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Abstract

We present two approaches to extract regions from struc-

tured edge detection. While the state-of-the-art algorithm

based on globalized probability of boundary (gPb) gener-

ates a hierarchical region tree, it entails significant com-

putational load. In this work, we exploit an efficient al-

gorithm for structured edge prediction to extract regions.

To generate high quality regions, we develop a novel al-

gorithm to link the structured edge and gPb hierarchical

image segmentation framework with steerable filters. The

extracted regions are grouped by the proposed hierarchi-

cal grouping method to generate object proposals for effec-

tive detection and recognition problems. We demonstrate

the effectiveness of our region generation for image seg-

mentation on the BSDS500 database, and region generation

for object proposals on the PASCAL VOC 2007 benchmark

database. Experimental results show that the proposed al-

gorithm achieves the comparable or superior quality to the

state-of-the-art methods.

1. Introduction

Image regions play an important role between high level

semantics and low level pixel-wise information. Effective

region information is useful for image segmentation and ob-

ject detection. However, it is challenging to extract high

quality regions due to occlusion, heterogeneous texture,

color within one object and obscured boundary with respect

to other image parts.

Recent years have witnessed significant progress in im-

age segmentation with numerous applications [24, 11, 14,

4, 1, 6]. A class of image segmentation algorithms aim to

extract image segments or regions from edge or contour sig-

nals. Arbelaez et al. [4] propose a hierarchical image seg-

mentation algorithm from the state-of-the-art gPb contour

detector. However, the gPb contour detector has a heavy

computational load to generate contours. In this work, we

propose algorithms to efficiently extract high quality re-

gions for image segmentation.

In contrast to existing image segmentation algorithms

that focus on partitioning an image into segments precisely,

object proposal algorithms [12, 26, 2, 19, 7] have been de-

veloped in recent years to generate a smaller set of windows

for detecting object instances in the image efficiently. The

objectness measure [7, 2] predicts whether a proposed win-

dow is covering a certain object. On the other hand, mid-

level features obtained from initial segmentation algorithms

are merged to generate object proposals in [19, 12, 26].

While the graph-based algorithm [14] generates image seg-

ments efficiently, the extracted regions are of irregular size

and shape [1], thereby making them difficult to merge for

rendering object proposals. In contrast, we tackle this prob-

lem with an algorithm that generates high quality regions.

In this paper, we propose two novel region generation

algorithms to address the issues of image segmentation and

object detection. Based on the high quality results gener-

ated by the efficient structured edge (SE) algorithm [10],

we integrate it with steerable filters (SF) [15], oriented wa-

tershed transform (OWT) [4] and ultrametric contour map

(UCM) [3] to generate image segments (refer it as SE-

SF-OWT-UCM). For object detection, we incorporate the

SE-SF-OWT-UCM algorithm with a hierarchical grouping

method [26] to generate object proposals. We demonstrate

the effectiveness of the proposed region generation algo-

rithm for image segmentation on the BSDS500 database [4],

and the region generation algorithm for object detection on

the PASCAL VOC 2007 [13] benchmark database. The

proposed SE-SF-OWT-UCM algorithm achieves compara-

ble performance to the state-of-the-art gPb framework [4]

among the region benchmarks on the BSDS500 database,

and outperforms the other state-of-the-art methods. Further-

more, the proposed SE-SF-OWT-UCM algorithm followed

by a hierarchical grouping process generates higher qual-

ity object proposals than the state-of-the-art selective search

method [26].

2. Related Work and Problem Context

In this section, we discuss the most relevant work on

edge detection and region generation.
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Edge Detection. Edge detection is a fundamental problem

that can be applied to numerous vision tasks. It captures im-

portant information such as the object shape, surface bound-

ary and local structure in an image. In addition, it serves as

an effective representation of an image in a lower dimen-

sionality manner while preserving structural properties.

Methods that exploit color, texture and other sophis-

ticated descriptors have been developed for edge detec-

tion [22, 15, 4, 20]. In addition, numerous learning meth-

ods [20, 9, 23, 18] have been developed for edge detec-

tion. Martin et al. [20] combine local image features in-

cluding brightness, color and texture in an optimal way,

and features are used to train a logistic regression classi-

fier for predicting the posterior probability of a boundary at

every location of a given image. Dollár et al. [9] propose

a Boosted Edge Learning (BEL) method where features

are combined in a probabilistic boosting-tree-based classi-

fier [25]. Ren and Bo [23] tackle the edge detection task by

computing sparse code gradients (SCG) which learns rich

representations from image patches. Most recently, Lim et

al. [18] learn effective structural features from mid-level in-

formation obtained from hand-drawn sketch tokens using

the BSDS500 database [4] for edge detection.

Structured learning [21] has drawn much attention and

been applied to semantic labeling [17] and edge detec-

tion [10] in recent years. Since edges in a local patch ex-

hibit similar characteristics, a structured learning approach

is considered. Dollár and Zitnick [10] propose a struc-

tured learning approach based on random decision forests

for edge detection. That is, the edge detection task is formu-

lated as a local-edge-mask prediction problem from image

patches. A more detailed review of [10] is discussed in Sec-

tion 3. In this paper, we exploit structured edges to generate

regions for image segmentation and object detection.

Region Generation. Region generation is one of the core

research topics in computer vision. Much progress on re-

gion generation has been made in the past decade [24, 11,

14, 4, 1, 6, 12, 26, 2, 19, 7]. We categorize the board fam-

ily of region generation algorithms into four types. First,

superpixel algorithms [1] aim to efficiently generate regu-

lar regions that adhere to boundaries [1]. Achanta et al. [1]

propose the simple linear iterative clustering (SLIC) method

which performs more efficiently than conventional k-means

methods by limiting the search space in the assignment step.

Second, object segmentation methods [6, 28] are devel-

oped to generate either generic or category specific object

hypotheses. The constrained parametric min-cut (CPMC)

method [6] tackles object segmentation by solving a se-

quence of graph cut problems to generate hypotheses. Sub-

sequently, a ranking procedure is applied to generate object

hypotheses. On the other hand, Yang et al. [28] propose a

category specific object hypotheses algorithm by combin-

ing a parametric segmentation model and a nonparametric

matching mechanism.

Third, bottom-up image segmentation algorithms [24,

14, 4] play an important role in numerous vision tasks.

Shi and Malik [24] propose a graph-based normalized

cut algorithm. Instead of focusing on local patches, the

normalized-cut method utilizes global information and par-

titions the graph based on the dissimilarity measure between

the different groups and the similarity measure within the

groups [24]. Another graph-based segmentation proposed

by Felzenszwalb and Huttenlocher [14] aims to efficiently

cluster pixels into groups where the resulting group is the

minimum spanning tree. Arbelaez et al. [4] develop a uni-

fied approach to contour detection and image segmentation.

They propose the oriented watershed transformation (OWT)

to form an initial segmentation from the gPb contour detec-

tor [4]. The boundaries of the initial segmentation are used

to form the ultrametric contour map (UCM) [3], which is a

representation of a hierarchical region tree. The gPb hier-

archical segmentation framework provides high quality hi-

erarchical regions. However, the gPb contour detector re-

quires heavy computational loads. In this paper, we present

an efficient and high quality hierarchical region generation

algorithm based on structured edge detection [10].

Fourth, we regard object proposal methods as a type of

region generation algorithms. A object proposal algorithm

aims to find a small number of windows where objects are

likely to appear. Instead of using sliding windows for ob-

ject detection, object proposal algorithms [12, 26, 2, 19, 7]

have been demonstrated an effective approach for reducing

the search space. Alexe et al. [2] integrate a set of image

cues in the Bayesian framework and compute an object-

ness score to measure the likelihood of a window contain-

ing an object. Another type of objectness work proposed

by Cheng et al. [7] is based on the observation that each

object has a well-defined closed contour from which the

likelihood measure is computed using a binarized normed

gradients. Endres et al. [12] develop a structured learning

method to rank regions that are coarsely extracted based on

a number of cues. Two object proposal algorithms [26, 19]

apply a graph-based segmentation [14] to generate initial

segments, which area followed by different grouping crite-

ria. Manen et al. [19] propose a randomized Prim’s algo-

rithm for grouping the initial segments and demonstrate fa-

vorable performance under a range of evaluation scenarios.

On the other hand, Uijlings [26] use a greedy data-driven

grouping, which aims to diversify the search space to ob-

tain more information. Most recently, the object proposal

algorithm proposed by [26] is combined with convolutional

neural networks (CNNs) for the generic object detection

task [16]. As evident in recent work [26, 19, 16], the ini-

tial segmentation results [14] play a key factor in learning

effective object proposals. Although the graph-based seg-

mentation method [14] generates regions efficiently, the re-
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Figure 1. Outline of the region generation architecture. The structured edge detector [10] is applied to an input image in Fig. 1(a) to

obtain the structured edge map shown in (b). Then, the structured edge map is transformed to 8 oriented structured edge maps shown in

(c) by steerable filters. Subsequently, the OWT and UCM steps are conducted to obtain the ultrametric contour map (UCM), a weighted

contour map, shown in (d). Finally, Fig. 1(e) is the segmentation result obtained by thresholding the UCM at different scales.

sulting segments are usually fragmented and less coherent

to object boundaries. In this work, we first generate high

quality regions efficiently and and then group them hierar-

chically to generate object proposals effectively.

3. Structured Edge Detection

In this section, we review the structured edge detec-

tion [10] which is used for extracting regions in the pro-

posed algorithm. Dollár et al. formulate the edge detection

task in the structured learning framework where a random

decision forest is exploited. A decision tree ft(x) classifies

an input x ∈ X by splitting the data between the left or

right sub-tree according to a binary split function h(x, θj)
with parameter θj at each node j. Given a node j and a

training set S ⊂ X × Y , the training goal of decision tree

is to find parameters θj that maximize the information gain

criterion Ij defined by

Ij = I(Sj ,S
L
j ,S

R
j ) , (1)

where SL
j = (x, y) ∈ Sj |h(x, θj) = 0, SR

j = Sj \S
L
j . When

a binary split function h(x, θj) = 0, the input x is classified

to the left, and otherwise right sub-tree. This process termi-

nates at a leaf (terminal) node (beige path) [8]. The output

y ∈ Y is the prediction for the input x and stored at the

leaf node. A decision forest is an ensemble of independent

decision trees ft. An ensemble model is used to combine

the prediction of each decision ft(x) given the input x. The

choice of the ensemble model depends on the output label

space Y [10]. However, the major drawback of the decision

tree classification is data overfitting. Thus, using random

decision forests are considered to ameliorate the overfitting.

Dollár et al. extend random forests to generate struc-

tured outputs Y [10]. Given an image patch x ∈ X , the

output y ∈ Y stores the corresponding segmentation mask

or binary edge map. A segmentation mask is denoted by

y ∈ Y = Z
d×d and a binary edge map is represented by

y′ ∈ Y ′ = {0, 1}d×d, where d is the patch width. Training

a random forest classifier with structured outputs is chal-

lenging because of the high dimensionality of the output

space and the function used to define the information gain

criterion.

The main goal of the structured random forests is to map

all structured labels to a discrete set c ∈ C. Dollár et al.

solve this problem by first mapping the structured output

space Y to an intermediate space Z . The problem with high

dimensionality of the structured output spaces Y is allevi-

ated by sampling m dimensions of Z followed by the prin-

cipal component analysis (PCA). Most importantly, an in-

formation gain criterion, a similarity measurement over Y ,

is obtained by computing the approximated distance in Z .

Finally, the proposed intermediate space Z is mapped to the

discrete labels space C.

4. Region Generation

In this section, we describe how we extract regions from

structured edge for image segmentation and object detec-

tion.

4.1. Region Generation for Image Segmentation

The overall region generation architecture is shown in

Fig. 1. The structured edge detector is applied to an input

image in Fig. 1(a) to obtain the structured edge map shown

in (b). Then, the structured edge map is transformed to 8

oriented structured edge maps shown in (c) by steerable fil-

ters. Subsequently, the OWT and UCM steps are conducted

to obtain the ultrametric contour map (UCM), a weighted

contour map, shown in (d). Finally, Fig. 1(e) is the segmen-

tation result obtained by thresholding the UCM at different

scales.

Edges can be obtained from segmentation masks easily

when they are available and adherent to object boundaries.

However, it is not straightforward to retrieve segmentation

masks from edges. Arbelaez et al. [4] develop a unified ap-

proach to generate a hierarchical region tree from the gPb

contour detector. Given an input image I , the gPb con-

tour detector predicts the globalized posterior probability of

boundary at location (x, y) with respect to θ in 8 different



Table 1. Region benchmarks on the BSDS500 database [4]. The proposed algorithm generates comparable region quality as gPb-OWT-

UCM, but it is much faster according to Table 2. On the other hand, it achieves superior performance than other state-of-the-art algorithms.

Covering PRI VI

ODS OIS AP ODS OIS ODS OIS

Human 0.72 0.72 - 0.88 0.88 1.17 1.17

gPb-OWT-UCM [4] 0.59 0.65 0.74 0.83 0.86 1.69 1.48

Mean-Shift [11] 0.54 0.58 0.66 0.79 0.81 1.85 1.64

FH [14] 0.52 0.57 0.69 0.80 0.82 2.21 1.87

Normalized Cut [24] 0.45 0.53 0.67 0.78 0.80 2.23 1.89

Ours 0.58 0.64 0.74 0.82 0.86 1.71 1.52

orientations, where θ ∈ [0, π). Due to its high computa-

tional load, we adopt structured edge [10] in this work. In

the following, we denote structured edge (SE) as e(x, y).
We integrate the structured edge e(x, y) with the ori-

ented watershed transformation (OWT) in a way similar to

the gPb algorithm in which we present an effective way to

generate oriented structured edge e(x, y, θ) from the e(x, y)
using a steerable filter [15]. First, we treat the structured

edge e(x, y) as a gradient magnitude map. In addition to

structured edge e(x, y), a coarse orientation map Θ(x, y) is

also computed [10]. Based on the orientation map Θ(x, y),
we project the structured edge e(x, y) to the x and y di-

rections. The gradient in the x direction is defined as

ex(x, y) = e(x, y) cos(Θ(x, y)) and the gradient in the y
direction is defined as ey(x, y) = e(x, y) sin(Θ(x, y)). We

then obtain the oriented structured edge e(x, y, θ) as fol-

lows:

e(x, y, θ) = |ex(x, y) cos(θ) + ey(x, y) sin(θ)| , (2)

where orientations θ in this paper are

[π/8 , π/4 3π/8 , π/2 , 5π/8 , 3π/4 , 7π/8 , π], and they are

selected for performance improvement.

Subsequently, the OWT step is conducted because the

output of the structured edge is not closed contours. We use

an approach similar to that in the gPb method [4]. Finally,

the hierarchal regions are obtained by a greedy graph-based

merging algorithm and represented by the UCM scheme [3]

as a weighted contour map. To obtain a different number

of segments from the hierarchical region tree, we threshold

the contour map at different scales k ∈ [0, 1], where k = 0
corresponds to the finest partition and k = 1 corresponds to

the original image. We refer the proposed region generation

algorithm SE-SF-OWT-UCM for short.

4.2. Region Generation for Object Detection

The graph-based segmentation algorithm [14] has been

used in several state-of-the-art object proposal algo-

rithms [26, 19] and other vision tasks [16, 27]. While it gen-

erates initial segments efficiently, the generated regions do

not usually adhere to object boundaries as shown in the sec-

ond column of Figure 2, Motivated by this, we use the pro-

Table 2. Segmentation speed comparison. We report the average

segmentation speed for two different algorithms on the BSDS500

testing set, which contains 200 images. The proposed algorithm

generates comparable region quality as gPb-OWT-UCM [4] with

higher efficiency.

Method Computational time (s)

gPb-OWT-UCM [4] 53.6

Ours 4.6

posed SE-SF-OWT-UCM algorithm to generate high qual-

ity regions effectively.

Recently, Uijlings [26] propose the selective search

method for object proposals based on the graph-based seg-

mentation [14] and hierarchical grouping. Instead, we use

the proposed SE-SF-OWT-UCM algorithm to obtain initial

regions and group them hierarchically using a number of

similarity measures. In [26], four different similarity mea-

sures are computed based on color, texture, size, and fill

(which measures how well two regions fit into each other).

In this work, we use the color and size similarity measures

as they can be computed efficiently. For further perfor-

mance gain, we use a diversification scheme by sampling

information from the HSV and Lab color spaces in a way

similar to [26].

5. Experiments

We present experimental results for image segmentation

on the BSDS500 database [4] with evaluations against sev-

eral state-of-the-art image segmentation algorithms, i.e., the

gPb-OWT-UCM [4], mean-shift [11], FH [14] and normal-

ized cut [24] methods. In addition, we evaluate the bound-

ary quality of the proposed algorithm against several state-

of-the-art edge detection algorithms, i.e., the gPb-OWT-

UCM [4], FH [14], Canny [5], SCG [23], Sketch tokens [18]

and SE-MS [10] approaches.

For object detection, we present experimental results

on the PASCAL VOC 2007 [13] benchmark database with

comparisons to the selective search [26] method.

5.1. Evaluation on Image Segmentation

Experimental Setting. We first evaluate region quality



(a) Original image (b) FH [14] (c) gPb-OWT-UCM [4] (d) Ours

Figure 2. Segmentation results. First column: input images. Second column: results by the efficient graph-based segmentation

method [14]. The generated segments are usually fragmented and less coherent to object boundaries. Third column: results by the

gPb-OWT-UCM method [4]. Fourth column: results by the proposed SE-SF-OWT-UCM algorithm. Each segmentation result shown

above has roughly 100 segments for comparisons.



on the BSDS500 database [4] which includes 200 training

images, 100 validation images and 200 test images. Re-

gion quality is evaluated on the test set of the BSDS500

database according to segment covering, probabilistic rand

index (PRI) and variation of information (VI). For the cov-

ering score, the segmented regions are evaluated by using

three different quantities: optimal dataset scale (ODS), op-

timal image scale (OIS) and best covering criteria [4]. For

PRI and VI measures, they are computed based on ODS

and OIS. For the boundary benchmarks, the optimal scale

for the whole dataset (ODS), the optimal value for each im-

age (OIS) and average precision (AP) are used. We compute

the SE at multiple scales (MS) in the experiments. In addi-

tion, we use fine grained gradient maps with 8 directions for

structured edge and 8 decision trees.

Experimental Results. In Table 1, we present the region

benchmark results compared to several state-of-the-art ap-

proaches [4, 11, 14, 24] on the BSDS500 database. The

results show that the proposed algorithm generates compa-

rable region in terms of quality as [4], but with 50 times

speed-up on average according to Table 2 (average over 200

images in the test set of the BSDS500 database). In ad-

dition, our algorithm outperforms other state-of-the-art ap-

proaches as shown in Table 1. We also provide the boundary

benchmark results with comparisons to the state-of-the-art

approaches [4, 14, 5, 23, 18, 10] in Table 3. Experimen-

tal results show that the proposed algorithm performs effi-

ciently and effectively in all metrics against the gPb-OWT-

UCM method [4].

Table 3. Boundary benchmarks on the BSDS500 database [4].

Results of seven state-of-the-art algorithms are presented. The

proposed algorithm is based on structured edge (SE), steerable

filters (SF), oriented watershed transformation (OWT) and ultra-

metric contour map (UCM). From the work of [10], SE achieves

the best results using multiscale (MS) detection with 4 evaluated

trees T. Our algorithm enjoys the merit of structured edge [10] and

obtains better performance under OIS measurement. In addition,

our algorithm outperforms the gPb-OWT-UCM method [4] in all

evaluation metrics with 11 times speed-up as shown in Table 2.

ODS OIS AP

Human 0.8 0.8 -

gPb-OWT-UCM [4] 0.73 0.76 0.73

FH [14] 0.61 0.64 0.56

Canny [5] 0.60 0.64 0.58

SCG [23] 0.74 0.76 0.77

Sketch tokens [18] 0.73 0.75 0.78

SE-MS, T=4 [10] 0.74 0.76 0.78

Ours 0.74 0.77 0.77

5.2. Evaluation on Object Detection

Experimental Setting. We evaluate the proposed object

proposal algorithm on the PASCAL VOC 2007 dataset [13],
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Figure 3. Recall of object proposals. We compare the recall rate

between the proposed approach and the “fast” selective search al-

gorithm [26]. The “fast” selective search method has better per-

formance when the IoU ratio is below 0.75 as it generates more

proposals according to Table 4. When the IoU ratio is larger than

0.75, the quality of proposals becomes a dominant factor and the

proposed object proposal algorithm generates higher quality pro-

posals than the “fast” selective search method.

which contains 2501 training images and 4952 test images.

Object instances in this database are all from 20 different

categories, and each object is annotated by a bounding box.

We compare the proposed algorithm with the state-of-

the-art selective search method [26] on the the PASCAL

VOC 2007 test set. The “fast” selective search uses two

different color spaces, HSV and Lab, two similarity mea-

sures, color as well as size similarity, and the parameter

K = [50, 100], which controls the number of segments

generated by the graph-based segmentation algorithm [14].

We use the same criteria to generate object proposals in all

the experiments.

Two metrics are used to evaluate the proposed object pro-

posal algorithm against the state-of-the-art methods. First,

we present the result of the recall based on the intersection-

over-union (IoU) [13], IoU(p, g) = |p∩g|
|p∪g| , where p is the

object proposal and g is the ground truth window. The ob-

ject is detected if the IoU is greater and equal to a threshold.

In our experiments, we evaluate the recall under different

thresholds between [0.5, 1]. The proposed SE-SF-OWT-

UCM algorithm generates different numbers of segments

based on the parameter k. In addition, we present the re-

sults based on the mean average best overlap (MABO) met-

ric [26]. To obtain the MABO, we first calculate the average

best overlap (ABO) defined by

ABO =
1

|Gc|

∑

gc
i
∈Gc

lj∈L
max IoU(gci , lj) , (3)

where Gc is the ground truth windows set for the class c, gc

is a ground truth window for the class c; L are the object



proposals in a given image and lj is one of the object pro-

posals. The MABO is obtained by averaging ABO over all

classes.

Experimental Results. Fig. 3 shows the recall rates

of the proposed algorithm and the “fast” selective search

method [26] on the PASCAL VOC 2007 test set. The “fast”

selective search method [26] performs well when the IoU

is smaller than 0.75, and the proposed approach achieves

slightly better recall rates when the IoU is above 0.75. With

the same MABO rate, Table 4 shows that the “fast” selec-

tive search method and the proposed algorithm generates

roughly 2000 and 1000 proposals, respectively. We note

that the “fast” selective search achieves better results for

smaller IoU due to larger number of proposals with compar-

isons to the proposed method. As the threshold is increased,

high quality proposals become a dominant factor, which in-

dicates that the proposed algorithm generates higher quality

proposals than the “fast” selective search method. In addi-

tion, the results of the MABO in Table 4 support that the

proposed algorithm generates high quality object propos-

als. We note the runtime performance of the proposed algo-

rithm is comparable to the “fast” selective search method as

shown in Table 5.

Fig. 4 shows high quality object proposals generated by

the proposed algorithm. The red boxes are the object pro-

posals generated by the proposed algorithm and the yellow

boxes are the ground truth windows. Overall, the propos-

als generated by the proposed algorithm have the highest

intersection-over-union score that matches the ground truth

annotations well.

Table 4. Mean Average Best Overlap (MABO) and number of

proposals on the PASCAL VOC 2007 testing set.

Method MABO # windows

“Fast” selective search [26] 0.81 2007

Ours 0.81 1191

Table 5. Runtime performance. Average speed for generating

object proposals on the PASCAL VOC 2007 test set.

Method Computational time (s)

“Fast” selective search [26] 2.21

Ours 5.97

6. Conclusions

We have presented two novel region generation algo-

rithms from the structured edge prediction for image seg-

mentation and object detection. Motivated by the high qual-

ity and high efficiency of the structured edge, we link it with

the state-of-the-art gPb hierarchical segmentation algorithm

with steerable filters. We exploit an efficient algorithm for

structured edge prediction to extract regions. In addition,

it generates comparable region quality to the gPb hierarchi-

cal segmentation method. To generate high quality object

proposals for object detection task, we apply the proposed

SE-SF-OWT-UCM algorithm to extract regions and group

them hierarchically. Experimental results show that the pro-

posed algorithms perform favorably for image segmentation

on the BSDS500 database and for the object detection on

the PASCAL VOC 2007 database.
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