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Abstract—This paper introduces a method to extract driving
behaviors from a human expert driver which are applied to an
autonomous agent to reproduce proactive driving behaviors. Deep
learning techniques were used to extract latent features from the
collected data. Extracted features were clustered into behaviors and
used to create velocity profiles allowing an autonomous driving
agent could drive in a human-like manner. By using proactive
driving behaviors, the agent could limit potential sources of dis-
comfort such as jerk and uncomfortable velocities. Additionally,
we proposed a method to compare trajectories where not only the
geometric similarity is considered, but also velocity, acceleration
and jerk. Experimental results in a simulator implemented in ROS
show that the autonomous agent built with the driving behaviors
was capable of driving similarly to expert human drivers.

Index Terms—Autonomous driving, autoencoder, driving
behavior, deep learning.

I. INTRODUCTION

IN RECENT years, there has been increased interest in
Autonomous Driving. Large corporations, such as Waymo,

Tesla, Cruise, and Uber, are investing heavily into it [2]. Tradi-
tional model-based techniques for autonomous driving vehicles
use maps to localize themselves, plan and follow paths to their
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destination while respecting traffic rules [3], [4]. Current high
definition environmental maps contain the road lane network,
traffic sign locations and semantic information, such as traffic
rules. These maps make it possible to compute paths for au-
tonomous vehicles, however, in many cases they do not convey
all the information required for a comfortable ride.

Passenger comfort, which has been a focus of recent re-
search [5], is not necessarily attained by strictly following traffic
rules. One factor involved in comfort is risk perception [6], which
is a passenger’s ability to identify potential dangers and risky
behavior. For example, in certain situations, driving with only
regards to traffic rules can in fact be dangerous. Driving at the
speed limit through an unsignaled intersection, even with right
of way, could lead to a situation where the driver cannot stop
in time to avoid a suddenly appearing obstacle. Drivers tend to
make a trade-off between safety, speed and ride comfort [7],
which is difficult to model without using human data. One way
to model this trade-off is to extract proactive behavior from
expert drivers; people who drive safely, defensively anticipating
potential dangers and proactively acting in a way to mitigate
them [8]. Proactive meaning that these drivers take measures to
protect themselves, suspecting potential oncoming hazards that
are not immediately visible.

Safe driving behavior at intersections is especially important
since much of the difference in driving behavior is related to
handling various types of intersections [9]. Over 50% of all
traffic accidents in Japan occur at or near intersections [10].
In the US, 22% of fatalities and 45% of injuries in crashes
are intersection-related [11]. Pedestrian collisions in the US
resulted, 98.6% of the time, in pedestrian injury or fatality [12].
These accidents are due to a driver’s inability to both assess
and predict potential dangers in intersections [13]. The signif-
icant number of accidents and subsequent risk of death and
injury illustrate the importance of safe or proactive driving at
intersections.

In this work, the target environments are typical residential
areas in Japan; characterized by narrow roads, no traffic lights,
and few road markings. In these areas, it is common to find
unmarked unsignaled intersections with blind corners, which are
challenging for self-driving cars, since on-board sensors cannot
detect obstacles in occluded areas [14].

In this work we propose to create an autonomous agent from
driving behaviors extracted from expert driver data. This agent
will then be compared using our trajectory comparison method.
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Fig. 1. Driving data is collected from expert drivers and features were extracted
using an autoencoder. Similar features were clustered together to create driving
behaviors. The behaviors were passed, along with an environmental vector map
to a driving agent. The agent then computed steering and velocity commands
resulting in safe and comfortable trajectories similar to human driven ones.

Fig. 2. Top view of a typical residential area featuring different types of
intersections in Nagoya, Japan. The paths in red show the areas used to train the
autoencoder (Section III-C). The yellow paths in the bottom part show the areas
used to test the encoders.1 Both paths move in a counterclockwise direction.

The flow of the work is shown in Fig. 1. First we took driving
data from experienced proactive drivers, as well as elderly
drivers. They drove continuously in suburban residential roads
involving turns, braking and acceleration at various types of
intersections (4-way with and without stops, T-intersections,
etc.) and moving through various straight segments of road1

(Fig. 2). We used autoencoders to perform driving data dimen-
sion reduction, extracting representative feature vectors from the
input data set. We clustered these driving features, resulting in
distinct driving behaviors. The driving behaviors, together with

1The experimental environment can be seen in detail in the fol-
lowing URL: [Online]. Available: https://drive.google.com/open?id=
1f6xpYsBtWAy3VHIfocn3WwOlX8VB-ECO&usp=sharing

a map, were fed to a driving agent which was able to produce
steering and velocity commands which resulted in trajectories
similar to the human expert driven ones. Details are given in the
following sections.

The contributions of this work are:
• a data-driven approach with deep autoencoders to extract

driving behaviors which are used in a driving agent which
can compute trajectories similar to human expert drivers.

• showing it is possible to leverage the collected data to
learn how to drive in a human-like fashion, safely and
comfortably, in the absence of obstacles.

• a new method to score trajectory comparisons.
The structure of the work is as follows: In Section II we discuss

relevant works related to our research and how we address
some of the problems remaining unsolved within the realm of
proactive driving and feature extraction. In Section III we explain
our methodology of using feature extraction to extract driving
behaviors. Next, in Section IV we introduce our experimental
setup, detailing how we collected and used data to illustrate
our methods. With Section V we present the results of those
experiments. In Section VI and Section VII we provide final
discussion and our conclusions, respectively.

II. RELATED WORKS

This section details related works concerning proactive driv-
ing, feature extraction, driving policies and works based on
simulators. Additionally, it also provides a discussion on the
differences between other works and the approach presented in
this paper.

A. Proactive Driving

Proactive or defensive driving in order to avoid potential
hazards is an important topic for traffic and autonomous driv-
ing research. Yoshihara et al. illustrates the importance of
modeling driving behavior for dangerous situations, such as
in blind intersections where vision is partially or completely
obscured [8]. There are works which describe computational
solutions for autonomous vehicles when navigating areas with
high a likelihood of collisions with other vehicles, pedestrians
and cyclists [15]. Morales et al. computed visibility through
an index [16] and created a trajectory planner which considers
occluded and non-occluded features of the environment [17].

Another way to tackle safety issues could be to leverage
big data or user connectivity in co-operative networks, such as
in [18] where they illustrate how densely connected users on a
network can be clustered in order to deliver efficient and secure
data transmission. In a similar vein, nearby drivers, potentially
using vehicular ad hoc networks (VANETs), could share their
location; alerting those at intersections of potential oncoming
hazards [19].

Examining the driving performance of elderly drivers indicate
that they make more errors than average drivers. Infrequent
drivers, especially amongst the elderly, would indicate similar
results as well as show the need for further driving educa-
tion [20]. Elderly drivers are also over-represented in crashes
occurring at intersections [21], and are more at risk of fatal

https://drive.google.com/open{?}id$=$1f6xpYsBtWAy3VHIfocn3WwOlX8VB-ECO&amp;usp$=$sharing
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crash involvement in intersection and other related crashes [22].
A potential solution for this increase in crash involvement due to
age, or required training for infrequent or inexperienced drivers,
could come from the study and development of autonomous
agents based on expert driving data.

Differently from previous works involving proactive driv-
ing [23], our work focuses on using deep learning to extract
proactive behaviors exhibited by expert drivers.

B. Feature Extraction

In previous works we have proven that we can extract these
proactive behaviors from expert driver data and create driving
models from them [23], [24]. Using machine learning and hand-
picked features, we created an agent that could navigate through
intersections pro-actively. The problem is determining the
validity of our handpicked features and whether they are accurate
or even relevant. Defining features in this way is impractical due
to the need for specifying specific parameters in each situation
and requiring robust domain knowledge to make informed
choices. Each additional feature rapidly increases complexity
of the system, limiting the total number of features that can be
used.

Using feature extraction has been used by Li et al. [25] to study
and improve driving behavior; teaching low-skilled drivers by
learning from high-skilled ones. Different types of data can be
used for feature extraction, such as GPS data in Gao et al. [26]
and, like in Al-Sahaf et al. [27], they used genetic programming
to extract features. Liu et al. proposed methods in [28] and [29]
for feature extraction involving dimension reduction using a
deep sparse autoencoder. They introduce the color map concept
for visualization of the extracted features. Yang et al. [30] show
that both deep learning techniques and camera data can be used
for feature extraction. The work by Yurtsever et al. [31] uses
multiple levels of autoencoders to extract driving signals from
different drivers and then uses them in a feed-forward network
to predict driving behavior for traffic simulation. Different from
other works, our work on unsupervised feature extraction goes
further by using the extracted features to generate behavioral
models for creating autonomous agents.

C. Driving Policies and Simulators

There are many ways to model driving behavior, such as the
“intelligent driver model” (IDM) [32]. Other methods attempt
to learn how to drive from human drivers themselves [33]. Some
works use handpicked features and use an inverse reinforcement
learning framework to learn driving policies from human data,
to be used in autonomous vehicles [34], [35]. Bansal et al.,
with their work titled “ChauffeurNet” [36], shows a novel way
to model behavior by representing the ego vehicle, traffic and
the environment, with a 2D top down perspective. A series of
flat images represent the various input (ego and other vehicle
poses, traffic light color and positions, speed limits, routes and
road-maps) and produces output images with a new pose and
a future trajectory. Even with state of the art learning-based
driving agents, such as with the ChauffeurNet project, the results
are still not as effective as motion planning based approaches.

However, these learning-based methods are essentially trying to
implicitly model human experience. The kind of experience that
only comes from living and driving for many years. Differently,
in this work, we use unsupervised feature extraction techniques
on data collected from skilled drivers to create accurate driving
models from the extracted behaviors. An agent is then created
that can navigate through a suburban environment imitating an
expert driver’s behavior.

III. PROPOSED APPROACH

This section presents the approach used to extract driving
behaviors. The definition and composition of driving behavior is
presented. A discussion and the concepts of safe and comfortable
navigation are provided. An explanation of the use of a deep
autoencoder to extract driving behaviors is included, and a
trajectory comparison method is presented.

A. Driving Behavior

Driving behavior is the conduct of a driving agent as it
navigates roads in order to reach its destination; it is composed
of driving actions. Driving actions are the smallest definable
elements of our driving infrastructure. They are discrete and
performed by a driving agent depending on internal factors (such
as preferred velocity and acceleration), external environmental
factors, and the agent’s destination. Examples of driving actions
are: stop, slow down, and accelerate. Driving actions can be
parameterized by defining their attributes, such as magnitude
of speed and acceleration. Therefore, driving behaviors are a
set of one or more parameterized actions describing a particular
maneuver that a driving agent performs. “Accelerating slowly
from a stopped position,” “a sharp left turn” or “maintaining
a high speed” are examples of behaviors. This paper aims to
extract these behaviors and how they are performed in order to
incorporate them into a driving agent.

To extract driving behaviors that result in a safe and com-
fortable ride for the passengers, we used the data from human
expert drivers who can drive smoothly while proactively avoid-
ing potential hazards [24]. These experts have 10+ years of
driving experience as well as professional training. Our approach
modeled these proactive driving behaviors which are difficult to
model solely with topographical maps, vector maps and traffic
regulation information.

The data we used was selected to cover a wide variety of sce-
narios encountered in a typical urban environment (e.g., different
configurations of intersections), in order to observe the driver
reactions in different situations. As opposed to using a motion
planning model, using driving feature extraction can impart
desirable qualities from experts, into an autonomous agent.

B. Safe and Comfortable Driving

Safe driving implies that a vehicle arrives at its destination
collision-free and out of danger. To do this means that the vehicle
should follow basic safety and traffic laws such as obeying speed
limits, staying within lane markers and following traffic signs.
Comfort, unlike safety, does not have strict laws and regulations
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defining what it should be. We define a comfortable drive as
providing an experience that puts passengers at ease and relaxed
while in the vehicle, while avoiding situations causing unease
or discomfort.

While it is difficult to measure an abstract concept such as
comfort, it can be described as the lack of discomfort; where the
main method to obtain comfort is to avoid sources of discom-
fort [37]. There are several ways we can attempt to quantify
sources of discomfort, or at least explain what might cause
them. An obvious first would be the agent not following the
aforementioned traffic laws and regulations, since breaking them
could cause obvious discomfort by subverting rules aimed at
maintaining safety. But within the bounds of respecting those
laws and regulations, human drivers can still have different
behaviors. These varying practices by individual drivers, such
as preferred speed and acceleration styles, will have an effect on
passengers feeling safe and comfortable.

There are several things which affect comfort negatively:
jerk, lateral-motion and risk perception. Jerk is a measure of
the change in acceleration. Even a small amount of it is un-
comfortable for most humans and can be a source of motion
sickness [38]. Lateral-motion or “zig-zagging” causes unnec-
essary horizontal acceleration that can also cause discomfort.
Risk perception reflects a passenger’s experience with potential
traffic hazards. This perception is affected by an individual’s
experiences, societal and personal factors. Low risk perception
has a significant relationship with road accidents [6]. Risky situ-
ations will cause discomfort in passengers with a high perception
of risk. All these factors can lead to an uncomfortable ride for
passengers.

Potentially reckless drivers may accelerate up to the speed
limit quickly or brake hard from high speeds while overly cau-
tious drivers may advance into a roadway slowly or frequently
come to a stop while trying to merge. Both behaviors could be
seen as uncomfortable, or even dangerous, to passengers within
the vehicle. In addition, while a driver can technically move at the
allowed maximum speed through a low visibility intersection,
passengers may not feel comfortable in this situation. It may
be difficult for the vehicle to fully stop in time should the need
arise. For example, when a pedestrian, cyclist or another vehicle
becomes suddenly visible and is approaching the intersection
from behind a blind corner. Instead, by driving proactively and
thus avoiding these situations, an agent will not cause these
feelings of discomfort.

In particular, this work aims at limiting the amount of dis-
comfort due to velocity, lateral acceleration and jerk by having
our agent imitate expert drivers. The proactive driving behaviors
performed by these experts mitigate these causes.

C. Deep Autoencoder

Section III-A mentioned that certain expert drivers may ex-
hibit ideal driving behaviors which incorporate these ideas of
safety and comfort by default. In this work we use deep learning
to extract these behaviors.

An autoencoder is built from two symmetric deep-belief feed
forward networks, each consisting of fully connected neural

Fig. 3. An architectural diagram of the autoencoder network trained on the
driving data. The encoder section receives input and reduces the dimensionality
of the data until it reaches the desired dimension. The decoder section recon-
structs the input from the feature vector. A 3-dimension feature vector allows it
to be easily converted to an RGB value, which aids in visualization. The input
data is a 400-dimension vector (as described later in Section IV-B), and the
feature vector ends up being in 3 dimensions.

layers (Fig. 3). These deep networks typically use around five
layers in the encoder and decoder each [39]. This network is
trained to reconstruct the input as the output. Deep networks
offer the advantage that a network with hidden layers can approx-
imate any mapping arbitrarily well [40]. An ideal autoencoder
encodes input vector�i and decodes as output�i.

g(f(�i)) =�i (1)

f and g are the encoding and decoding functions respectively.
The encoding function output is a feature vector �h representing
the latent features extracted from the input data.

f(�i) = �h (2)

These latent features of vector�h are used to express our extracted
driving behaviors, which are used in the next steps of the data
processing pipeline.

The input data consists of many dimensions, and they can be
shown by a vector:

�y ∈ Rd

To add a sense of history to our input vector, or a “memory” of the
past few seconds, we performed a rolling window. The operation
takes Ny consecutive time steps from vector �y at intervals of t
seconds for a total window of Nyt seconds. In this way, each
vector has past state information about the vehicle’s trajectory.
Multiplying this window by the number of chosen features, we
end up with an input vector�i. We define this as:

�i ∈ RDi

where:

Di = Dy ×Ny

andDy is the dimensionality of the vector�y andNy is the number
of steps. Multiplying the two give the dimensionality, Di.
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D. Extracting Behaviors From Feature Vectors

Once feature vectors �h are extracted from data, behaviors
can then be observed and extracted as well. The computation
of a trajectory color map (Section III-D1), which is useful for
human-readability, can also be used to cluster driving behaviors.

1) Dimension Reduction: Visualization is an important tool
in understanding and presenting data. We used the technique
proposed in [29] where a color map was used to represent driving
features. With dimension reduction techniques, we can reduce
the dimensionality of features, though even low dimensions can
prove difficult to present in a 2D image or graph. One way of
addressing this is to convert a feature vector to a color vector.
These vectors consist of RGB (red, green, blue) values and can
be mapped directly from any normalized 3-dimensional vector,
since they have an equal number of components, by Eq. (3)
where φ is a feature from the feature vector �h.

�rgbφ =
hφ − hφmin

hφmax− hφmin
(3)

With the encoding process, of Eq. (2), we get feature vector�h
which is of low dimensionality. We can set the target dimen-
sionality to 3, and assign them to red, green or blue values
(Fig. 3). We can then relate this value back to its physical location
in the real world, referring to the associated localized vehicle
geolocation data. This generates a specific color for each point
in space where the vehicle has traveled. Each route fed through
the encoder section then generates a color map. The color
map can be overlaid on a vector map containing topographical
information, and we can see how the feature vector changes over
the course of the trajectory (such as can be seen in Fig. 8 in the
Section IV-B). At this stage we begin to see patterns unaided, the
color map technique helping visualize the relationship between
environment and driving behavior.

2) Clustering and Model Fitting: For clustering, we grouped
together the values of the feature vector. Similar colors indicate
trends in the original autoencoder input data. Clustering helps
identify overlying driving behaviors instead of just driving ac-
tions. We tried different clustering techniques, including spectral
clustering, KMeans, HDBScan, agglomerative clustering and
mean shift. Compared to the other methods, spectral clustering
displayed more defined and distinct clusters, and proved advan-
tageous in our case due to the algorithm assuming a globular
cluster distribution.

The various clusters are aggregated and used to fit several
functions which represent the change in velocity over time and
distance through the cluster. The result is a velocity profile for
each cluster that can be later used in an autonomous agent. The
functions used for the fitting process are either linear, logarithmic
or polynomial; chosen as appropriate for the shape of the data
in each cluster.

E. Trajectory Comparison

This section presents our method for comparing two trajecto-
ries. Trajectories are composed of different attributes that vary
over a span of time. Even when the starting point and destination

Fig. 4. To match trajectories T1 and T2 every point p1
n from T1 is matched to

the Euclidean distance closest point p2
n in T2.

Fig. 5. A sample segment of two trajectories collected from our data, showing
how the data compares in position and velocity.

goal are the same, there can be many differences between two
separate trajectories.

A trajectoryT is the data representation of a path that an entity
has taken to get from one destination to another. The data is a
series of time-ordered successive n geographical coordinates
along with their state (Eq. (4)). While movement is a continuous
activity, we sample the trajectory at a small enough time interval
ΔT of 10 ms to give an adequate representation of this activity.
In Eq. (5) we use position x, y, z, velocity v, acceleration acc
and jerk je when defining trajectories.

T = (�p0 + �p1 + · · ·+ �pn) (4)

�pn = (xn, yn, zn, vn, accn, jen) (5)

In order to compare trajectories, we select attributes which,
if changed, would indicate a diverging trajectory. To select
these attributes, we performed a correlation analysis on several
trajectories, to see how they would influence each other. When
comparing two trajectories, we take every point from the first
trajectory and find the closest point (determined by Euclidean
Distance) from the second trajectory (Fig. 4). We match up every
point in this way and then compare their values.

These attributes can each be used in an “attribute comparison
score” Eq. (6), where a represents the attribute in question
(Fig. 5). The score is a normalized mean difference between
the points of two trajectories, with a score closer to 0 indicating
similarity. The normalizer anorm is chosen differently, depend-
ing on the attribute.

Sa(T1, T2) =
ādiff
anorm

(6)

To get a quantitative comparison, considering multiple vari-
ables, we built a weighted score Eq. (7) to represent a directional
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comparison score between two trajectories. The comparison is
directional, since comparing T1 to T2 vs comparing T2 to T1

can have different results due to how matching works as shown
in Fig. 4. Since trajectories can be of different lengths and a
different number of points, the direction may affect the results.
We take the normalized score of each attribute and multiply it
by a weight. The sum of the normalized weights adds up to 1
(Eq. (8)). The sum of these scores gives a weighted average
score, or “trajectory score,” showing how similar the trajectories
are, while a score of 0 indicates they are identical and higher
scores indicates increasing divergence.

S(T1, T2) =
m∑
a=0

ωaSa(T1, T2) (7)

where,
m∑
a=0

ωa = 1 (8)

In the equation, the comparison attributes consist of distance,
velocity, acceleration, and jerk. ωa is the weight given to an
attribute. The normalizer value in the single attribute equation
used for normalization is determined specifically for each at-
tribute. For distance, the maximum value is set to the average
lane width, 3.5 m, of a typical road in Japan [41]. Realistically,
if the trajectories are any further apart, they are not driving in
the same lane. For velocity, acceleration and jerk we use a local
normalizer, meaning we take the maximum value exhibited by
the target trajectory.

With this comparison method we can provide a relevant
evaluation of our simulator-extracted trajectories to those of the
driver data or between other trajectories.

IV. EXPERIMENTAL PROCEDURE

This section explains the procedure for data collection and
the preparation of the data to be used in the autoencoder. With
the deep autoencoder we extracted feature vectors correlating to
driving behavior. This behavior was then used to create a color
map and behavior clusters. They were then used to fit velocity
functions to be used as our driving models. The models were
used as a basis for an AI agent used in a ROS environment.

A. Data Collection

For data collection, we recorded 5 expert drivers navigating
through a residential neighborhood, providing over 300 tracks of
data [8]. The drivers were given a route and instructions to drive
in their own style, one that felt comfortable for them. As the
drivers drove the vehicle, we collected data from a 360o LiDAR
(Velodyne HDL− 64E), RTK-GPS with accuracy in open sky
of ∼ 0.1 m; and vehicle CAN-Bus data, at a sampling rate of
10 ms, providing the vehicle’s speed, acceleration, brake pedal
pressure, accelerator pedal position and steering angle (Fig. 6a
and b and Table I). We had direct access to the CAN bus of the
vehicle, provided to us by the manufacturer. The vector maps
were created by a third-party company using their own Mobile
Mapping System (MMS). We used our collected LiDAR data

Fig. 6. Experimental vehicle and vector map. (a) Experimental vehicle
equipped with a 360 LiDAR, RTK-GPS, CAN-Bus and monocular camera.
(b) High definition vector map used to visualize and understand different driver
behaviors.

TABLE I
VARIABLE DETAILS

together with GPS and odometry to compute vehicle localization
towards the 3D point cloud maps.

As a point of reference for comparisons done in Section V-A,
we also used data collected from 4 elderly drivers without any
professional driving experience [42]. They drove along the same
trajectories as expert drivers.

First, the raw data is extracted and formatted into a sliding
window vector; several points connected in time along the
trajectory are combined as a single vector encapsulating previous
vehicle state. For the input vector we take speed, acceleration,
brake, and steering angle from the CAN data. We take the 4
input dimensions multiplied by 100-time steps (10 ms), creating
a 400 dimension vector�i, as described in Section III-C.

B. Autoencoder Feature Extraction

The starting input layer of the network consists of 400 nodes,
matching the dimensionality of our vector �i and each dense
layer of the encoder gradually reduces the number of nodes
(400-300-150-64-16-3) and then is mirrored by the decoder
with an equal number of layers containing equal node amounts,
gradually increasing the number of nodes back to 400.

Fig. 7 shows the raw feature vector data plotting on it’s 3-
dimensional axes, while Fig. 8 shows the colors as applied to
a geographical location according to an original sample route.
Even by simply looking at the color patterns, one can appreciate
which intersections require stops and which do not. This shows
the potential to extract driving behaviors using this method.

For our network we chose to use “Adam” as the adaptive
learning rate method due to its popularity for working well in
practice and comparing favorably to other methods [43], [44].
In addition to using an autoencoder for feature extraction, we
attempted to use principal component analysis (PCA) to create
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Fig. 7. The raw feature vector in three dimensions, showing the distribution
of behavior from the encoded driving data in RGB.

Fig. 8. Encoded expert driver data. The coloration shows various features of
the vehicle. It can be seen how there are different behaviors depending on the
driver’s location on the road.

Fig. 9. Encoded expert driver data. This time using PCA instead of an
autoencoder. The resulting color map is not as easily discernible or separable as
the autoencoder results.

the same behavior color map. However, as can be seen in Fig. 9,
the behaviors are not captured as well as by the autoencoder. The
darker, more similar colors, show that it was not as effective at
separating behaviors. This may be due to autoencoders using
non-linear activation functions, whereas PCA is restricted to a
linear map. A single layer autoencoder is approximately equiv-
alent to PCA. In the case of a deep autoencoder, the multiple
layers add flexibility to the learning process.

C. Clustering

A selected k value of 9 with spectral clustering, using a k-
nearest neighbors connectivity matrix, results in our nine unique
clusters. This represents driving behaviors, as shown in Fig. 10

Fig. 10. Clustering results: Each colored segment/cluster represents a driving
behavior sharing characteristics with segments of the same color. The red arrow
indicates a counterclockwise driving direction.

TABLE II
CLUSTERING RESULTS

and Table II. Clustering based on the feature vector gives clumps
of similar color-coded behavior. These groupings of behavior
could then be used as a basis for velocity profiling.

Please refer to Fig. 10 and II where we further defined a
possible driving behavior for each color. Pink segments Insert
Graphicare seen in long straight sections of the map and are asso-
ciated with maintaining speed alongside gentle acceleration and
deceleration at the beginning and end of the cluster respectively.
The Blue Insert Graphic cluster is only seen at the beginning
of intersections and indicates a slow acceleration from a zero
or low velocity, as the driver slowly lets off the brake. Purple
Insert Graphic immediately precedes blue clusters and indicates
the vehicle is approaching a stop. Orange Insert Graphic, often
precedes a pink cluster and indicates a deceleration from a high
speed. The various shades of green indicate varying states of
acceleration. Pear Insert Graphic shows a gentle curved accel-
eration at high speed, Green Insert Graphic shows acceleration
after making a left turn, Lime Insert Graphic indicates steady
acceleration up to a high speed, and Emerald Insert Graphic
shows a sharp curved acceleration from low speed all the way
up to high speed. Finally, Steel Insert Graphic was the start of a
sharp deceleration from high speed.

D. Velocity Fitting

Clustered feature vectors, and the previous observation of
behaviors, give a basis to build a velocity model. We have several
examples of movement through a given section of road which
can be approximated with a specific model. The simplest way
to do this is with a function fit using the non-linear squares
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Fig. 11. Velocity fitting results: Each curve in this figure shows the results
of fitting a function to each cluster. These functions fit the cluster data with a
certain amount of regression error, therefore, we chose the ones minimizing that
error for each cluster.

TABLE III
FIT PARAMETERS

Table III shows the results for the parametersd,e, j andk (where applicable)
for each fit velocity profile per cluster.

method. Using our data, we can fit function parameters to match.
In the case of driving data, we chose several equations that match
the basic patterns of acceleration and deceleration through each
cluster. The nine clusters were individually fit using one of four
different functions:

V1(x) = dx+ e (9)

V2(x) = d log e(x+ j) + k (10)

V3(x) = dx2 + ex+ j (11)

V4(x) = dx3 + ex2 + jx+ k (12)

The velocity equations Vi used are chosen from linear
Eq. (9), logarithmic Eq. (10), quadratic Eq. (11) and cubic
Eq. (12) functions. The variables d, e, j and k are the function
parameters, modified and fit by the fitting function; while the
variable x is the input displacement. The resulting fits are shown
in Fig. 11, and the fit parameters in Table III.

E. Behavior Transition Diagram

The clustered behaviors and the observed relationships allow
us to construct a behavior transition diagram which can then be
used to create an autonomous driving agent. As presented in

Fig. 12. The driving behavior transition diagram. Each circle shows a different
acceleration/deceleration behavior (with corresponding colors and behaviors
as mentioned in Section IV-C and Table II). The transitions occur based on
geographical location coordinates (as shown in Fig. 10).

Section IV-F, in the ROS simulator environment, the agent
follows a path generated by a global planner around the recon-
structed suburban neighborhood, where our original data came
from. As the agent travels through, it uses the corresponding
velocity fit (Fig. 11) according to the behavior assigned to that
location (see Fig. 10). The velocity and position of the agent is
recorded and compared to the original driver moving through
that same route in Section V-A.

Fig. 12 shows the behavior transition diagram representing
the flow and relative position of each driving behavior, as de-
scribed in Section IV-C. Each transition is based on the physical
geographical location of the vehicle. Each behavior has one or
more source and connecting behaviors. For example, the pink
behavior follows from either the orange or pear behavior, and is
followed by either the steel or purple behavior.

The task to extract useful information or behaviors from data
in a supervised manner is a hard task. Our approach makes use
of deep learning methods to extract useful features in an unsu-
pervised way from the driving data. With this feature extraction
process we create behavior models for our driving agent to drive
autonomously.

F. Driving Agent

The agent created using the driving behavior transition di-
agram was tested in a simulator.2 Due to safety concerns and
regulations, it is easier to test new autonomous driving agents
in a simulation as opposed to the real world. The simulated
agent could theoretically run in a real environment with similar
performance to that of the simulation.

The cluster following behavior of our agent is created as a
layer over an existing agent simulation platform. The base agent
is able to receive a global path trajectory and then follow it using
real world physics and parameters [8]. Our driving behavior

2A video showing the simulator in action can be seen here: [Online]. Available:
https://youtu.be/y5GZPUl5w2Q

https://youtu.be/y5GZPUl5w2Q
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cluster following layer will then modulate the velocity based on
the appropriate behavior selected from the behavior transition
diagram. This entire system is implemented in ROS (Robot
Operating System).

The behavior transition flow is presented with the following
equations:

δ(ρ, cn) = min
√

((cnx
− ρx)2(cny

− ρy)2) (13)

First, the agent’s position δ(ρ, cn) and the closest behavior clus-
ter cn is found based on geographical coordinates ρ; determined
through the vector map and vehicle localization.

Cpos = |(len(cn)− δ(ρ, cn))/len(cn)| (14)

The position within the cluster Cpos, or how far into the cluster
the vehicle has driven, is determined.

vcn = V (Cpos) (15)

The position is fed into the cluster’s corresponding velocity
profile V to determine the desired velocity v from the cluster cn.

The simulated environment itself is a replication of the same
rural Japanese neighborhood where our driving data was gath-
ered from. The various road features such as lanes, stop lines,
and static obstacles are present.

With our driving behavior cluster following layer giving com-
mands to the general agent, we record the performance and driv-
ing data of the virtual vehicle as if it were a real vehicle; tracking
velocity and position. This trajectory data can then be used to
compare the results of our agent to that of real drivers. The agent
attempts to match the given driving instructions. In the event
that something interrupts this operation, such as an emergency
brake, the agent will accelerate back to the suggested velocity
once it regains control (as given by the current behavior). When
operating the driving agent in the simulator environment, the
agent can be placed at any point near the desired path and it
will attempt to match the velocity required by the appropriate
behavior in that area.

V. RESULTS

This section presents the results of our driving agent experi-
ments, comparing its recorded trajectory against those of expert
and elderly drivers.

A. Trajectory Comparison Results

Qualitatively, we can observe the differences between tra-
jectories in Fig. 13. Compared to the similar figure in [1], we
added smoother transition logic between behavior clusters in
our driving agent. We did this by blending the velocity near the
beginning/end of each behavior with the final/initial velocity of
the previous/next behavior. This created a more similar overall
appearance between trajectories, as well as a better trajectory
comparison score.

Quantitatively, using the scoring method from Section III-
E, we illustrate the comparison between expert drivers and our
modeled driving agents.

Fig. 13. Visualization of trajectory difference between real driver data (in
yellow) and the simulated agent (in teal). The agent’s trajectory appears to behave
closely to the expert. (See Fig. 10).

TABLE IV
EXPERT DRIVER 2 TO EXPERT DRIVER 1

TABLE V
EXPERT DRIVER 3 TO EXPERT DRIVER 1

Tables IV, and V Comparisons between trajectory pairs of the expert drivers
themselves.

TABLE VI
AI AGENT TO EXPERT DRIVER

To show the meaningfulness of these comparisons, we show
in Tables IV and V comparisons between expert drivers, show-
ing that the comparison score is significantly lower than both
elderly drivers and the agent (as seen in later comparisons, Ta-
bles VI to X), indicating similarity between the experts’ driving
styles.

In Table VI we compared the performance of the driving agent
to the expert driver. Note that the closer to 0 a score is, the more
alike it is to the target trajectory, while a score closer to 1 or
above is indicative of completely different behavior. This shows
that our agent has a trajectory that is close to the expert in terms
of distance, velocity, and jerk and also quite similar in terms of
acceleration. With an average score of 0.122, we can say that
the trajectory is similar to that of the expert driver.

Without a point of reference, it is hard to compare how similar
a trajectory actually is. To provide such a reference, we compare
the performance of a selection of elderly drivers in Tables VII to
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TABLE VII
ELDERLY DRIVER 1 TO EXPERT DRIVER

TABLE VIII
ELDERLY DRIVER 2 TO EXPERT DRIVER

TABLE IX
ELDERLY DRIVER 3 TO EXPERT DRIVER

TABLE X
ELDERLY DRIVER 4 TO EXPERT DRIVER

Table VI to X. Comparisons between trajectory pairs as described in Section III-E.
The score is the value as described in that section and the average is evenly weighted
between all attributes. The mean column shows the mean difference in each attribute
at each point in time across the whole trajectory. The subsequent trajectories are the
same but indicate the median, standard deviation (std) and max values respectively.

X to that of an expert driver. The results show that, on average,
our agent performs more closely to that of an expert driver
than the elderly drivers, and the elderly drivers having only
exceeded the agent with scores in acceleration by a small margin.
Importantly, we see that velocity similarity is worse for the
elderly drivers. We can also see in Fig. 14, where the trajectory
of an elderly driver is compared to the expert, on the right side of
the figure, on the middle arch in velocity, that the elderly driver
does not slow down like the expert does, when moving through
an unsignaled intersection. The agent, on the other hand, does
slow down, similar to the expert. This demonstrates the agent
was able to accurately model the experienced driver, allowing

Fig. 14. Visualization of trajectory difference between expert driver in blue,
elderly driver in red and our driving agent in green.

Fig. 15. Encoded behaviors of alternate route. Note the frequent behavior
change near the beginning of the trajectory, this may indicate missing behaviors
in the original training behavior.

Fig. 16. Visualization of trajectory differences on an alternate route. Pertur-
bations due to frequently changing behaviors, as can be seen in the lower figure,
are likely caused by new behaviors in the new data, not present in the original
training set. (a) Driving agent/expert driver comparison. (b) Driving agent/expert
driver comparison, with encoded behaviors.

it to drive proactively, thus reducing the risk from yet unseen
entities approaching a blind intersection. We can say that the
closer the score of the agent is to the expert driver, the more
proactive the agent is.

Notably, as can be seen in the “max” deviation (i.e. the
maximum amount the value differed from that of the target
trajectory) columns of the agent and elderly driver vs expert
driver comparisons, that the values are significantly lower for
the driving agent.

B. Alternate Route Comparison

In Fig. 13 we see the data used are trajectories that have the
same path as the trajectories used for training the autoencoder. In
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Fig. 17. Five additional environments in which the agent navigated through. Each environment examined was not from the original training dataset. The trajectories
cover additional new scenarios, such as a lane change or right turns, and still have trajectory scores indicating similarity. (a) A trajectory with a left turn and passing
through a T-intersection. (b) A lane change preceding a right turn. (c) The same area as Fig. 17b, but traversing in the opposite direction. (d) A trajectory through
several intersections, left and right turns, and a multi-laned road. (e) Another trajectory showing various stopping behaviors at each intersection.

Fig. 16a however, we use a trajectory completely unassociated
with the original training data set. We used the encoder trained in
Section III-C to encode the trajectory which resulted in Fig. 15.
This new color map was then used by the agent to attempt to
drive the new path.

Like in Fig. 13, Fig. 16a shows that the agent attempts to
follow the general behavior of the expert driver, however in this
case, there are some areas that seem to have a lot of noise. We
can see near the beginning of the trajectory in Fig. 16b that
the behavior changes frequently before settling into a single

behavior. This is likely caused by the new data requiring be-
haviors that were not learned in the initial training dataset.

There are several other new areas in addition to the one
mentioned above that were also tested. The results can be seen
in Fig. 17 and Tables XI to XV where 5 additional environments
are presented. The agent drove in each area, and was compared
to an expert driver. In Fig. 17b and c we see the same road in
both trajectories, but traversing in opposite directions, showing
how the behavior is dependent not just on the location, but on
the context of the situation as well.
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TABLE XI
AI AGENT TO EXPERT DRIVER FIG. 17A

TABLE XII
AI AGENT TO EXPERT DRIVER FIG. 17B

TABLE XIII
AI AGENT TO EXPERT DRIVER FIG. 17C

TABLE XIV
AI AGENT TO EXPERT DRIVER FIG. 17D

TABLE XV
AI AGENT TO EXPERT DRIVER FIG. 17E

Comparisons between trajectory pairs of the Agent and expert drivers in various
areas (Fig. 17) not in the original training data scope.

C. Other Expert Driver Comparisons

We also compared our agent’s results to the trajectories of
other expert drivers going through the same route. The results
can be seen in Table XVI and XVII. Even though the agent was
trained on a different expert driver’s data, the scores are still
similar. This again shows that the agent is driving more akin to
drivers known to drive proactively.

TABLE XVI
AI AGENT TO EXPERT DRIVER 2

TABLE XVII
AI AGENT TO EXPERT DRIVER 3

Tables XVI and XVII Comparisons between trajectory pairs of the Agent and other
expert drivers.

VI. DISCUSSION

One of the main reasons we don’t yet have fully autonomous
cars on the road today is the lack of high-level cognitive function
in driving agents. This research shows that it is possible to learn
a subset of these functions and therefore emulate human-like
driving behavior. While one of the main limitations in this work
is that it does not consider dynamic obstacles such as traffic or
pedestrians while navigating, it shows that we can learn how to
drive in the absence of obstacles, which is important to achieve
safe and comfortable navigation.

The results shown in this work are specific to Japan, but still
shows that given the data, an agent can learn how to drive in a
human-like fashion.

We chose to define a new method for trajectory comparison,
instead of using the modified Hausdorff distance [45], so that
we could have a better overall comparison of each point in the
trajectory as well as consider multiple attributes.

The trajectory score used in this work shows that our agent
can drive better than elderly drivers in terms of velocity and jerk,
as shown in Fig. 14.

If we were to model driving behavior directly, we might create
a state machine based on theory in works such as [46], [47]. We
would have several states: acceleration, deceleration, turning,
stopping and velocity keeping. This kind of state machine can
be used to manually create an agent with velocity models for
each state. This would be an example of a handpicked feature
driven approach to model driving. In the case of our feature
extraction method using deep learning, we have instead extracted
behaviors encompassing several of these states at any given time.
An example behavior, such as a “sharp left turn,” might include
acceleration, deceleration and velocity keeping all in one. This
makes it difficult to create a pure state machine from these
behaviors. Instead, we created a behavior transition diagram
Fig. 12. This diagram shows the behaviors in relation to one
another and how they follow each other over the course of a
trajectory. The transitions from behavior to behavior are map
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location based, as can be seen in the associated color map created
from the driving features.

Another benefit of our technique is that we can easily classify
segments of a trajectory, consisting of different actions, as a sin-
gle behavior, such as a “left turn” or “crossing an intersection”.
The benefit of our data-driven approach over the model based
one is being able to extract the features directly from an actual
driver. We know they are valid in the sense that they come from
an established expert driver able to perform complex driving
tasks in a real-life environment.

If we look at very recent work in driving behavior extrac-
tion and analysis we see that a common trend is to use Deep
Reinforcement Learning (DRL) [48], [49]. Some recent papers
are also focusing on Attention-based DRL [50], [51]. These
techniques are likely to be used more often in the future, and
will be a logical next step to investigate for this work as well.

VII. CONCLUSION

In this work, we examined the process of extracting driving
behaviors from expert drivers. We used a deep autoencoder net-
work to process large volumes of data to extract latent features.
We clustered these latent features into behaviors and created
velocity profiles. This allowed us to create an autonomous agent
to correctly select the proper behavior to use depending on the
environment it was in. Our experimental results, including our
trajectory scoring system, show comparable results to that of
expert drivers in the same environment. We were also able to
demonstrate that these extracted behaviors are applicable to
other similar environments. We show that our agent was able
to use the professional experience, gained from years of human
driving instructing, in order to drive proactively in several urban
environments (including those of the training set as well as those
unknown).

Future development stemming from this work would have
the goal to handle dynamic obstacles. We would like to use our
techniques to extract behaviors and create driving agents that
are able to navigate while avoiding dynamic obstacles, such as
traffic and pedestrians, like in the work by Bansal et al. [36].
Additional data sources like LiDAR and camera could be used to
accomplish this. However, it would require ground removal tech-
niques for LiDAR and semantic segmentation for camera data.
New neural network designs for training and machine learning
purposes.

Our trajectory scoring technique could also be used for other
applications, such as trajectory matching, either for localiza-
tion or sensor calibration. For example, if you have multiple
sensors in a room tracking a person‘s movement, this compar-
ison method could be used to determine the similarity of each
sensor’s tracked trajectory. Then the sensors’ alignment can be
configured by minimizing the score.

The end-goal of this technique would be to generate required
driving behaviors for an autonomous agent simply by giving it
a path and a vector map. This can likely be done with extensive
data to train more types of behaviors and a recurrent neural
network (RNN), such as a long term-short term memory (LSTM)
network to identify the required behaviors along the path. There

is potential in using “Cycle Variational AutoEncoders” (Cycle-
VAE) and other “Sequence to Sequence” (S2S) networks for use
in extracting features from continuous datasets, such as driving
data.
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