequency plane. This result is 

plotted in Fig.5.a. The level was presented by a colour 

contour, where the red colour showed the highest energy 

content and followed by yellow, green and blue. Based 

on the energy parameter, the spectrogram value was 

decomposed into a time domain display in order to 

represent the signal energy distribution in time history. 

The energy display provided the time location 

containing the lower energy cycle, as illustrated in Fig. 

5.b. 

 

 

 

 
 

Fig. 5. (a) The STFT localization, (b) the STFT energy distribution 

 

 

     In this STFT study, nine signals (the original and 8 

edited signals) were simulated for the purpose of the 

verification the efficiency of fatigue data editing using 

STFT method. The edited signals were produced at eight 

gate values, i.e. 5 με
2
/Hz, 10 με

2
/Hz, 15 με

2
/Hz, 20 

με
2
/Hz, 25 με

2
/Hz, 30 με

2
/Hz, 35 με

2
/Hz, and 40 με

2
/Hz. 

From the fatigue damaging calculation results, as shown 

in Fig. 6, it was found that 5 με
2
/Hz to be an optimum 

gate value since the total fatigue damaging value 

produced from this edited signal had only 6 % deviation 

when compared to the original signal. The new edited 

signal of 124 seconds was produced, which was 36 

seconds shorter than the original signal length, as shown 

in Fig. 7. This value gave a reduction of 22 % the 

original time length. 

     For the Morlet wavelet-based edited signal, it started 

by analyzing the wavelet coefficients, as shown in Fig. 

8.a using Equation (5). In the presented scalogram, the 

x-axis denoted the time parameter and the y-axis 

represented the scale that has an inversely related to the 

frequency value. The colour intensity at each x-y point 

was proportional to the absolute value of the wavelet 

coefficients as a function of the dilation and translation 

parameters. It provided the energy distribution display 

with respect to the particular time and frequency 

information. Accordingly, a lower scale indicated higher 

frequency and had small amplitude which means these 

cycles had lower energy, indicating minimal or no 

fatigue damaging potential. A large scale was indicative 

of lower frequency and higher amplitude that indicates 

these cycles had higher energy causing the fatigue 

damage.  

 

 

 
 

Fig. 6. Graph of parameter changes over gate values of 

the STFT 
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Obviously, the lower frequency indicated higher 

magnitude distribution, and the lower magnitude 

distribution was presented at higher frequency event. 

With the newly Morlet wavelet-based developed 

algorithm, the wavelet coefficients were transposed into 

time domain signal, as shown in Fig. 8.b.      

 

 

 
 

Fig. 7. The 124 seconds of the STFT-based edited signal 

 

 

 
 

Fig. 8. The distribution of the Morlet wavelet coefficients: (a) time-frequency representation,  

(b) time representation 
 

 

     This extraction process only involved 150 με
2
/Hz and 

200 με
2
/Hz gate values. From the total fatigue damaging 

calculation results, it was found that 200 με
2
/Hz was 

selected to be the optimum gate value giving lower than 

10 % difference of the fatigue damage, as can be 

observed in Fig. 9. The total fatigue damage produced 

from this edited signal had only 6 % deviation compared 

to the original signal. Furthermore, the signal contained 

more than 90 % of the original signal statistical 

parameter values. It means that the algorithm preserved 

the originality of the fatigue damage and the signal 

behaviour. At this fatigue damaging ratio, the new 

edited signal of 59 seconds was produced, which was 

101 seconds shorter than the original signal length, as 

shown in Fig. 10. This value gave 63 % of the original 

time length reduction. 
 

 
 

Fig. 9. Graph of parameter changes over gate values of 

the wavelet transform 
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Fig. 10. The 59 seconds of the Morlet-based edited signal 

 
 

     Based on these two approaches, finally, the 

applicability of fatigue data editing with the adaptation 

of the Morlet wavelet method was proven for the 

situation to shorten the signal length with the retention 

of the majority of the original fatigue damage. The 

energy spectrum showed relatively adequate with 

damaging event in the fatigue signal and was a very 

useful tool for damaging detection in the fatigue signal. 

The extraction of fatigue damaging events successfully 

removed the lower energy cycles in the time history and 

created a new edited signal which retains higher fatigue 

damaging segments containing the majority of the 

fatigue damage.  

 

 

5   Conclusion 
This paper discusses the study of a fatigue data editing 

technique in time-frequency domain by using the STFT 

and Morlet wavelet methods. Overall, based on the 

simulation analysis, the findings of this paper suggested 

that the Morlet wavelet was more suitable for the fatigue 

data editing. The Morlet wavelet-based edited signal 

contained at least 94 % of the original fatigue damage in 

the 59 second edited signal, i.e. only 37 % of the 

original signal time length. Whereas the STFT-based 

edited signal contained 94 % of the original fatigue 

damage in the 124 second edited signal, i.e. 78 % of the 

original signal time length. In terms of the applicability 

of the shortened signal, this kind of signal was normally 

used in the laboratory fatigue testing for the purpose of 

accelerated fatigue testing.  
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