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Summary
Objectives: We examine recent published research on the extraction of
information from textual documents in the Electronic Health Record
(EHR).
Methods: Literature review of the research published after 1995,
based on PubMed, conference proceedings, and the ACM Digital
Library, as well as on relevant publications referenced in papers
already included.
Results: 174 publications were selected and are discussed in this
review in terms of methods used, pre-processing of textual
documents, contextual features detection and analysis, extraction of
information in general, extraction of codes and of information for
decision-support and enrichment of the EHR, information extraction
for surveillance, research, automated terminology management, and
data mining, and de-identification of clinical text.
Conclusions: Performance of information extraction systems with
clinical text has improved since the last systematic review in 1995,
but they are still rarely applied outside of the laboratory they have
been developed in. Competitive challenges for information extraction
from clinical text, along with the availability of annotated clinical
text corpora, and further improvements in system performance are
important factors to stimulate advances in this field and to increase
the acceptance and usage of these systems in concrete clinical and
biomedical research contexts.
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Introduction
In the biomedical domain, the rapid
adoption of Electronic Health Records
(EHR) with the parallel growth of nar-
rative data in electronic form, along
with the needs for improved quality of
care and reduced medical errors are both
strong incentives for the development
of Natural Language Processing (NLP)
(sometimes called Medical Language
Processing in this domain). Much of the
available clinical data are in narrative
form as a result of transcription of dicta-
tions, direct entry by providers, or use
of speech recognition applications. This
free-text form is convenient to express
concepts and events, but is difficult for
searching, summarization, decision-sup-
port, or statistical analysis. To reduce
errors and improve quality control, coded
data are required; this is where NLP, and
more precisely Information Extraction
(IE), is needed as explained below.
IE typically requires some "pre-pro-
cessing" such as spell checking, docu-
ment structure analysis, sentence split-
ting, tokenization, word sense disam-
biguation, part-of-speech tagging, and
some form of parsing. Contextual fea-
tures like negation, temporality, and
event subject identification are crucial
for accurate interpretation of the ex-
tracted information. Several different
techniques can be used to extract in-
formation, from simple pattern match-
ing to complete processing methods
based on symbolic information and

rules or based on statistical methods and
machine learning. The information ex-
tracted can then be linked to concepts
in standard terminologies and used for
coding. The information can also be
used for decision support and to enrich
the EHR itself. Biosurveillance, bio-
medical research, text mining, and au-
tomatic terminology management can
also benef it from information extrac-
tion. Finally, automatic de-identif ica-
tion of textual documents also uses the
extraction of personal information be-
fore its removal or replacement. We
review all these uses of information
extraction in this paper.
This review focuses on research about
information extraction from narrative
documents stored in the EHR and pub-
lished after 1995, with an emphasis on
recent publications. Previous research
on this topic is described in a review
by Spyns [1]. Research on information
extraction from the biomedical literature
is not discussed in this paper, but is well
described in reviews by Cohen et al. [2]
and by Zweigenbaum et al. [3].

What Is Information Extraction?
IE involves extracting predefined types
of information from text [4]. In con-
trast, information retrieval (IR) is fo-
cused on f inding documents and has
some very popular examples such as the
Google [5] or PubMed [6] search en-
gines. IR returns documents whereas IE
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returns information or facts. IE is a
specialized sub-domain of Natural Lan-
guage Processing. As cited in the En-
cyclopedia of Artif icial Intelligence,
"Natural Language Processing is the
formulation and investigation of
computationally effective mechanisms
for communication through natural lan-
guage." [7] NLP research focuses on
building computational models for un-
derstanding natural language. "Natural
language" is used to describe any lan-
guage used by human beings, to distin-
guish it from programming languages
and data representation languages used
by computers and described as "artif i-
cial." Some important domains of re-
search are closely related to information
extraction (and sometimes are confused
with it), and these are explained below.
Named Entity Recognition (NER) is a
sub-field of information extraction and
refers to the task of recognizing expres-
sions denoting entities (i.e., Named En-
tities), such as diseases, drugs, or people's
names, in free text documents [8]. Some
entities can be identified solely through
surface structure patterns (e.g., Social
Security Numbers: XXX-XX-XXXX),
but most of them require rules like
[TITLE][PERSON] (for "Mr. Doe"),
or [LOCATION], [LOCATION] (for
"Salt Lake City, Utah"). Rule-based
NER systems can be very effective, but
require some manual effort. Machine
learning approaches can successfully
extract named entities but require large
annotated training corpora. Advantages
of machine learning approaches are that
they do not require human intuition and
can be retrained without reprogram-
ming for any domain.
Text mining uses information extrac-
tion and is defined by Hearst [9] as the
process of discovering and extracting
knowledge from unstructured data. Text
mining typically comprises two or three
steps: information retrieval (to gather
relevant texts; this step is not always

necessary), information extraction (to
extract specif ic types of information
from texts of interest), and data min-
ing (to f ind associations among the
extracted pieces of information).

Clinical versus Biomedical Text
Much of what has been written on the
biomedical uses of NLP can be broken
down into two categories: those that
focus on biomedical text and those that
focus on clinical text. For our purposes
here, we def ine biomedical text to be
the kind of text that appears in books,
articles, literature abstracts, posters, and
so forth. Clinical texts, on the other
hand, are texts written by clinicians in
the clinical setting.  These texts describe
patients, their pathologies, their per-
sonal, social, and medical histories,
f indings made during interviews or
during procedures, and so forth. Indeed,
the term "clinical text" covers the en-
tire gamut of narratives appearing in
the patient record. These can be sur-
prisingly short (e.g., a chief complaint)
or quite long (a medical student his-
tory and physical). There is an impor-
tant class of texts that arise in the clini-
cal research setting that are rarely de-
scribed in the literature. Some of these
resemble biomedical texts (e.g., inter-
nal research reports) while others re-
semble classic clinical texts (e.g., pa-
tient notes made during a clinical trial).
Since these narratives are rarely made
available outside the corporate setting
that generated them, formal studies of
them are sparse. While we do not ad-
dress these texts further here, we note
that there is no a priori reason to think
that the techniques tailored to either bio-
medical or to clinical texts would not be
useful (perhaps with modification) in the
realm of clinical research narratives.
What makes clinical text different from
biomedical text, and why does it pose

a special challenge to NLP? First, some
clinical texts are ungrammatical and
composed of short, telegraphic phrases.
Other texts, including discharge sum-
maries and consult reports such as ra-
diographic readings, are often dictated
and are composed deliberately for clear
communication, while texts like
progress notes are written mainly for
documentation purposes. Second, clini-
cal narratives are pregnant with short-
hand (abbreviations, acronyms, and
local dialectal shorthand phrases). These
shorthand lexical units are often over-
loaded (i.e., the same set of letters has
multiple renderings); Liu et al. estimate
that acronyms are overloaded about 33%
of the time and are often highly ambigu-
ous even in context [10]. Third, misspell-
ings abound in clinical texts, especially
in notes without rich-text or spelling sup-
port. For example, the US Veterans
Administration's (VA) EHR system is the
largest in the world,  but offers essen-
tially only simple text support. It is not
uncommon in the VA corpus to find ab-
breviations or acronyms themselves
misspelled. Fourth, clinical narratives
can contain any characters that can be
typed or pasted. A common example
in the VA corpus is long, pasted sets of
laboratory values or vital signs. Such
embedded non-text strings complicate
otherwise straightforward NLP tasks
like sentence segmentation, since they
are usually filled with periods. Fifth, in
an attempt to bring some structure and
consistency to otherwise unstructured
clinical narratives, templates and pseudo-
tables (e.g., plain text made to look tabu-
lar by the use of white space) are com-
mon. Implicit templates, like the norma-
tive structures for a history-and-physi-
cal or a discharge summary that are com-
monly used across care settings can be
quite useful to NLP. Explicit templates,
though, are pre-formatted, highly id-
iosyncratic, and institution-specif ic
with f ields to be filled in by the user.
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All of these issues complicate NLP on
clinical text, making it especially chal-
lenging. In spite of the challenges, ex-
cellent research has been described in the
literature on extracting information from
clinical text. We review this work below.

A Short History of Information
Extraction in the Biomedical Domain
IE has been developed mostly outside of
the biomedical domain, in the Message
Understanding Conferences (MUC) or-
ganized between 1987 and 1998 and
sponsored by the U.S government. The
MUC conferences fostered much of the
work in the IE domain and consisted in
competitive evaluations of systems de-
veloped for extraction of specif ic in-
formation such as named entities
(people, organizations, locations),
events, and relations (e.g. employee_of,
location_of, manufacture_of). The
MUC evaluation methods have been
widely adopted and adapted to other
domains such as biomedicine.
In the biomedical domain, IE was ini-
tially evaluated with complete NLP sys-
tems (i.e. large systems featuring all func-
tions required to fully analyze free-text).
The f irst of these large-scale projects
was the Linguistic String Project-Medi-
cal Language Processor (LSP-MLP)
[11], at New York University, enabling
extraction and summarization of signs/
symptoms and drug information, and
identif ication of possible medication
side effects. Inspired by this work,
Friedman at al. [12] developed the
MedLEE (Medical Language Extrac-
tion and Encoding system) system. This
system currently is in production at the
New York Presbyterian Hospital and at
Columbia University. MedLEE is
mainly semantically driven and is used
to extract information from clinical
narrative reports, to participate in an
automated decision-support system, and

to allow natural language queries.
MedLEE was the first biomedical NLP
system to be applied to an institution
different than the one where it was de-
veloped. This resulted in a small drop
in performance. However,  after some
adjustments, MedLEE performed as
well as in the original institution [13].
SPRUS (Special Purpose Radiology
Understanding System) [14] was the
first NLP application developed by the
Medical Informatics group at the
University of Utah (Salt Lake City), and
was only semantically driven. Later came
SymText (Symbolic Text processor)
[15], with syntactic and probabilistic se-
mantic analysis. SymText relied on Baye-
sian networks for semantic analysis.
The U.S. National Library of Medicine
has developed a set of NLP applica-
tions called the SPECIALIST system
[16], as part of the Unif ied Medical
Language System (UMLS®) project
[17]. It includes the SPECIALIST Lexi-
con, the Semantic Network, and the
UMLS Metathesaurus®. The NLM also
developed several applications that use
the UMLS, such as the Lexical Tools and
MetaMap [18], with many other applica-
tions described in the following sections.
The examples of complete NLP sys-
tems cited above required signif icant
resources to develop and implement.
Considering this issue, several authors
progressively experimented with more
simple systems focused on specif ic IE
tasks and on a limited number of dif-
ferent types of information to extract.
These more focused systems demon-
strated good performance and now con-
stitute the majority of the systems used
for IE. This review includes all systems
used for IE, complete or more focused.

Methods
This paper presents a review of recent
work in information extraction from

textual clinical documents in the EHR.
As mentioned previously, we only in-
cluded research published after 1995.
Our focus is on recent published re-
search. We selected interesting publi-
cations from bibliographic queries in
PubMed (for "information extraction",
"text mining" without "information
retrieval", "natural language process-
ing" and "record" without "literature"
or "Medline", "medical language pro-
cessing", and "natural language under-
standing"), conference proceedings,
and the ACM Digital Library (for "in-
formation extraction" with "medical"
or "medicine" or "biomedical" or
"clinical" without "literature" or
"Medline"). We also added relevant
publications referenced in papers that
were already included.

State of the Art in Informati-
on Extraction from the EHR
Methods Used for Information
Extraction
A variety of methods have been em-
ployed in the general and biomedical
literature domains to extract facts from
free text and f ill out template slots.
McNaught et al. [19] describe a detailed
review of IE techniques in the biomedi-
cal domain; however their review does
not include the clinical f ield. Here, we
adopt their classif ication scheme with
references to the clinical subdomain.
A typical IE system consists of a combi-
nation of the following components de-
scribed by Hobbs [20,21]: tokenizer, sen-
tence boundary detector, part-of-speech
tagger, morphological analyzer, shallow
parser, deep parser (optional), gazetteer,
named entity recognizer, discourse mod-
ule, template extractor, and template com-
biner. The performance of the higher-
level components (discourse module,
template extractor and template com-
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biner) is highly dependent on the per-
formance of the lower level components.
The state-of-the-art of the lower-level
components is discussed in a following
section. Higher-level components, e.g.,
templates, require careful modeling for
relevant attributes; with any template
change, the IE system needs to be rerun
to populate the modif ied template.
One approach to IE is pattern-match-
ing, which exploits basic patterns over
a variety of structures - text strings,
part-of-speech tags, semantic pairs, and
dictionary entries [22]. The main disad-
vantage of pattern-matching approaches
is their lack of generalizability, which
limits their extension to new domains.
Another set of approaches is the use of
shallow and full syntactic parsing. How-
ever, non-robust parser performance is
an outstanding issue since medical/clini-
cal language has different characteris-
tics than general English. The differ-
ence between general and medical En-
glish has led to the development of sub-
language-driven approaches, which
formulate and exploit a sublanguage's
particular set of constraints [23-27]. The
disadvantage of sublanguage approaches
lies in their poor transferability to new
domains. Ontology-driven IE aims at
using an ontology to guide the free-text
processing [28]. Syntactic and seman-
tic parsing approaches combine the two
in one processing step. Machine learn-
ing techniques have demonstrated re-
markable results in the general domain
and hold promise for clinical IE, but they
require large, annotated corpora for
training, which are both expensive and
time-consuming to generate.
The general and biomedical IE com-
munities have pushed the field towards
the development of sophisticated meth-
ods for deeper, comprehensive extrac-
tions from text. Clinical - and medical
- domain IE has lagged behind mainly
because of limited access to shareable
clinical data (e.g., constraints that pro-

tect patient conf identiality). A major
challenge is the creation of a large and
vibrant community around shared data,
tasks, annotation guidelines, annotations,
and evaluation techniques. So far, there
have been three clinical shared tasks com-
petitive evaluations on clinical texts:
(1) Automatic assignment of ICD-9-

CM codes to clinical free text [29].
The shared task involved mapping
ICD-9-CM codes to radiology re-
ports. Pestian et al. [30] describe the
task, its organization, and results.

(2) De-identification of discharge sum-
maries within the i2b2 [31] initia-
tive held in November 2006. The
task is described in Uzuner et al. [32].
Top systems achieved F-measure re-
sults in the high 90's. More details
are provided in the "De-identifica-
tion of clinical text" section below.

(3) Patient smoking status discovery
from discharge summaries within
the i2b2 initiative held in Novem-
ber 2006 [33]. The participating
systems applied a variety of tech-
niques to assign the f inal patient
smoking status with the top micro-
averaged F-measure results in the
80's. More details are provided in
the "Extraction of information in
general" section below.

"Pre-processing" of Textual Documents
The vast amount of medical and clini-
cal data available are only useful in as
much as the information contained in
them can be properly extracted and
understood. Much work has been done
recently in developing and adapting
natural language tools for cleaning and
processing this data for the subsequent
tasks of information extraction and text-
and data-mining.
One useful pre-processing task is spell-
checking. Ruch et al. [34] note that the
incidence of misspellings in medical
records is around 10%, which is sig-
nif icantly higher than the misspelling
incidence for other types of texts. Ruch

et al. use morpho-syntactic disambigu-
ation tools in addition to a classical spell-
checker to rank and select the best can-
didate for word correction. Tolentino
et al. [35] create a UMLS-based spell-
ing error correction tool. Their method
performs spelling correction by detect-
ing errors and suggesting corrections
against a dictionary. They use the
UMLS Specialist Lexicon as the pri-
mary source of dictionary terms and
WordNet [36,37] as a secondary source.
Tomanek et al. [38] examine the ques-
tion of whether sentence and token split-
ting tools trained on general annotated
corpora are adequate for medical texts.
They compiled and annotated a corpus
(Julie) according to a schema developed
for sentence and token-splitting, which
then served as a training set for a ma-
chine learning algorithm using Condi-
tional Random Fields. The results in-
dicate that for sentence splitting, the
training corpus is not very critical; for
tokenization, however, performance is
signif icantly improved when training
on a domain-specif ic corpus.
Word Sense Disambiguation (WSD) is
the process of understanding which
sense of a word (from a set of candi-
dates) is being used in a particular con-
text. WSD is a crucial task for applica-
tions that aim to extract information
from text. Weeber et al. [39], at the
National Library of Medicine, derived
a corpus of MEDLINE abstracts and
manually sense-tagged 5,000 instances
of 50 ambiguous words using the
UMLS as sense inventory. Liu et al. [10]
present a very good background sec-
tion on general English WSD, biomedi-
cal WSD and supervised approaches to
the task. They avoid the use of manu-
ally annotated sense-tagged data by us-
ing a two-step unsupervised approach.
They automatically derive a sense-
tagged corpus from MEDLINE ab-
stracts using the knowledge in the
UMLS, and use the derived sense-
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tagged corpus as a training set for a clas-
sif ier for ambiguous words. Liu et al.
[40] implement four machine learning
algorithms and use three datasets in a
study showing that supervised WSD is
suitable when there is enough sense-
tagged data. All supervised WSD clas-
sif iers performed with a precision of
less than 80% for biomedical terms
while most classifiers achieved around
90% for general English. There was no
single combination of feature represen-
tation, window size, or algorithm that
performed best for all ambiguous
words.  Xu et al. [41] also investigated
the effects of sample size, sense distri-
bution, and degree of difficulty on the
performance of WSD classif iers.
Pakhomov et al. [42] focus on WSD in
the clinical domain and experiment with
abbreviation and acronym disambigu-
ation by applying a combination of su-
pervised and unsupervised methods.
Coden et al. [43] use a supervised
method to train a classifier for the top
50 ambiguities from a clinical corpus
compiled from Mayo Clinic notes.
Part-of-speech tag assignment has a
major impact on the natural language
tasks that follow. According to Campbell
et al. [44] an error of 4% in part-of-
speech-tag assignment can translate to
10% in error rate at the sentence level.
Part-of-speech taggers for general En-
glish achieve very high scores in the
task. Coden et al. [45] suggest two ways
to adapt a part-of-speech tagger (POS-
tagger) trained in general English texts
to the clinical language: by adding a
500-word domain-specific lexicon; and
by creating manual annotations on do-
main-specif ic documents and adding
these documents to the English corpus.
The addition of the annotated docu-
ments increased the tagger's perfor-
mance by 6% to 10%, whereas the ad-
dition of the lexicon increased its per-
formance by about 2%. The authors
noted however that the creation of the

lexicon required much less effort than
manual annotations. Liu et al. [46] de-
veloped a manually annotated corpus
of pathology reports and a domain spe-
cif ic lexicon to evaluate the perfor-
mance of a maximum-entropy POS-
tagger trained on general English. The
POS-tagger re-trained with the anno-
tated corpus performed better than with
the lexicon addition. The study also
showed that more than 30% of the words
in the pathology reports were unknown
to the general English trained tagger. The
addition of an 800-word domain-specific
lexicon revealed a performance increase
of 5% and selecting sentences that con-
tained the most frequent unknown words
proved to be most helpful. Hahn et al.
[47] investigated the use of a rule-based
POS-tagger (Brill tagger) and a statisti-
cal tagger (TnT) on clinical data. The
statistical tagger TnT trained on general
texts performed close to the state of the
art in the medical domain. They claim
that the model (statistical vs. rule-based)
is more important than the sublanguage.
Nonetheless, the statistical tagger im-
proved its performance substantially
when trained on medical data.
Parsers generate a constituent tree that
provides a syntactic representation of
the sentence structure with its depen-
dencies. Medical language is especially
challenging because of its ungrammati-
cal and fragmented constructions.
Campbell et al. [48] argue in favor of
dependency grammars (DG) for bio-
medical text exactly because of the
ungrammaticality of many sentences.
In DG, each word has one attachment
only and a tree structure with the de-
pendencies is the sentence representa-
tion. The authors applied a Transfor-
mational Based Learning algorithm to
learn a dependency grammar for medi-
cal texts. Clegg et al. [49] present a
method for evaluating parsers' perfor-
mance using an intermediate represen-
tation based on dependency graphs.

They evaluated Bikel, Collins,
Stanford, Charniak, and Charniak-Lease
parsers and mapped the constituent
parsed trees to dependency graphs.
Bikel and Charniak-Lease parser per-
formed well on parsing sentences from
the Genia Treebank (also mapped to
dependency graphs). Pyysalo et al. [50]
investigated the adaptation of a Link
Grammar parser to the biomedical lan-
guage with a focus on unknown words.

Contextual Feature Detection and
Analysis
When extracting information from nar-
rative text documents, the context of
the concepts extracted plays a critical
role. Important contextual information
includes negation (e.g. "denies any chest
pain"), temporality (e.g. "...fracture of
the tibia 2 years ago..."), and the event
subject identification (e.g. "his mother
has diabetes").
NLP systems such as the LSP [11] or
MedLEE [12] include negation analy-
sis in their processing, but research fo-
cused explicitly on negation detection
started only a few years ago with
NegExpander [51], a program detect-
ing negation terms and then expanding
(NegExpanding) the related concepts.
This program had a precision of 93%
and was used by a mammography re-
ports classif ication algorithm. More
recently, a negation detection algorithm
called NegEx was developed using
regular expressions [52] and achieved
94.5% specif icity and 77.8% sensitiv-
ity. Several systems later implemented
NegEx, such as the system developed
by Mitchell et al. [53] to extract infor-
mation from pathology reports in the
Shared Pathology Informatics Network
(SPIN). When only evaluating nega-
tion detection, they measured a preci-
sion of 77% and a recall of 83%. In
the process of developing NLP tools
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for the i2b2 (Informatics for Integrat-
ing Biology and the Bedside) project,
Goryachev et al. [54] compared NegEx,
NegExpander, and two classification-
based algorithms, and measured the best
performance with NegEx (94.5% sensi-
tivity and 94.3% specificity).
A more complex system, called
Negfinder [55], also used indexed con-
cepts using the UMLS and regular ex-
pressions, but added a parser using a
LALR (Look-Ahead Left-Recursive)
grammar to identify negations, and
achieved 97.7% specif icity and 95.3%
sensitivity when analyzing surgical
notes and discharge summaries.
A system extracting SNOMED-CT con-
cepts from History and Physical Exami-
nation reports at the Mayo Clinic imple-
mented a negation detection algorithm
based on an ontology for negation. They
measured a 97.2% sensitivity and 98.8%
specificity [56]. The most recently pub-
lished negation detection algorithm used
a hybrid approach based on regular ex-
pressions and grammatical parsing [57].
Negation terms were detected using regu-
lar expressions to achieve high sensi-
tivity, and the part-of-speech parse tree
was then traversed to locate negated
phrases with high specif icity. When
evaluating negation detection on radi-
ology reports, a 92.6% sensitivity and
a 99.8% specif icity were measured.
Temporality analysis in clinical narra-
tive text can be significantly more com-
plex than negation analysis, and has
been investigated by Zhou, Hripcsak
and colleagues, starting by proposing a
model for temporal information based
on a simple temporal constraint satisfac-
tion problem [58]. Discharge summaries
were analyzed for temporal structures
and a temporal constraint structure for
historical events was developed and then
applied to other discharge summaries.
The temporal constraint structure success-
fully modeled 97% of the temporal ex-
pressions [59]. The authors then pro-

posed a system for automated temporal
information extraction based on a tem-
poral tagger, an NLP system (MedLEE),
some post-processing based on medical
and linguistic knowledge to treat implicit
temporal information and uncertainty,
and the simple temporal constraint satis-
faction problem for temporal reasoning
[60]. This system, called TimeText, has
recently been evaluated with discharge
summaries [61]. TimeText detected clini-
cally important temporal relations with
93.2% recall and 96.9% correctness. It
also answered clinically plausible tem-
poral queries with 83.7% accuracy.
Harkema et al. have developed tempo-
ral analysis in the context of the CLEF
(Clinical eScience Framework) IE
component [62]. The information ex-
tracted is used to build the patient
chronicle, an overview of the significant
events in the patient's medical history.
Events extracted from narrative reports
are associated with structured data from
the EHR. The system still includes some
manual steps, but the authors are work-
ing on a fully automatic system. Focus-
ing on discharge summaries, Bramsen
et al. analyzed temporal segments (i.e.,
a fragment of text that does not exhibit
abrupt changes in temporal focus), a
coarser level of analysis than Zhou et al.,
and their ordering to characterize the tem-
poral flow of discourse [63]. The authors
use machine learning techniques for au-
tomatic temporal segmentation and seg-
ment ordering. For temporal segmenta-
tion, they use lexical, topical, positional,
and syntactic features and measured
78% recall and 89% precision. The best
results for segments ordering were ob-
tained with the Integer Linear Program-
ming framework (84.3% accuracy) [64].
Finally, algorithms combining the
analysis of the subject of the text (e.g.,
the patient) and other contextual fea-
tures have recently been developed and
evaluated. As a first step towards auto-
mated extraction of contextual features,

Chu et al. [65] have manually anno-
tated four contextual features for 56
clinical conditions detected in ED re-
ports. These features - Validity (valid/
invalid), Certainty (absolute, high,
moderate, low), Directionality (af-
f irmed, negated, resolved), and Tem-
porality (recent, during visit, histori-
cal) - were then evaluated in terms of
their contribution to the classif ication
of the detected conditions as acute,
chronic or resolved. Directionality (i.e.
negation) was the most important con-
textual feature. Chapman et al. [66]
propose an algorithm for contextual
features identif ication. This algorithm,
called ConText, is an extension of
NegEx cited above. ConText determines
the values of three contextual features:
Negation (negated, aff irmed), Tempo-
rality (historical, recent, hypothetical),
and Experiencer (patient, other). Like
NegEx, this algorithm uses regular ex-
pressions to detect trigger terms,
pseudo-trigger terms, and scope termi-
nation terms, and then attributes the
detected context to concepts between
the trigger terms and the end of the sen-
tence or a scope termination term. The
evaluation of ConText used an NLP-
assisted review methodology described
by Meystre et al. [67] and measured a
97% recall and precision for negation,
50% recall and 100% precision for
experiencer, and 67.4% to 82.5% re-
call and 74.2% to 94.3% precision for
temporality (when assigning historical
or hypothetical values).
Some conclusions that can be drawn
from this research are that separate al-
gorithms (i.e., specialized in contextual
features analysis) are easier to imple-
ment, and one of the best performing
negation detection algorithms - NegEx
- is a good example of this. Most of
these algorithms are based on lexical
information, even if some algorithms
add part-of-speech information like
ChartIndex cited below.
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Extraction of Information in General
In this section, we present published re-
search involving extraction of informa-
tion from textual documents in the EHR
and emphasis the different methods used
and types of documents analyzed. The
application of IE for specific purposes
such as coding, surveillance, terminol-
ogy management, or research are de-
scribed in the subsequent sections.
Useful IE has been attempted with ba-
sic pattern matching techniques such as
regular expressions. Dictionaries of
variable size were also typically used.
Long [68] has extracted diagnoses from
discharge summaries using regular ex-
pressions and a punctuation marks dic-
tionary as well as the UMLS Meta-
thesaurus [69]. To extract blood pres-
sure and antihypertensive treatment in-
tensification information, Turchin [70]
also used regular expressions. The
REgenstrief eXtraction tool [71] uses
pattern matching to extract some diag-
noses and radiological f indings related
to congestive heart failure. Finally, a
module extracting UMLS concepts and
based on pattern matching was devel-
oped by Bashyam [72]. It was faster
than MMTx [73] and was proposed as
a new option in MMTx.
Systems based on full or partial pars-
ing were based on morpho-semantems
(i.e., elementary meaningful units that
compose words and are pref ixes like
oto- or suffixes like -itis) [74], on lexi-
cal and/or syntactic information such as
the LifeCode® system [75], or the Dutch
Medical Language Processor developed
by Spyns et al. [76], or on semantic in-
formation like the application developed
for the ChartIndex project to convert
documents to the HL7 CDA [77] format
and extract UMLS concepts [78].
Approaches combining syntactic and
semantic analysis constitute the major-
ity of the systems. A famous system that
has been adapted and used for several

different tasks is MedLEE [79]. Besides
being progressively extended to most
of the documents present in the EHR
[24] and tested for its transferability in
another institution [13], it has been
used to detect f indings evocative of
breast cancer [80], to analyze modif i-
cations to data entry templates [81], and
even combined with machine transla-
tion to detect abnormal f indings and
devices in Portuguese radiology reports
[82]. MetaMap and its Java™ version
called MMTx (MetaMap Transfer) were
also often used to extract information
from clinical documents, even it they
have been developed for MEDLINE
abstracts and lack negation detection.
Some examples are Schadow et al. [83]
who used it to extract information from
pathology reports, Chung et al. [84]
who used it with echocardiography re-
ports, and Meystre et al. [67] who used
it to extract medical problems.
SymText [15] and its successor, MPLUS
[85], make extensive use of semantic
networks for semantic analysis. These
networks are implemented as Bayesian
networks (also called belief networks),
trained to infer probabilistic relation-
ships between extracted terms and their
meaning. They have been used to ex-
tract interpretations of lung scans [86],
to detect pneumonia [87], and to detect
mentions of central venous catheters
[88]. Other systems combining syntac-
tic and semantic analysis have recently
been developed and evaluated. The Pitts-
burgh SPIN information extraction sys-
tem [27] was a project of the Shared Pa-
thology Informatics Network (SPIN)
[89] based on GATE (General Architec-
ture for Text Engineering) [90] and evalu-
ated to extract specific information from
pathology reports. A very similar appli-
cation - caTIES (cancer Text Informa-
tion Extraction System) [23] - was later
developed by the same team as a caBIG-
compliant [91] application. It is based
on the NCI Enterprise Vocabulary Sys-

tem [92] instead of the UMLS utilized
by the SPIN system. HITEx (Health In-
formation Text Extraction) was also
based on GATE and was developed to
extract diagnoses and smoking status
[93]. Finally, the KnowledgeMap Con-
cept Identif ier (KMCI) was adapted to
extract UMLS concepts from echo-
cardiography reports [94] and to detect
QT interval prolongations [95].
Recent systems are almost always based
on some machine learning methods, for
limited tasks or for most of their func-
tions. An example is a system developed
by Taira et al. [96] that used Maximum
Entropy classifiers for parsing and se-
mantic analysis, and later also a vector
space model to extract UMLS concepts
[97]. Another example is the semantic
category classifier developed by Sibanda
et al. [98]. It employs support vector ma-
chines to attribute semantic categories to
each word in discharge summaries.
Systems developed to extract informa-
tion from textual documents in the
EHR have mostly been focused on chest
radiography reports [13,71,75,82,
88,93,96,99,100]. They have also been
developed to analyze other types of ra-
diology reports [72,78,80,85,86,97],
echocardiogram reports [84,94,95], and
other types of documents that have
more diversity and larger vocabularies
such as discharge summaries [68,
93,98], pathology reports [26,27,83],
and other notes [70,81,101].
Some systems have been developed to
analyze several different types of docu-
ments [15,24,67], and the effort re-
quired to port an NLP application from
only chest radiography report, to other
radiology reports, discharge summaries,
and pathology reports is well described
by Friedman [24,102]. The largest ef-
forts to develop and evaluate informa-
tion extraction from clinical text have
been achieved in the context of the i2b2
smoking status identification challenge
in 2006 and the Medical NLP challenge
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[30] in 2007 and described in the next
section. For the i2b2 "smoking chal-
lenge", a corpus of 502 de-identif ied
and "re-identif ied" (with realistic sur-
rogates) discharge summaries was f irst
created by Uzuner et al. [33]. Eleven
teams participated. Their task was to
use discharge summaries to classify each
patient as a smoker, current smoker,
past smoker, non-smoker, or unknown.
The best performing system was devel-
oped by Clark et al. [103] and first fil-
tered out documents with unknown
smoking status, and then used SVMs
(Support Vector Machines) to classify
the smoking status. They also added
1200 documents to improve the train-
ing of their system. The overall accu-
racy of their system reached 93.6%.
Some other good performing systems
are described in Cohen [104], Heinz et
al. [105], Savova et al. [106], and
Wicentowski and Sydes [107].

Extracting Codes from Clinical Text
A popular approach in the literature
over the last several years has been to
use NLP to extract codes mapped to
controlled sources from text.  The most
common theme was to extract codes
dealing with diagnoses, such as Inter-
national Classif ication of Diseases
(ICD) versions 9 and 10 codes.  In ad-
dition to a focus on systematic coding
schemes like ICD-9, institutions often
also have local coding schemes they
wish to extract.
2007 was a particularly interesting year
for this because it was the year of the
Medical NLP challenge, a shared task
exercise that provided a moderately
large test/training corpus of radiologi-
cal reports and their corresponding hu-
man-coded ICD-9-CM codes. The
project is described in Pestian et al. [30]
and was very well conceived - espe-
cially the evaluation metrics. Ulti-
mately, 44 different research teams par-

ticipated, an astounding number.  We
found two papers that reported tech-
niques and results.  Aronson et al. [108]
leveraged several existing technologies
(e.g., NLM's Medical Text Indexer, a
support vector machine classif ier, a k-
NN classifier, etc.) and arranged them
in a stack-like architecture to evaluate
their fused performance. They placed
11th in the challenge with a mean F-
measure considerably higher than the
average score for all participants (F-
measure = 0.85; the best score was 0.89;
mean score was 0.77). Crammer et al.
[109] also described a multi-component
coding system; it used machine learn-
ing, a rule-based system, and an auto-
matic coding system based on human
coding policies. They judged these to
be loosely orthogonal so they combined
the results in a cascade that gave prior-
ity to the human coding policy ap-
proach.  They placed fourth in the chal-
lenge and in this paper describe the
same technology's performance against
a local corpus of radiology reports.
ICD-10, the newer ICD standard, is
more popular overseas than in the US,
so it is not surprising that the literature
describing automatic extraction of these
codes comes mainly from Europe and
Japan. Baud et al. [110] detail an inter-
esting overview of the problems inher-
ent in the task of ICD-10 encoding. And
in a vein similar to the ICD-9 ap-
proaches above, Aramaki et al. [111] use
a multi-component approach using three
different extraction algorithms followed
by a polling technique at the end to de-
termine the winner. A consistent theme
with all these recent NLP-based code
extractors for ICDs is the use of mul-
tiple, parallel components followed by
some sort of adjudication module.
The past decade has seen the ascendancy
of a remarkable general-purpose infor-
mation extraction tool for clinical texts.
As noted above, it is called MedLEE
and its use as a code extractor is well

summarized in Friedman et al. [25]
MedLEE has seen use in code extrac-
tion in many contexts. Friedman her-
self describes an automated pneumo-
nia severity score coding system using
it [112]. Elkins et al. [113] describe an
adaptation of its use for neuroradiology
standard concept extraction; Kukafka
et al. [114] used it to code to a stan-
dard for health, and health-related
states, called the International Classi-
fication of Functioning, Disability, And
Health (ICF; also a WHO standard).
Lussier et al. [115] have applied
MedLEE to extract SNOMED codes.
SNOMED was also the driver for work
done by Hasman et al. [116] They have
exploited SNOMED coding in clinical
text NLP, primarily to assist patholo-
gists during the coding process.
In addition to extracting codes that con-
form to a standard coding scheme like
ICD-9/10 or SNOMED, there is con-
siderable interest in extracting codes
from text that conform to a local insti-
tutional standard like a problem list.
Pakhomov et al. [117] and Haug et al.
[118] describe examples of problem-
list extraction at the Mayo Clinic and
Intermountain Healthcare, respectively.
These are two mature centers for clini-
cal informatics. The Pakhomov system
uses a multi-pass, certainty-based ap-
proach; while Haug's efforts use a Baye-
sian belief network technology. That
team's work built on the work presented
in Gundersen et al., [119] which makes
a convincing case for the superiority of
just-in-time automated coding over
static, pre-coded systems.

Extracting Information to Enrich the
EHR and  for Decision Support
The past dozen years has seen an in-
crease of interest in using NLP for en-
riching the content and utility of the
EHR, especially to support computer-
ized decision-making. We have catego-
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rized this work into four broad groups,
but the boundaries between them are
fluid, as is often the case in NLP.
In contrast to work done in the early
1990s, recent work on the automatic
structuring of documents using NLP has
been on the wane. Kashyap et al. [120]
used a commercial product called A-
Life© to automatically structure stan-
dard admission notes such as the his-
tory and physical. They reached the
same conclusion common to similar
efforts in the past, namely that NLP
technology is not ready yet to com-
pletely structure these texts. They ar-
gue that, given the volume of admis-
sion data, even partial support is a wor-
thy goal. The VA CPRS system that was
noted in the Introduction provides an
interesting and large-scale platform for
research; Lovis et al. [121] used a
handcrafted parser to assist in the struc-
turing of computerized provider order
entry fields.  While the parser itself is
limited to use within CPRS, the study is
important because it was the first to show
that NLP could be used successfully
within the CPRS environment. See also
the section below on research uses of
NLP, which describes a note structuring
system in use at the Mayo Clinic.
As clinical text systems have grown in
popularity, a problem revealed itself:
the sheer number of notes from so many
diverse disciplines being integrated into
one spot makes navigation through them
all quite diff icult. Two interesting pa-
pers reported on the use of NLP to make
navigation easier through visualization
of notes. Cimino et al. [122] recently
described work that successfully ab-
stracted and summarized medication
data in an effort to improve patient
safety. Liu and Friedman [123] dem-
onstrated that a tool they call CliniViewer,
built using MedLEE and an XML en-
gine, can be used to summarize and navi-
gate clinical text. As clinical text mod-
ules in the EHR become more popu-

lar, it is likely that we will see an in-
crease in research in this area.
Another way to enrich the value of the
EHR using information extraction is
case finding.  In this setting the goal is
to f ind patients that match certain cri-
teria based on either text alone or text
in conjunction with other EHR data.
Day et al. [124] used the MPLUS NLP
system to classify trauma patients, and
the system did well enough that it is in
use daily at a Level 1 trauma center.
Mendonça's team [125] used MedLEE
to identify pneumonia in newborns with
a very reasonable F-measure. Commu-
nity acquired pneumonia (CAP) is a
very common problem in healthcare
today and it has been the focus of sev-
eral NLP efforts. Fiszman et al. [126]
showed how SymText could be used to
find cases of CAP by comparing clini-
cal notes to the CAP clinical guidelines.
Using a similar technical approach,
Aronsky et al. combined the same NLP
system with a Bayesian network to iden-
tify general pneumonia. Finally, again
using MedLEE, Jain et al. [127] dem-
onstrated a very impressive F-measure
and finding cases of tuberculosis in ra-
diographic reports.
Beyond the three categories above, the
use of NLP to enrich the EHR and to
support decision-making is quite di-
verse.  Representative of that work are
examples such as: Meystre and Haug
using MMTx, combined with
Chapman's NegEx algorithm, to enrich
the problem list [67,128,129]. In 2005
Hazelhurst et al. [130] described their
MediClass NLP system which is an in-
teresting combination of knowledge-
based and NLP-based techniques. They
demonstrate its utility in the automatic
discovery of vaccination reactions from
clinical notes and in assessing adher-
ence to tobacco cessation guidelines
[131,132].
In 1996, Johnson and Friedman [133]
noted a caution: the performance of any

NLP system is constrained by the qual-
ity of the human-composed text.  They
showed that even the most basic of in-
formation, demographics, are often in-
consistently entered by humans.  They
compared the demographic data in dis-
charge summaries as extracted by an
early prototype of MedLEE to the origi-
nal data input by humans at admission.
The NLP system performed quite well
at extracting the demographics, while
the demographics input by humans was
quite inconsistent.  As clinical text re-
positories grow, they note, the reposi-
tories will increasingly be f illed with
conflicting data, posing a challenge to
any NLP system.

Information Extraction for Surveillance
One of the great benefits of computing
in general is the ability of a computer
to do mundane, repetitive tasks where
humans have a hard time maintaining
vigilance.  Surveillance based on clini-
cal texts is precisely such a task, at the
same time both very important and pro-
foundly tedious. Adverse events sur-
veillance based on clinical texts is a good
example. Penz et al. [134] used
MedLEE to test the feasibility of
mounting surveillance for adverse
events related to central venous cath-
eters, using surgical operation reports
from the VA's CPRS. Their specificity
was about 0.80 and their sensitivity was
about 0.72. Error analysis showed that
errors were due to the diff iculties of
processing raw clinical text using a stan-
dard parser (coupled with inadequate
provider documentation). Interestingly,
they found that the corresponding ad-
ministrative data for detected catheter
placements (e.g., ICD-9 codes) only
captured about 11% of the use of these
devices, showing that the text was a far
better place to look for catheter place-
ment information than billing data.
Melton and Hripcsak [135] used
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MedLEE to mount a surveillance for a
broad range of adverse events. While
the sensitivity for their technique was
low at 0.28, the specif icity was quite
high at 0.99. Cao et al. [136] used a
straightforward keyword-based NLP
approach for the surveillance of adverse
drug events, but found only modest
positive predictive value. Both of
Melton and Cao studies used discharge
summaries, which are fairly clean clini-
cal documents.
Syndromic surveillance has become a
popular area of research, especially
with growing concerns about national
security and pandemic issues. Chapman
et al. [137] reported on a system using
MPLUS to conduct biosurveillance of
chief complaint text fragments. The
system's performance was good enough
that it was used in the Winter Olympic
Games in 2002. Pneumonia outbreaks
are an important clinical surveillance
issue, so Haas et al. [138] extracted in-
formation from neonatal chest x-ray
reports using MedLEE. The positive
predictive value of the system was 0.79
but the negative predictive value was
greater than 0.99. The NLM's MetaMap
tool was used by Chapman et al. [139]
for the biosurveillance of general res-
piratory findings in the emergency de-
partment. The results were moderately
low with an F-measure in the mid-60s.
Their error analysis allowed the research
team to identify areas that would im-
prove MetaMap's performance, and
these are very likely to be applicable to
any concept extractor using emergency
department clinical text (e.g., tempo-
ral discrimination, anatomic location
discrimination, f inding-disease pair dis-
crimination, and in contextual infer-
ence). In another study, Chapman [140]
did show that surveillance for fever, as
a biosurveillance indicator, could be
readily accomplished using keywords
and a probabilistic algorithm called
CoCo to infer fever from chief com-

plaint, as well as keyword searching in
dictated ED histories and physicals.
There are several efforts underway
within the VA system to use NLP in
quality surveillance. A representative
study of this work is that by Brown et
al. [141]. They used pattern-matching
techniques to extract information from
an electronic quality (eQuality) assess-
ment form used within the VA system.
They reported a sensitivity of 0.87 and
a specif icity of 0.71, and the note that
for sensitivity human performance was
only 4 to 6% better.

Information Extraction Supporting
Research
Under the stewardship of the NIH
Roadmap project called the Clinical and
Translational Science Award (CTSA)
process, translational research is boom-
ing, along with translational informatics
research. The first CTSA awards were
made in 2007 and we anticipate that
research-oriented NLP studies will soon
be appearing.  For now, the application
of NLP to information extraction from
clinical texts to support research is a com-
paratively small body of work.
By far, the most common use of NLP
in this context is in subject recruitment,
where textual data is used to identify
patients who may benef it from being
in a study. Pakhomov et al. adapted the
text analysis system created at the Mayo
Clinic for the structuring of semi-struc-
tured notes for use in identifying pa-
tients with angina [142,143] and heart
failure [144]. In both domains, the
NLP system improved ICD-9 based
subject searching. Once the texts of in-
terest were structured, they used key-
word searches on now-mapped concep-
tual entities to identify the patients of
interest. His two papers that appeared
in 2007 are especially interesting be-
cause they appeared in medical jour-
nals, not informatics journals. This re-

flects a growing acceptance of infor-
matics research into the mainstream
medical literature. Medical journals
often require a more rigorous clinical
evaluation of informatics tools such as
Pakhomov's, and it is refreshing to see
informatics tools compared in a rigor-
ous statistical way to quantitative and
qualitative health services research tech-
niques. Xu et al., [26] using MedLEE,
extracted subject eligibility data from
surgical pathology reports. These re-
ports often present structural process-
ing barriers for MedLEE, so the team
designed a preprocessor that was tai-
lored to emphasize eligibility data.
An interesting use of statistical NLP to
support research is presented by Niu et
al. [145]. They used classic n-gram tech-
niques coupled with machine learning
and negation to try to discern the "polar-
ity" of sentences in the journal Clinical
Evidence, which summarizes recent find-
ings in the clinical literature. In this
sense, the polarity refers to whether the
outcome was "positive," "negative,"
"neutral," or "no outcome reported."
Their average F-measure for each was
in the high 80s, with the best perfor-
mance on positive outcomes. This ap-
proach could be used to assist clinicians
in automatic question answering or to
locate studies that are pertinent to their
research.

De-identification of Clinical Text
In the United States, the HIPAA (Health
Insurance Portability and Accountabil-
ity Act, codif ied as 45 CFR §160 and
164) protects the conf identiality of pa-
tient data, and the Common Rule (codi-
f ied as 45 CFR §46) protects the con-
f identiality of research subjects. The
European Union Data Protection Di-
rective provides similar conf identiality
protection. These laws typically require
the informed consent of the patient and
approval of the Institutional Review



Meystre et al.

138

IMIA Yearbook of Medical Informatics 2008

Board (IRB) to use data for research
purposes, but these requirements are
waived if data are de-identif ied.
Anonymization and de-identif ication
are often used interchangeably, but de-
identif ication only means that explicit
identifiers are hidden or removed, when
anonymization implies that the data
cannot be linked to identify the patient
(i.e., de-identif ied is often far from
anonymous). Scrubbing is also some-
times used as a synonym of de-identi-
f ication.
For a narrative text document to be
considered de-identif ied, the HIPAA
"Safe Harbor" technique requires 18
data elements (called PHI: Protected
Health Information) to be removed,
such as names, telephone numbers, ad-
dresses, dates, and identifying numbers.
Dorr et al. [146] have evaluated the
time cost to manually de-identify nar-
rative text notes (average of 87.2 ± 61
seconds per note), and concluded that
it was time-consuming and difficult to
exclude all PHI required by HIPAA.
Already well aware of these issues, sev-
eral authors have investigated auto-
mated de-identification of narrative text
documents from the EHR. Sweeney
developed the Scrub system [147] to
hide personally identifying information
(names, contact information, identify-
ing numbers, age, etc.). Each specif ic
entity was detected by a specific algo-
rithm using a list of all possible values
(e.g., an algorithm detected first names
and used a list of all commonly known
f irst names).  This system found 99-
100% of identifying information.
Ruch et al. [148] adapted a system
build for disambiguation, the
MEDTAG system, to detect and replace
all instances of titles and names. They
used the MEDTAG lexicon to tag se-
mantic types, and manually written dis-
ambiguation rules. The system was
evaluated with mostly French surgery
reports, laboratory results, and dis-

charge summaries, and successfully re-
moved about 99% of the identifiers. To
detect proper names only, two differ-
ent approaches have been reported.
Taira et al. [149] trained a system with
a corpus of annotated reports from pe-
diatric patients. A lexical analyzer at-
tributed syntactic and semantic tags to
each token, and obvious non-patient
names (drug names, institutions, de-
vices, etc.) were removed. A maximum
entropy model was then used to deter-
mine the probability that a token can
take the PATIENT role. With a deci-
sion threshold of 0.55, a 99.2% preci-
sion and a 93.9% recall were measured.
Thomas et al. [150] used the property
of names to usually occur in pairs or
be preceded or followed by affixes (e.g.
Dr, MD) to detect and replace them in
the narrative section of pathology re-
ports. With a list of clinical and com-
mon usage words, and a list of proper
names, they correctly identif ied 98.7%
of the proper names.
The Concept-Match scrubbing algo-
rithm was developed by Berman [151]
and took a radical approach to de-iden-
tify pathology reports: all phrases that
could be matched with UMLS concepts
were replaced by the corresponding
code (CUI) and another synonym map-
ping to the same code, and all other
words (except stop words) were replaced
by asterisks. The algorithm was fast but
was not formally evaluated. Fielstein
et al. [152] have evaluated an algo-
rithm using regular expressions and a
city list to remove PHI as def ined by
HIPAA (except photographic images)
and achieved a 92% sensitivity and a
99.9% specif icity. The De-Id system
was developed to remove all PHI from
narrative clinical reports [153]. It used
rules and dictionaries that were incre-
mentally improved to finally miss some
identifiers in only 3.4% of the reports.
Unlike all other system described, De-
Id keeps an encrypted linkage f ile ty-

ing the de-identif ied document to the
suppressed identif iers.
Beckwith at al. [154] have developed
an open source system removing PHI
from pathology reports and called HMS
Scrubber. This system first removed all
identifying information from the header
of the reports that were also found in
the body of the report. It then used 50
regular expressions to detect and re-
move dates, addresses, accession num-
bers, and names cited with markers such
as Dr, MD, PhD, etc. Finally, it used
two freely available lists of names
(90,000 unique f irst and last names
from the 1990 US census) and of loca-
tions (16,000 unique cities, towns, etc.
from the US Census Bureau). When
evaluated, this system removed 98.3%
of the PHI present in 1800 pathology
reports from the SPIN (Shared Pathol-
ogy Informatics Network).
The largest effort to develop and evalu-
ate automated de-identification has been
achieved in the context of the i2b2 de-
identif ication challenge in 2006.
Uzuner et al. [32] have f irst created a
corpus of 889 de-identif ied and "re-
identif ied" (with realistic surrogates)
discharge summaries. Identifying infor-
mation was f irst tagged using statisti-
cal Named Entity Recognition tech-
niques. This system was based on
SVMs using local context (mostly lexi-
cal features and part-of-speech) and a
few dictionaries (names, locations, hos-
pitals and months). It was compared to
other systems and achieved the best
performance with 95% recall and
97.5% precision [155]. A manual veri-
fication of the de-identified documents
was then executed, followed by the re-
placement of this information with re-
alistic surrogates and the addition of
some ambiguity and randomly gener-
ated surrogate PHIs. This corpus, with
tagged PHI, was then made available
to the seven teams who participated in
the challenge. About 3/4 of the corpus
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was made available for training, and
then the remaining 1/4 was used for
testing. The systems developed and sub-
mitted for testing by the teams had to
remove names of patients, doctors, hos-
pitals, and locations, as well as identi-
fication numbers, dates, phone numbers
and ages above 90. The best systems were
developed by Wellner et al. [156], and
by Szarvas et al. [157]. The best system
developed by Wellner et al. was based
on Carafe, a toolkit implementing Con-
ditional Random Fields developed at the
MITRE Corporation (Bedford, MA).
This system tagged each token as part of
a PHI phrase or not, and also included
some regular expressions to detect phone
numbers, zip codes, addresses, etc. and
a lexicon of US state names, months, and
English words. It reached a 97.5% re-
call and 99.22% precision (F-measure
of 98.35%). The system developed by
Szarvas et al. used local context, regular
expressions (for ages, dates, identifica-
tion numbers, and phone numbers), and
dictionaries (first names, US locations,
names of countries, and names of dis-
eases). They then used decision tree al-
gorithms (C4.5 and Boosting) to clas-
sify each word as PHI or non-PHI. Their
system reached a 96.4% recall and a
98.9% precision (F-measure of 97.6%).
In general, methods based on dictionar-
ies performed better with PHI that is
rarely mentioned in clinical text, but
are diff icult to generalize. Methods
based on machine learning tend to per-
form better but require annotated cor-
pora for training.

Automatic Terminology Management
Terminologies, lists of vetted terms for
a given domain, and ontologies, the
relational organization of the vetted
terms, are critical for a number of clini-
cal domain applications - concept-based
information retrieval, decision-support
systems, autocoding among many - to

ensure system interoperability. The tra-
ditional method for building them re-
lies on experts to identify the terms and
create the hierarchy, a process which is
time-consuming and which requires the
collaborative effort of domain special-
ists. Here, we focus on summarizing the
field as applied to the clinical domain.
For a comprehensive review of the topic
as related to the entire field of biomedi-
cine, its methods and terminological re-
sources, consult [158]. They outline the
general steps for automatic terminology
management: (1) automatic term recog-
nition, (2) term variants augmentation,
(3) automatic term structuring.
The most recent advances in automatic
terminology management in the clini-
cal domain are represented by systems
that employ the combination of NLP
techniques for term discovery and
lexico-syntactic patterns for semantic
relation discovery along with visualiza-
tion tools. Baneyx et al. [159,160] in-
vestigation focuses on building an on-
tology of pulmonary diseases. Zhou et
al. [161] experiment with surgical pa-
thology reports, while Charlet et al.
[162] work is in the surgical intensive
care domain. Kolesa and Preckova
[163] tackle an additional complexity
- that of a semi-automated, NLP-based
localization of international biomedi-
cal ontologies, in their case a Czech
drug ontology seeded with terms dis-
covered from drug information leaflets.
All of them successfully demonstrate
the use of NLP and IE techniques in
the full-circle process of terminology
discovery and ontology building.
A number of other efforts describe ap-
proaches to the subtasks in the process
of automatic terminology management.
Hersh et al. [164] is one of the f irst
investigations combining NLP tech-
niques for the task of candidate term
discovery and terminology expansion,
which they test on all EHR narrative
reports at the Oregon Health Sciences

University and the Portland Veterans
Administration Medical Center through
February 1995. Harris et al. [165] and
Savova et al. [166] investigate a method
for term candidate discovery for the
domain of patient functioning, disabil-
ity and health and later apply lexico-
syntactic patterns and latent semantic
analysis to induce structure for the can-
didate terms [167]. Do Amaral et al.
[168] use radiology reports to apply
NLP techniques to abstract the reports'
general framework and discover the
reports' semantic template. Friedman et
al. [169] describe their controlled vo-
cabulary development tool, which dis-
plays candidate terms along with usage
statistics obtained from a corpus, their
compositional structure, and suggested
ontology mappings.
A number of vocabulary servers are
available for the biomedical domain to
support terminology management -
UMLS knowledge source server [170],
LexGrid [171], Metaphrase [172], Medi-
cal Entities Dictionary (MED) [173]. All
of them are Web-based interfaces that
take as input a user specified term and
return ontological mappings.

Clinical Text Corpora and their
Annotation
The use of automatic information ex-
traction and retrieval tools depends
heavily on the quality of the annotated
corpora available for their training and
testing. Currently, much work is being
done on developing guidelines for cor-
pus annotation, identifying relevant
features to annotate, and on the char-
acterization of what makes a particular
corpus usable.
Chapman et al. [174] present an anno-
tation schema to manually annotate
clinical conditions. The schema was
developed based on 40 emergency de-
partment reports and tested on 20 such
reports. The two authors acted as anno-
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tators and achieved a high agreement
and an F-measure of 93%. They point
out that there are no standard guide-
lines determining which words to in-
clude in the annotation of clinical texts;
thus their proposal focuses on which
semantic categories and words are im-
portant to include in such annotations.
They suggest that similar methodology
can be used to develop principled guide-
lines for other clinical text annotation.
In a follow-up investigation, Chapman
et al.[175] examined the improvement
in agreement among annotators after
they were trained with the annotation
schema. For this investigation, three
physicians and three lay people were
used as annotators and concluded that
physicians presented a higher agreement
after training on the schema than when
applying a baseline one-hour training;
moreover, lay people performed almost
as well as physicians when trained on the
schema. These results suggest that good
annotation guidelines are essential to good
annotation quality, especially when the
annotators are not domain experts.
Cohen et al. [176] examine six avail-
able corpora with respect to their de-
sign characteristics to determine which
features may be responsible for their
high or low usage rates by external sys-
tems. Their conclusion is that semantic
annotation, standard formats for anno-
tation and distribution, and high-qual-
ity annotation of structural and linguis-
tic characteristics are relevant features
and good predictors of usage. Cohen et
al. [177] analyze in further detail cor-
pus design characteristics and suggest that
good documentation, balanced represen-
tation, the ability to recover the original
text, and data on inter-annotator agree-
ment are the main characteristics to pro-
mote a high-level use of a corpus.
Wilbur et al. [178] discuss what prop-
erties make a text useful for data-min-
ing applications. They identif ied 5
qualitative dimensions: focus, polarity,

certainty, evidence, and directionality
and developed guidelines on how to
annotate sentence fragments along these
f ive dimensions. The guidelines were
developed over a one-year period
through multiple iterations of testing
and revision. Results of 12 annotators
on 101 sentences from biomedical pe-
riodicals are reported between 70-80%.
This methodology and guidelines are
being used to annotate a large corpus
of 10,000 sentences to serve as train-
ing corpus for automated classifiers. An
interesting point is that the diff iculty
of the annotation varies considerably
depending on the dimension being an-
notated, with rating of the evidence
being one of the most challenging tasks.
Liu et al. [27] study and review the
types of error a system that automati-
cally extracts information from pathol-
ogy reports makes. The information
extracted was compared to a manually
annotated gold standard. The authors
classif ied the errors into: 1) system er-
rors and 2) semantic disagreement be-
tween the report and the annotation.
This second point shows that even when
gold standard annotations are available
they may still be diff icult to interpret
and automatic extraction may be more
valid for some variables than for other.

Clinical Text Mining
Ananiadou and McNaught [8] and
Hirschman and Blaschke [179] provide
an extensive overview of the state-of-
the-art of text mining and its challenges
in biomedicine. In our review here, we
focus on text mining in the clinical
domain. We adhere to the widely-ac-
cepted def inition of text mining by
Hearst [9] and used in Ananiadou and
McNaught [8] - the discovery and ex-
traction of new knowledge from un-
structured data - and contrast it with
data mining, which f inds patterns from
structured data, and with information

extraction, which extracts the known
facts from text and presents them in a
structured form. The inspiration for text
mining comes from the pioneering
work of Swanson [180] in which he
brilliantly demonstrates that chaining
facts from disparate literature sources
could lead to the generation of new sci-
entif ic hypotheses.
Biomedical text mining has been pri-
marily explored in relation to literature,
the main reasons being the confidenti-
ality provisions that govern patient clini-
cal records and the limited number of
investigators with access to such data.
Clinical text mining has been investi-
gated for f inding association patterns.
Chen et al. [181] employ text mining
and statistical techniques to identify
disease-drug associations in the bio-
medical literature and discharge sum-
maries and conclude that there are dis-
tinct patterns in the drug usage as re-
ported in the literature and as recorded
in the patient record. Cao et al. [182]
explore the automatic calibration of the
statistic value and apply it for the dis-
covery of disease-findings associations.
In another study, Cao et al. [183] show
that statistical methods are successful
in f inding strong disease-f inding rela-
tions. Their use-case was a knowledge
base construction for the patient prob-
lem list generation. Rindflesch et al.
[184] use statistical methods to con-
struct a database of drug-disorder co-
occurrences from a large collection of
clinical notes from the Mayo Clinic.

Conclusions and Future
Challenges
In this paper, we reviewed the advances
of information extraction from free-
text EHR documents. IE is still a rela-
tively new field of research in the bio-
medical domain, and the extraction of
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information from clinical text is even
newer. Compared to the IE tasks of the
Message Understanding Conferences,
results in clinical text IE were often
mixed. Reasons proposed for this dif-
ference are that more experience is
needed, annotated text corpora are rare
and small, and clinical text is simply
harder to analyze than biomedical lit-
erature, or even newswires. During the
last several years, performance has
gradually improved, exceeding 90%
sensitivity and specif icity in several
cases. Systems are now mostly statisti-
cally-based, and therefore require an-
notated corpora for training. Creating
annotated clinical text corpora is one
of the main challenges for the future
of this field. The effort required to de-
velop annotated corpora is significant and
patient data confidentiality issues ham-
per access to data. An issue that we ob-
served in several publications is the qual-
ity of the evaluation of the systems. The
study design might be prone to biases,
and the reference standards used might
have limited value, especially when cre-
ated by only one reviewer. Robust
evaluation practices in this domain are
well described in Hripcsak et al. [100].
The potential uses of information ex-
traction from clinical text are numer-
ous and far-reaching. Current applica-
tions, however, are rarely applied out-
side of the laboratories they have been
developed in, mostly because of
scalability and generalizability issues.
In the same way the MUCs have fos-
tered the development of information
extraction in the general domain, simi-
lar competitive challenges for informa-
tion extraction from clinical text will
undoubtedly stimulate advances in the
f ield reviewed here. Organizing these
competitive challenges is another chal-
lenge for the future. Some domains of
research like discourse analysis and tem-
porality analysis have not been investi-
gated thoroughly yet and pose addi-

tional challenges that could also con-
tribute to performance improvements.
Improvements in system performance
will subsequently enhance the accep-
tance and usage of IE in concrete clini-
cal and biomedical research contexts.
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