Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws

Lance Fortnow*
Department of Computer Science
University of Chicago
fortnow@cs.uchicago.edu
John M. Hitchcock ${ }^{\dagger}$
Department of Computer Science
University of Wyoming
jhitchco@cs.uwyo.edu
A. Pavan ${ }^{\ddagger}$
N. V. Vinodchandran ${ }^{\S}$
Department of Computer Science Department of Computer Science and Engineering
Iowa State University
pavan@cs.iastate.edu
University of Nebraska-Lincoln
vinod@cse.unl.edu
Fengming Wang ${ }^{〔}$
Department of Computer Science
Rutgers University
fengming@cs.rutgers.edu

Abstract

We apply results on extracting randomness from independent sources to "extract" Kolmogorov complexity. For any $\alpha, \epsilon>0$, given a string x with $K(x)>\alpha|x|$, we show how to use a constant number of advice bits to efficiently compute another string $y,|y|=\Omega(|x|)$, with $K(y)>(1-\epsilon)|y|$. This result holds for both unbounded and space-bounded Kolmogorov complexity.

We use the extraction procedure for space-bounded complexity to establish zero-one laws for the strong dimensions of complexity classes within ESPACE. The unbounded extraction procedure yields a zero-one law for the constructive strong dimensions of Turing degrees.

1 Introduction

Kolmogorov complexity quantifies the amount of randomness in an individual string. If a string x has Kolmogorov complexity m, then x is often said to contain m bits of randomness. Can we efficiently extract the Kolmogorov randomness from a string? That is, given x, is it possible to compute a string of length m that is Kolmogorov-random?

[^0]Vereshchagin and Vyugin showed that this is not possible in general [30], i.e., they showed that there is no algorithm that can extract Kolmogorov complexity. Buhrman, Fortnow, Newman and Vereshchagin [5] showed that if one allows a small amount of extra information then Kolmogorov extraction is indeed possible. More specifically, they showed there is an efficient procedure \mathcal{A} such that for every x with Kolmogorov complexity αn, there exists a string a_{x}, such that $\mathcal{A}\left(x, a_{x}\right)$ outputs a nearly Kolmogorov random string whose length is close to αn. Moreover, the length of a_{x} is $O(\log |x|)$, and contents of a_{x} depend on x.

In this paper we show that we can extract Kolmogorov complexity with only a constant constant number of bits of additional information. We give a polynomial-time computable procedure which takes x with an additional constant amount of advice and outputs a nearly Kolmogorov-random string whose length is linear in $|x|$. We defer to section 2 for the precise definition of Kolmogorov complexity and other technical concepts. Formally, for any $\alpha, \epsilon>0$, given a string x with $K(x)>$ $\alpha|x|$, we show how to use a constant number of advice bits to compute another string $y,|y|=\Omega(|x|)$, in polynomial-time that satisfies $K(y)>(1-\epsilon)|y|$. The number of advice bits depends only on α and ϵ, but the content of the advice depends on x. This computation needs only polynomial time, and yet it extracts unbounded Kolmogorov complexity.

Our proofs use a construction of a multi-source extractor. Traditional extractor results $[6,13$, $19,20,23-29,34]$ show how to take a distribution with high min-entropy and some truly random bits to create a close to uniform distribution. A multi-source extractor takes several independent distributions with high min-entropy and creates a close to uniform distribution. Thus multi-source extractors eliminate the need for a truly random source. Substantial progress has been made recently in the construction of efficient multi-source extractors [$2,3,21,22$]. In this paper we use the construction due to Barak, Impagliazzo, and Wigderson [2] for our main result on extracting Kolmogorov complexity.

To make the connection, consider the uniform distribution on the set of strings x whose Kolmogorov complexity is at most m. This distribution has min-entropy about m and x acts like a random member of this set. We can define a set of strings x_{1}, \ldots, x_{k} to be independent if $K\left(x_{1} \cdots x_{k}\right) \approx$ $K\left(x_{1}\right)+\cdots+K\left(x_{k}\right)$. By symmetry of information this implies $K\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right) \approx$ $K\left(x_{i}\right)$. Suppose we are given independent Kolmogorov random strings $x_{1}, \ldots x_{k}$, each of which has Kolmogorov complexity m. We view them as arising from k independent distributions each with min-entropy m. We then argue that a multi-source extractor with small error can be used to output a nearly Kolmogorov random string.

To extract the randomness from a single string x, we break x into a number of substrings x_{1}, \ldots, x_{l}, and view each substring x_{i} as coming from a different random source. Of course, these substrings may not be independently random in the Kolmogorov sense, thus we can not view these strings as coming from independent sources. A useful concept is to quantify the dependency within x as $\sum_{i=1}^{l} K\left(x_{i}\right)-K(x)$. We show that if the dependency within x is small, then the output of the multi-source extractor on its substrings is a nearly Kolmogorov random string. Another technical problem is that the randomness in x may not be nicely distributed among the substrings; for this we need to use a small (constant) number of nonuniform advice bits.

This result about extracting Kolmogorov-randomness also holds for polynomial-space bounded Kolmogorov complexity. We apply this to obtain zero-one laws for the strong dimensions of certain complexity classes. Resource-bounded dimension [14] and strong dimension [1] were developed as extensions of the classical Hausdorff and packing fractal dimensions to study the structure of complexity classes. Dimension and strong dimension both refine resource-bounded measure
and are duals of each other in many ways. Strong dimension is also related to resource-bounded category [11]. In this paper we focus on strong dimension.

The strong dimension of each complexity class is a real number between zero and one inclusive. While there are examples of nonstandard complexity classes with fractional dimensions [1], we do not know of a standard complexity class with this property. Can a natural complexity class have a fractional dimension? In particular consider the class E. Determining its strong dimension within ESPACE would imply a major separation (either E $\not \subset$ PSPACE or $\mathrm{E} \neq \mathrm{ESPACE}$). However, we are able to use our Kolmogorov-randomness extraction procedure to obtain a zero-one law ruling out the intermediate fractional possibility. Formally, we show that the strong dimension $\operatorname{Dim}(E \mid E S P A C E)$ is either 0 or 1 . The zero-one law also holds for various other complexity classes.

Our techniques also apply in the constructive dimension setting [15]. Miller and Nies [18] asked if it is possible to compute a set of higher constructive dimension from an arbitrary set of positive constructive dimension. We answer the strong dimension variant of this question in the negative, obtaining a zero-one law: for every Turing degree \mathcal{D}, the constructive strong dimension $\operatorname{Dim}(\mathcal{D})$ is either 0 or 1 .

After the preliminary version of the paper appeared [7], there has been further work on the problem of Kolmogorov extraction and relations between Kolmogorov extraction and randomness extraction [8, 31-33]. Zimand [31] showed that there is a computable function f such that if x and y are two n-bit strings and the dependency within $x y$ is small, then $f(x, y)$ is close to being a Kolmogorov random string. Hitchcock, Pavan and Vinodchandran [8] showed that every computable function that works as a Kolmogorov extractor is also an almost randomness extractor.

2 Preliminaries

2.1 Kolmogorov Complexity

We use $\Sigma=\{0,1\}$ to denote the binary alphabet. Let M be a Turing machine. Let $f: \mathbb{N} \rightarrow \mathbb{N}$. For any $x \in \Sigma^{*}$, define

$$
K_{M}(x)=\min \{|\pi| \mid M(\pi) \text { prints } x\}
$$

and

$$
K S_{M}^{f}(x)=\min \{|\pi| \mid M(\pi) \text { prints } x \text { using at most } f(|x|) \text { space }\} .
$$

There is a universal machine U such that for every machine M and every reasonable space bound f, there is some constant c such that for all $x, K_{U}(x) \leq K_{M}(x)+c$ and $K S_{U}^{c f+c}(x) \leq K S_{M}^{f}(x)+c[12]$. We fix such a machine U and drop the subscript, writing $K(x)$ and $K S^{f}(x)$, which are called the (plain) Kolmogorov complexity of x and f-bounded (plain) Kolmogorov complexity of x. While we use plain complexity in this paper, our results also hold for prefix-free complexity.

The following definition quantifies the fraction of randomness in a string.
Definition. For a string x, the rate of x is rate $(x)=K(x) /|x|$. For a polynomial g, the g-rate of x is rate $^{g}(x)=K S^{g}(x) /|x|$.

We denote the uniform distribution over Σ^{n} with U_{n}. Two distributions X and Y over Σ^{n}, are ϵ-close if

$$
\frac{1}{2} \sum_{x \in \Sigma^{n}}|X(x)-Y(x)| \leq \epsilon
$$

Definition. Let X be a distribution over Σ^{n} and $\operatorname{Sup}(X)$ denotes the set $\left\{x \in \Sigma^{n} \mid \operatorname{Pr}[X=x] \neq 0\right\}$. The min-entropy of X is

$$
\min _{x \in \operatorname{Sup}(X)} \log \frac{1}{\operatorname{Pr}[X=x]} .
$$

2.2 Polynomial-Space Dimension

We now review the definitions of polynomial-space dimension [14] and strong dimension [1]. For more background we refer to these papers and the survey paper [10].

Let $s>0$. An s-gale is a function $d:\{0,1\}^{*} \rightarrow[0, \infty)$ satisfying $2^{s} d(w)=d(w 0)+d(w 1)$ for all $w \in\{0,1\}^{*}$.

For a language A, we write $A \upharpoonright n$ for the first n bits of A 's characteristic sequence (according to the standard enumeration of $\left.\{0,1\}^{*}\right)$ and $A \upharpoonright[i, j]$ for the subsequence beginning from the i th bit and ending at the j th bit. A language is sometimes also called a sequence. An s-gale d succeeds on a language A if $\limsup _{n \rightarrow \infty} d(A \upharpoonright n)=\infty$ and d succeeds strongly on A if $\liminf _{n \rightarrow \infty} d(A \upharpoonright n)=\infty$. The success set of d is $S^{\infty}[d]=\{A \mid d$ succeeds on $A\}$. The strong success set of d is $S_{\mathrm{str}}^{\infty}[d]=\{A \mid$ d succeeds strongly on $A\}$.

Definition. Let X be a class of languages.

1. The pspace-dimension of X is

$$
\operatorname{dim}_{\text {pspace }}(X)=\inf \left\{\begin{array}{l|l}
s & \begin{array}{l}
\text { there is a polynomial-space computable } \\
s \text {-gale } d \text { such that } X \subseteq S^{\infty}[d]
\end{array}
\end{array}\right\} .
$$

2. The strong pspace-dimension of X is

$$
\operatorname{Dim}_{\text {pspace }}(X)=\inf \left\{\begin{array}{l|l}
s & \begin{array}{l}
\text { there is a polynomial-space computable } \\
s \text {-gale } d \text { such that } X \subseteq S_{\text {str }}^{\infty}[d]
\end{array}
\end{array}\right\}
$$

For every $X, 0 \leq \operatorname{dim}_{\text {pspace }}(X) \leq \operatorname{Dim}_{\text {pspace }}(X) \leq 1$. An important fact is that ESPACE has pspace-dimension 1 , which suggests the following definitions.

Definition. Let X be a class of languages.

1. The dimension of X within ESPACE is

$$
\operatorname{dim}(X \mid \operatorname{ESPACE})=\operatorname{dim}_{\text {pspace }}(X \cap \operatorname{ESPACE})
$$

2. The strong dimension of X within ESPACE is

$$
\operatorname{Dim}(X \mid \operatorname{ESPACE})=\operatorname{Dim}_{\text {pspace }}(X \cap \operatorname{ESPACE})
$$

In this paper we will use an equivalent definition of these dimensions in terms of space-bounded Kolmogorov complexity.

Definition. Given a language L and a polynomial g the g-rate of L is

$$
\operatorname{rate}^{g}(L)=\liminf _{n \rightarrow \infty} \operatorname{rate}^{g}(L \upharpoonright n)
$$

strong g-rate of L is

$$
\operatorname{Rate}^{g}(L)=\limsup _{n \rightarrow \infty} \operatorname{rate}^{g}(L \upharpoonright n) .
$$

Theorem 2.1. ($[9,16])$ Let poly denote all polynomials. For every class X of languages,

$$
\operatorname{dim}_{\text {pspace }}(X)=\inf _{g \in \text { poly }} \sup _{L \in X} \quad \operatorname{rate}^{g}(L) .
$$

and

$$
\operatorname{Dim}_{\text {pspace }}(X)=\inf _{g \in \text { poly }} \sup _{L \in X} \quad \operatorname{Rate}^{g}(L) .
$$

3 Extracting Kolmogorov Complexity

Barak, Impagliazzo, and Wigderson [2] gave an explicit multi-source extractor.
Theorem 3.1. ([2]) For every constant $0<\sigma<1$, and $c>1$ there exist $l=$ poly $(1 / \sigma, c)$, a constant r and a computable function $E: \Sigma^{\ell n} \rightarrow \Sigma^{n}$ such that if H_{1}, \cdots, H_{l} are independent distributions over Σ^{n}, each with min entropy at least σn, then $E\left(H_{1}, \cdots, H_{l}\right)$ is $2^{-c n}$-close to U_{n}, where U_{n} is the uniform distribution over Σ^{n}. Moreover, E runs in time n^{r}.

We show that this extractor can be used to produce nearly Kolmogorov-random strings from strings with high enough complexity. The following notion of dependency is useful for quantifying the performance of the extractor.

Definition. Let $x=x_{1} x_{2} \cdots x_{k}$, where each x_{i} is an n-bit string. The dependency within $x, \operatorname{dep}(x)$, is defined as $\sum_{i=1}^{k} K\left(x_{i}\right)-K(x)$.

Theorem 3.2. For every $0<\sigma<1$ there exist constants $n_{0}, l>1$ and a polynomial-time computable function E such that for every $n \geq n_{0}$, if $x_{1}, x_{2}, \cdots x_{l}$ are n-bit strings with $K\left(x_{i}\right) \geq \sigma n$, $1 \leq i \leq l$, then

$$
K\left(E\left(x_{1}, \cdots, x_{l}\right)\right) \geq n-10 l \log n-\operatorname{dep}(x),
$$

where $x=x_{1} x_{2} \cdots x_{l}$. Then length of $E\left(x_{1}, \ldots, x_{l}\right)$ is n.
Proof. Let $\sigma^{\prime}=\sigma / 2$. By Theorem 3.1, there is a constant l and a polynomial-time computable multi-source extractor E such that if H_{1}, \cdots, H_{l} are independent sources each with min-entropy at least $\sigma^{\prime} n$, then $E\left(H_{1}, \cdots, H_{l}\right)$ is $2^{-5 n}$ close to U_{n}.

We show that this extractor also extracts Kolmogorov complexity. We prove by contradiction. Suppose the conclusion is false, i.e,

$$
K\left(E\left(x_{1}, \cdots x_{l}\right)\right)<n-10 l \log n-\operatorname{dep}(x) .
$$

Let $K\left(x_{i}\right)=m_{i}, 1 \leq i \leq l$. Define the following sets:

$$
I_{i}=\left\{y \mid y \in \Sigma^{n}, K(y) \leq m_{i}\right\},
$$

$$
\begin{aligned}
Z & =\left\{z \in \Sigma^{n} \mid K(z)<n-10 l \log n-\operatorname{dep}(x)\right\}, \\
\text { Small } & =\left\{\left\langle y_{1}, \cdots, y_{l}\right\rangle \mid y_{i} \in I_{i}, \text { and } E\left(y_{1}, \cdots y_{l}\right) \in Z\right\} .
\end{aligned}
$$

By our assumption $\left\langle x_{1}, \cdots x_{l}\right\rangle$ belongs to Small. We use this to arrive at a contradiction regarding the Kolmogorov complexity of $x=x_{1} x_{2} \cdots x_{l}$. We first calculate an upper bound on the size of Small.

Every string from the set $S=\left\{x y \mid x \in \Sigma^{\left[\sigma^{\prime} n\right\rceil}, y=0^{n-\left\lceil\sigma^{\prime} n\right\rceil}\right\}$ has Kolmogorov complexity at most $\left\lceil\sigma^{\prime} n\right\rceil+c \log n$ for some fixed constant c. Since $\sigma^{\prime}=\sigma / 2$, when n is large enough this quantity is at most σn. Thus the set S is a subset of each of I_{i}. Thus the cardinality of each of I_{i} is at least $2^{\sigma^{\prime} n}$. Let H_{i} be the uniform distribution on I_{i}. Thus the min-entropy of H_{i} is at least $\sigma^{\prime} n$.

Since H_{i} 's have min-entropy at least $\sigma^{\prime} n, E\left(H_{1}, \cdots, H_{l}\right)$ is $2^{-5 n}$-close to U_{n}. Then

$$
\begin{equation*}
\left|P\left[E\left(H_{1}, \ldots, H_{l}\right) \in Z\right]-P\left[U_{n} \in Z\right]\right| \leq 2^{-5 n} \tag{1}
\end{equation*}
$$

Note that the cardinality of I_{i} is at most $2^{m_{i}+1}$, as there are at most $2^{m_{i}+1}$ strings with Kolmogorov complexity at most m_{i}. Thus H_{i} places a weight of at least $2^{-m_{i}-1}$ on each string from I_{i}. Thus $H_{1} \times \cdots \times H_{l}$ places a weight of at least $2^{-\left(m_{1}+\cdots+m_{l}+l\right)}$ on each element of Small. Therefore,

$$
P\left[E\left(H_{1}, \ldots, H_{l}\right) \in Z\right]=P\left[\left(H_{1}, \ldots, H_{l}\right) \in \operatorname{Small}\right] \geq|S m a l l| \cdot 2^{-\left(m_{1}+\cdots+m_{l}+l\right)},
$$

and since $|Z| \leq 2^{n-10 l \log n-\operatorname{dep}(x)}$, from (1) we obtain

$$
\mid \text { Small } \left\lvert\,<2^{m_{1}+1} \times \cdots \times 2^{m_{l}+1} \times\left(\frac{2^{n-10 l \log n-d e p(x)}}{2^{n}}+2^{-5 n}\right)\right.
$$

Without loss of generality we can take $\operatorname{dep}(x)<n$, otherwise the theorem is trivially true. Thus $2^{-5 n}<2^{-10 l \log n-d e p(x)}$ for sufficiently large n. Using this inequality and the fact that l is a constant independent of n, we obtain

$$
|S m a l l|<2^{m_{1}+\cdots+m_{l}-\operatorname{dep}(x)-8 l \log n},
$$

when n is large enough. Since $K(x)=K\left(x_{1}\right)+\cdots+K\left(x_{l}\right)-\operatorname{dep}(x)$,

$$
|S m a l l|<2^{K(x)-8 l \log n}
$$

We first observe that there is a program Q that, given the values of m_{i} 's, n, l, and $\operatorname{dep}(x)$ as auxiliary inputs, recognizes the set Small. This program works as follows: Let $z=z_{1} \cdots z_{l}$, where $\left|z_{i}\right|=n$. For each program P_{i} of length at most m_{i} check whether P_{i} outputs z_{i}, by running the P_{i} 's in a dovetail fashion. If it is discovered that for each of $z_{i}, K\left(z_{i}\right) \leq m_{i}$, then compute $y=E\left(z_{1}, \cdots, z_{l}\right)$. Now verify that $K(y)$ is at most $n-\operatorname{dep}(x)-10 l \log n$. This again can be done by running programs of the length at most $n-\operatorname{dep}(x)-10 l \log n$ in a dovetail manner. If it is discovered that $K(y)$ is at most $n-\operatorname{dep}(x)-10 l \log n$, then accept z.

So given the values of parameters $n, \operatorname{dep}(x), l$ and m_{i} 's, there is a program P that enumerates all elements of Small. Since by our assumption x belongs to Small, x appears in this enumeration. Let i be the position of x in this enumeration. Since $|S m a l l|$ is at most $2^{K(x)-8 l \log n}, i$ can be described using $K(x)-8 l \log n$ bits.

Thus there is a program P^{\prime} based on P that outputs x. This program takes $i, \operatorname{dep}(x), n$, m_{1}, \cdots, m_{l}, and l, as auxiliary inputs. Since the m_{i} 's and $\operatorname{dep}(x)$ are bounded by n,

$$
\begin{aligned}
K(x) & \leq K(x)-8 l \log n+2 \log n+l \log n+O(1) \\
& \leq K(x)-5 l \log n+O(1)
\end{aligned}
$$

which is a contradiction.
Corollary 3.3. For every constant $0<\sigma<1$, there exist constants l and n_{0}, and a polynomial-time computable function E with the following property:

- Let $x_{1}, \cdots x_{l}$ be n-bit strings such that $n \geq n_{0}, K\left(x_{i}\right) \geq \sigma n$, and $K\left(x_{1} x_{2} \cdots x_{l}\right)=\sum K\left(x_{i}\right)-$ $O(\log n)$
- $E\left(x_{1}, \cdots, x_{l}\right)$ is Kolmogorov random in the sense that

$$
K\left(E\left(x_{1}, \cdots, x_{l}\right)\right)>n-O(\log n) .
$$

Theorem 3.2 says that given $x \in \Sigma^{l n}$, if each piece x_{i} has high enough complexity and the dependency with x is small, then we can output a string y whose Kolmogorov rate is higher than the Kolmogorov rate of x, i.e, y is relatively more random than x. What if we only knew that x has high enough complexity but knew nothing about the complexity of individual pieces or the dependency within x ? Our next theorem states that in this case also there is a procedure producing a string whose rate is higher than the rate of x. However, this procedure needs a constant number of advice bits.

Theorem 3.4. For all real numbers $0<\alpha<\beta<1$ there exist a constant $0<\delta<1$, constants $c, l, n_{0} \geq 1$, and a procedure R such that the following holds. For any string x with $|x| \geq n_{0}$ and $\operatorname{rate}(x) \geq \alpha$, there exists an advice string a_{x} such that

$$
\operatorname{rate}\left(R\left(x, a_{x}\right)\right) \geq \min \{\operatorname{rate}(x)+\delta, \beta\}
$$

where $\left|a_{x}\right|=c$. Moreover, R runs in polynomial time, and $\left|R\left(x, a_{x}\right)\right|=\lfloor|x| / l\rfloor$.
The number c depends only on α, β and is independent of x. However, the contents of a_{x} depend on x.

Before we give a formal proof, we briefly explain the proof idea. Given a string x, we split it into l substrings $x_{1}, x_{2}, \cdots, x_{l}$. Consider the function E from Theorem 3.2. If $\operatorname{dep}\left(x_{1} x_{2}, \cdots x_{l}\right)$ is small, then by Theorem 3.2 the rate of $E\left(x_{1}, \cdots, x_{l}\right)$ is higher than the rate of x. The crucial observation is that if $\operatorname{dep}\left(x_{1} x_{2} \cdots x_{l}\right)$ is not small, then one of the substrings x_{i} must have a higher rate than the rate of x. Thus one of $x_{1}, x_{2}, \cdots, x_{l}, E\left(x_{1}, \cdots, x_{l}\right)$ has a higher rate than the rate of x. Since l is constant, a constant number of advice bits suffices to specify the string with higher rate. We now give a formal proof.

Proof. Let $0<\alpha^{\prime}<\alpha$ and $0<\epsilon<\min \left\{1-\beta, \alpha^{\prime}\right\}$. Let $\sigma=(1-\epsilon) \alpha^{\prime}$. Using parameter σ in Theorem 3.2, we obtain a constant $l>1$ and a polynomial-time computable function E that extracts Kolmogorov complexity.

Let $\beta^{\prime}=1-\frac{\epsilon}{2}$, and $\gamma=\frac{\epsilon^{2}}{2 l}$. Observe that $\gamma \leq \frac{1-\beta^{\prime}}{l}$ and $\gamma<\frac{\alpha^{\prime}-\sigma}{l}$.

Let x have $\operatorname{rate}(x)=\nu \geq \alpha$. Let $n, k \geq 0$ such that $|x|=l n+k$ and $k<l$. We strip the last k bits from x and write $x=x_{1} \cdots x_{l}$ where each $\left|x_{i}\right|=n$. Let $\nu^{\prime}=\operatorname{rate}(x)$ after this change. We have $\nu^{\prime}>\nu-\gamma / 2$ and $\nu^{\prime}>\alpha^{\prime}$ if $|x|$ is sufficiently large.

We consider three cases.
Case 1. There exists $j, 1 \leq j \leq l$ such that $K\left(x_{j}\right)<\sigma n$.
Case 2. Case 1 does not hold and $\operatorname{dep}(x) \geq \gamma l n$.
Case 3. Case 1 does not hold and $\operatorname{dep}(x)<\gamma l n$.
We have two claims about Cases 1 and 2:
Claim 3.4.1. Assume Case 1 holds. There exists $i, 1 \leq i \leq l$, such that rate $\left(x_{i}\right) \geq \nu^{\prime}+\gamma$.
Proof of Claim 3.4.1. Suppose not. Then for every $i \neq j, 1 \leq i \leq l, K\left(x_{i}\right) \leq\left(\nu^{\prime}+\gamma\right) n$. We can describe x by describing x_{j} which takes σn bits, and all the x_{i} 's, $i \neq j$. Thus the total complexity of x would be at most

$$
\left(\nu^{\prime}+\gamma\right)(l-1) n+\sigma n+O(\log n)
$$

Since $\gamma<\frac{\alpha^{\prime}-\sigma}{l}$ and $\alpha^{\prime}<\nu^{\prime}$ this quantity is less than $\nu^{\prime} l n$. Since the rate of x is ν^{\prime}, this is a contradiction.

Claim 3.4.1
Claim 3.4.2. Assume Case 2 holds. There exists $i, 1 \leq i \leq l$, rate $\left(x_{i}\right) \geq \nu^{\prime}+\gamma$.
Proof of Claim 3.4.2. By definition,

$$
K(x)=\sum_{i=1}^{l} K\left(x_{i}\right)-\operatorname{dep}(x)
$$

Since $\operatorname{dep}(x) \geq \gamma \ln$ and $K(x) \geq \nu^{\prime} l n$,

$$
\sum_{i=1}^{l} K\left(x_{i}\right) \geq\left(\nu^{\prime}+\gamma\right) l n .
$$

Thus there exists i such that $\operatorname{rate}\left(x_{i}\right) \geq \nu^{\prime}+\gamma$.
Claim 3.4.2
We can now describe the constant number of advice bits. The advice a_{x} contains the following information: which of the three cases described above holds, and

- If Case 1 holds, then from Claim 3.4.1 the index i such that $\operatorname{rate}\left(x_{i}\right) \geq \nu^{\prime}+\gamma$.
- If Case 2 holds, then from Claim 3.4.2 the index i such that rate $\left(x_{i}\right) \geq \nu^{\prime}+\gamma$.

Since $1 \leq i \leq l$, the number of advice bits is bounded by $O(\log l)$. We now describe procedure R. When R takes an input x, it first examines the advice a_{x}. If Case 1 or Case 2 holds, then R simply outputs x_{i}. Otherwise, Case 3 holds, and R outputs $E(x)$. Since E runs in polynomial time, R runs in polynomial time.

If Case 1 or Case 2 holds, then

$$
\operatorname{rate}\left(R\left(x, a_{x}\right)\right) \geq \nu^{\prime}+\gamma \geq \nu+\frac{\gamma}{2} .
$$

If Case 3 holds, we have $R\left(x, a_{x}\right)=E(x)$ and by Theorem 3.2, $K(E(x)) \geq n-10 \log n-\gamma l n$. Since $\gamma \leq \frac{1-\beta^{\prime}}{l}$, in this case

$$
\operatorname{rate}\left(R\left(x, a_{x}\right)\right) \geq \beta^{\prime}-\frac{10 \log n}{n} .
$$

For large enough n, this value is at least β. Therefore in all three cases, the rate increases by at least $\gamma / 2$ or reaches β. By setting δ to $\gamma / 2$, we have the theorem.

We now prove our main theorem.
Theorem 3.5. Let α and β be constants with $0<\alpha<\beta<1$. There exist a polynomial-time procedure $P(\cdot, \cdot)$ and constants C_{1}, C_{2}, n_{1} such that for every x with $|x| \geq n_{1}$ and rate $(x) \geq \alpha$ there exists a string a_{x} with $\left|a_{x}\right|=C_{1}$ such that

$$
\operatorname{rate}\left(P\left(x, a_{x}\right)\right) \geq \beta
$$

and $\left|P\left(x, a_{x}\right)\right| \geq|x| / C_{2}$.
Proof. We apply the procedure R from Theorem 3.4 iteratively. Each application of R outputs a string whose rate is at least β or is at least δ more than the rate of the input string. Applying R at most $k=\lceil(\beta-\alpha) / \delta\rceil$ times, we obtain a string whose rate is at least β.

Note that $R\left(y, a_{y}\right)$ has output length $\left|R\left(y, a_{y}\right)\right|=\lfloor|y| / l\rfloor$ and increases the rate of y if $|y| \geq n_{0}$. If we take $n_{1}=\left(n_{0}+1\right) k l$, we ensure that in each application of R we have a string whose length is at least n_{0}. Each iteration of R requires c bits of advice, so the total number of advice bits needed is $C_{1}=k c$. Thus C_{1} depends only on α and β. Each application of R decreases the length by a constant fraction, so there is a constant C_{2} such that the length of the final outputs string is at least $|x| / C_{2}$.

The proofs in this section also work for space-bounded Kolmogorov complexity. For this we need a space-bounded version of dependency.

Definition. Let $x=x_{1} x_{2} \cdots x_{k}$ where each x_{i} is an n-bit string, let f and g be two space bounds. The (f, g)-bounded dependency within x, $\operatorname{dep}_{g}^{f}(x)$, is defined as $\sum_{i=1}^{k} K S^{g}\left(x_{i}\right)-K S^{f}(x)$.

We obtain the following version of Theorem 3.2.
Theorem 3.6. For every polynomial g there exists a polynomial f such that for every $0<\sigma<1$, there exist a constant $l>1$, and a polynomial-time computable function E such that if x_{1}, \cdots, x_{l} are n-bit strings with $K S^{f}\left(x_{i}\right) \geq \sigma n, 1 \leq i \leq l$, then

$$
K S^{g}\left(E\left(x_{1}, \cdots, x_{l}\right)\right) \geq n-10 l \log n-d e p_{g}^{f}(x) .
$$

Similarly we obtain the following extension of Theorem 3.5.
Theorem 3.7. Let g be a polynomial and let α and β be constants with $0<\alpha<\beta<1$. There exist a polynomial f, polynomial-time procedure $R(\cdot, \cdot)$, and constants C_{1}, C_{2}, n_{1} such that for every x with $|x| \geq n_{1}$ and rate $^{f}(x) \geq \alpha$ there exists a string a_{x} with $\left|a_{x}\right|=C_{1}$ such that

$$
\operatorname{rate}^{g}\left(R\left(x, a_{x}\right)\right) \geq \beta
$$

and $\left|R\left(x, a_{x}\right)\right| \geq|x| / C_{2}$.

4 Zero-One Laws for Complexity Classes

In this section we establish a zero-one law for the strong dimensions of certain complexity classes. Let $\alpha<\theta$. We will first show that if E has a language with $\operatorname{Rate}^{f}(L) \geq \alpha$, then E has a language L^{\prime} with Rate ${ }^{g}\left(L^{\prime}\right) \geq \theta$.

Let L be a language with $\operatorname{Rate}^{f}(L) \geq \alpha$ for some function f. We will first show that the characteristic sequence of L is of the form $y_{1} y_{2} \cdots$ such that for infinitely many i, rate ${ }^{f}\left(y_{i}\right) \geq \alpha / 4$. Let R be the procedure from Theorem 3.7. If we define $R\left(y_{1}, a_{y_{1}}\right) R\left(y_{2}, a_{y_{2}}\right) \cdots$ as the characteristic sequence of a new language $L^{\prime \prime}$, then for infinitely many i, the rate of $R\left(y_{i}, a_{y_{i}}\right)$ is bigger than α. If we ensure that length of y_{i} is reasonably bigger than the length of y_{i-1}, then it follows that Rate $^{g}\left(L^{\prime}\right)$ is at least θ. The following lemma makes these ideas precise.
Lemma 4.1. Let g be any polynomial and α, θ be rational numbers with $0<\alpha<\theta<1$. Then there is a polynomial f such that if there exists $L \in \mathrm{E}$ with Rate ${ }^{f}(L)>\alpha$, then there exists $L^{\prime} \in \mathrm{E}$ with Rate $\left(L^{\prime}\right) \geq \theta$.
Proof. Let β be a real number bigger than θ and smaller than 1 and $f=\omega(g)$. Pick positive integers C and K such that $(C-1) / K<3 \alpha / 4$, and $\frac{(C-1) \beta}{C}>\theta$. Let $n_{1}=1, n_{i+1}=C n_{i}$.

We now define strings y_{1}, y_{2}, \cdots such that each y_{i} is a substring of the characteristic sequence of L or is in 0^{*}, and $\left|y_{i}\right|=(C-1) n_{i} / K$. While defining these strings we will ensure that for infinitely many i, rate $^{f}\left(y_{i}\right) \geq \alpha / 4$.

We now define y_{i}. We consider three cases.
Case 1. rate $^{f}\left(L \upharpoonright n_{i}\right) \geq \alpha / 4$. Divide $L \upharpoonright n_{i}$ in to $K /(C-1)$ segments such that the length of each segment is $(C-1) n_{i} / K$. It is easy to see that at least for one segment the f-rate is at least $\alpha / 4$. Define y_{i} to be a segment with rate $^{f}\left(y_{i}\right) \geq \alpha / 4$.
Case 2. Case 1 does not hold and for every $j, n_{i}<j<n_{i+1}$, rate $^{f}(L \upharpoonright j)<\alpha$. In this case we punt and define $y_{i}=0^{\frac{(C-1) n_{i}}{K}}$.
Case 3. Case 1 does not hold and there exists $j, n_{i}<j<n_{i+1}$ such that rate ${ }^{f}(L \upharpoonright j)>\alpha$. Divide $L \upharpoonright\left[n_{i}, n_{i+1}\right]$ into K segments. Since $n_{i+1}=C n_{i}$, length of each segment is $(C-1) n_{i} / K$.

Then it is easy to show that some segment has f-rate at least $\alpha / 4$. We define y_{i} to be this segment.

Since for infinitely many j, rate ${ }^{f}(L \upharpoonright j) \geq \alpha$, for infinitely many i either Case 1 or Case 3 holds. Thus for infinitely many i, rate $^{f}\left(y_{i}\right) \geq \alpha / 4$.

By Theorem 3.7, there is a procedure R with such that given a string x with $\operatorname{rate}^{f}(x) \geq \alpha / 4$, and the advice a_{x}, rate $^{g}\left(R\left(x, a_{x}\right)\right) \geq \beta$.

Let $w_{i}=R\left(y_{i}, a_{y_{i}}\right)$. Since for infinitely many i, rate ${ }^{f}\left(y_{i}\right) \geq \alpha / 4$, for infinitely many i, $\operatorname{rate}^{g}\left(w_{i}\right) \geq \beta$. Also recall that $\left|w_{i}\right|=\left|y_{i}\right| / C_{2}$ for an absolute constant C_{2}.
Claim 4.1.1. $\left|w_{i+1}\right| \geq(C-1) \sum_{j=1}^{i}\left|w_{j}\right|$.
Proof of Claim 4.1.1. We have

$$
\sum_{j=1}^{i}\left|w_{j}\right| \leq \frac{C-1}{K C_{2}} \sum_{j=1}^{i} n_{j}=\frac{C-1}{K C_{2}} \frac{\left(C^{i}-1\right) n_{1}}{C-1}
$$

with the equality holding because $n_{j+1}=C n_{j}$. Also,

$$
\left|w_{i+1}\right|=\frac{(C-1) n_{i+1}}{K C_{2}} \geq \frac{(C-1) C^{i} n_{1}}{K C_{2}} .
$$

Thus

$$
\frac{\left|w_{i+1}\right|}{\sum_{j=1}^{i}\left|w_{j}\right|}>(C-1) .
$$

Claim 4.1.2. For infinitely many i, rate ${ }^{g}\left(w_{1} \cdots w_{i}\right) \geq \theta$.
Proof of Claim 4.1.2. For infinitely many i, $\operatorname{rate}^{g}\left(w_{i}\right) \geq \beta$, which means $K S^{g}\left(w_{i}\right) \geq \beta\left|w_{i}\right|$ and therefore

$$
K S^{g}\left(w_{1} \cdots w_{i}\right) \geq \beta\left|w_{i}\right|-O(1) .
$$

By Claim 4.1.1, $\left|w_{i}\right| \geq(C-1)\left(\left|w_{1}\right|+\cdots+\left|w_{i-1}\right|\right)$. Thus for infinitely many i, rate $^{g}\left(w_{1} \cdots w_{i}\right) \geq$ $\frac{(C-1) \beta}{C}-o(1) \geq \theta$. Claim 4.1.2

Let L^{\prime} be the language with characteristic sequence $w_{1} w_{2} \cdots$. Then by Claim 4.1.2, Rate ${ }^{g}\left(L^{\prime}\right) \geq$ θ.

Next, we argue that if L is in E , then L^{\prime} is in $\mathrm{E} / O(1)$. Observe that w_{i} depends on y_{i} and $a_{y_{i}}$, thus each bit of w_{i} can be computed by knowing y_{i} and $a_{y_{i}}$. Recall that y_{i} is either a subsegment of the characteristic sequence of L or $0^{n_{i}}$. We will know y_{i} if we know which of the three cases mentioned above hold. This can be given as advice. Also observe that y_{i} is a subsequence of $L \upharpoonright n_{i+1}$. Also recall that w_{i} can be computed from y_{i} in time polynomial in $\left|y_{i}\right|$ using constant bits of advice $a_{y_{i}}$. Since $\left|w_{i}\right|=\left|y_{i}\right| / C_{2}$ for some absolute constant C_{2}, the running time needed to compute w_{i} is also polynomial in $\left|w_{i}\right|$. Since L is in E , this places L^{\prime} in $\mathrm{E} / O(1)$.

Finally, we observe that the advice can be removed to obtain a language in E. Let A be the length of the advice needed to compute L^{\prime} in exponential time. Recall that A is finite. Let $I=\left\{i \mid\right.$ rate $\left.^{f}\left(y_{i}\right) \geq \alpha / 4\right\}$. Given a potential advice a of length A let

$$
I_{a}=\left\{i \mid i \in I, R\left(y_{i}, a\right)=w_{i}\right\} .
$$

Since I is infinite and the set of all advices is finite, there is an advice a such that I_{a} is infinite. From now we will fix one such a. Define our new language $L^{\prime \prime}$ as follows: Let $w_{i}^{\prime \prime}=R\left(y_{i}, a\right)$, and $w_{1}^{\prime \prime} w_{2}^{\prime \prime} w_{3}^{\prime \prime} \cdots$ is the characteristic sequence of the language $L^{\prime \prime}$. Now for every $i \in I_{a}$, rate ${ }^{g}\left(w_{i}^{\prime \prime}\right) \geq \beta$. The proof of Claim 4.1.2, also shows that for every $i \in I_{a} \operatorname{rate}\left(w_{1}^{\prime \prime} w_{2}^{\prime \prime} \cdots w_{i}^{\prime \prime}\right) \geq \theta$. Thus Rate ${ }^{g}\left(L^{\prime \prime}\right) \geq$ θ.

Now we have to argue that $L^{\prime \prime}$ is in E. Observe that if know that correct value of a, then we can compute $L^{\prime \prime}$ in exponential time. Each possible value for a gives an exponential time algorithm. Since there are only finitely many possible values for a, we have finitely many algorithms and one of them correctly decides $L^{\prime \prime}$. This shows that $L^{\prime \prime}$ is in E . This completes the proof of Lemma 4.1.

Theorem 4.2. $\operatorname{Dim}(\mathrm{E} \mid \mathrm{ESPACE})$ is either 0 or 1.
Proof. Because $\mathrm{E} \subseteq \mathrm{ESPACE}, \operatorname{Dim}(\mathrm{E} \mid \mathrm{ESPACE})=\operatorname{Dim}_{\text {pspace }}(\mathrm{E})$. We will show that if $\operatorname{Dim}_{\text {pspace }}(\mathrm{E})>$ 0 , then $\operatorname{Dim}_{\text {pspace }}(\mathrm{E})=1$. For this, it suffices to show that for every polynomial g and real number $0<\theta<1$, there is a language L^{\prime} in E with $\operatorname{Rate}^{g}\left(L^{\prime}\right) \geq \theta$. By Theorem 2.1, this will show that the strong pspace-dimension of E is 1 .

The assumption states that the strong pspace-dimension of E is greater than 0 . If the strong pspace-dimension of E is actually one, then we are done. If not, let α be a positive rational number
that is less than $\operatorname{Dim}_{\text {pspace }}(\mathrm{E})$. By Theorem 2.1, for every polynomial f, there exists a language $L \in \mathrm{E}$ with Rate ${ }^{f}(L) \geq \alpha$.

By Lemma 4.1, from such a language L we obtain a language L^{\prime} in E with $\operatorname{Rate}^{g}\left(L^{\prime}\right) \geq \theta$. Thus the strong pspace-dimension of E is 1 .

The zero-one law in Theorem 4.2 also holds for many other complexity classes.
Theorem 4.3. Let \mathcal{C} be a class that is closed under exponential-time truth-table reductions. Then $\operatorname{Dim}(\mathcal{C} \mid$ ESPACE $)$ is either 0 or 1 .

Therefore additional examples of classes the zero-one law holds for include $\mathrm{NE} \cap$ coNE, BPE , and E^{NP} 。

Remark. Theorem 4.2 concerns strong dimension. For dimension, the situation is considerably more complicated. With our techniques we can prove that if $\operatorname{dim}_{\text {pspace }}(\mathrm{E})>0$, then $\operatorname{dim}_{\text {pspace }}(\mathrm{E} / O(1)) \geq$ $1 / 2$. It appears that a different method is needed to eliminate the advice or increase the dimension past $1 / 2$.

5 Zero-One Law for Constructive Strong Dimension

Miller and Nies [18] asked if every sequence of positive constructive dimension computes (by way of a Turing reduction) a sequence of higher constructive dimension. Our techniques yield a positive answer for the variant of this question using strong dimension instead of dimension.

For a sequence S, the constructive dimension of S is

$$
\operatorname{dim}(S)=\liminf _{n \rightarrow \infty} \operatorname{rate}(S \upharpoonright n)
$$

and the constructive strong dimension of S is

$$
\operatorname{Dim}(S)=\underset{n \rightarrow \infty}{\limsup } \operatorname{rate}(S \upharpoonright n) .
$$

The definitions extend to a class X of sequences by

$$
\operatorname{dim}(X)=\sup _{S \in X} \operatorname{dim}(S)
$$

and

$$
\operatorname{Dim}(X)=\sup _{S \in X} \operatorname{Dim}(S) .
$$

We refer to $[1,15]$ for more background on these dimensions.
Theorem 5.1. If $\operatorname{Dim}(S)>0$, then for every $\epsilon>0$, there exists $R \leq_{\mathrm{T}} S$ such that $\operatorname{Dim}(R)>1-\epsilon$.
The proof of Theorem 5.1 is the same as Lemma 4.1, except instead of Theorem 3.7 we use Theorem 3.5. The 0-1 law for the Turing degrees follows:

Theorem 5.2. For every Turing degree $\mathcal{D}, \operatorname{Dim}(\mathcal{D})$ is either 0 or 1 .

Proof. Suppose that a Turing degree \mathcal{D} has positive constructive strong dimension and choose $S \in \mathcal{D}$ with $\operatorname{Dim}(S)>0$. Let $\epsilon>0$. From Theorem 5.1 we obtain a sequence R_{ϵ} with $\operatorname{Dim}\left(R_{\epsilon}\right)>1-\epsilon$ and $R_{\epsilon} \leq_{\mathrm{T}} S$. We can encode S into R_{ϵ} in a sparse way to obtain a sequence R_{ϵ}^{\prime} with $S \leq_{\mathrm{T}} R_{\epsilon}^{\prime}$, $R_{\epsilon}^{\prime} \leq_{\mathrm{T}} S$, and $\operatorname{Dim}\left(R_{\epsilon}^{\prime}\right)=\operatorname{Dim}\left(R_{\epsilon}\right)$. Therefore $R_{\epsilon}^{\prime} \in \mathcal{D}$ and $\operatorname{Dim}(\mathcal{D})>1-\epsilon$. As this holds for all $\epsilon>0$, it follows that $\operatorname{Dim}(\mathcal{D})=1$.

We note that the reduction we obtain in Theorem 5.1 is actually an exponential-time truth-table reduction, so in particular it is a truth-table reduction. Therefore we also have a 0-1 law for the truth-table degrees.

Subsequent to the conference version of this paper, Bienvenu, Doty, and Stephan [4] obtained a different proof of Theorem 5.1 and other related results using quite different techniques. In contrast, Miller [17] recently showed that there is no analogous 0-1 law for constructive dimension: there exists S with $\operatorname{dim}(S)=1 / 2$ such that every sequence $R \leq_{\mathrm{T}} S$ has $\operatorname{dim}(R) \leq 1 / 2$.

Acknowledgments

We thank Xiaoyang Gu and Philippe Moser for several helpful discussions.

References

[1] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong dimension in algorithmic information and computational complexity. SIAM Journal on Computing, 37(3):671-705, 2007.
[2] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness using few independent sources. In Proceedings of the 45th Annual Symposium on Foundations of Computer Science, pages 384-393. IEEE Computer Society, 2004.
[3] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence: new constructions of condensers, Ramsey graphs, dispersers, and extractors. In Proceedings of the 37th ACM Symposium on Theory of Computing, pages 1-10. ACM, 2005.
[4] L. Bienvenu, D. Doty, and F. Stephan. Constructive dimension and weak truth-table degrees. In Proceedings of the Third Conference on Computability in Europe, pages 63-72. SpringerVerlag, 2007.
[5] H. Buhrman, L. Fortnow, I. Newman, and N. Vereshchagin. Increasing Kolmogorov complexity. In Proceedings of the 22nd Symposium on Theoretical Aspects of Computer Science, pages 412421. Springer-Verlag, 2005.
[6] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science, pages 429-442. IEEE Computer Society, 1985.
[7] L. Fortnow, J. Hitchcock, A. Pavan, N. V. Vinodchandran, and F. Wang. Extracting Kolmogorov complexity with applications to dimension zero-one laws. In Proceedings of the 33rd International Colloquium on Automata, Languages, and Programming, volume 4051 of Lecture Notes in Computer Science, pages 335-345, 2006.
[8] J. Hitchcock, A. Pavan, and N. V. Vinodchandran. Kolmogorov complexity in randomness extraction. In 29th Conference on Foundations of Software Technology and Theoretical Computer Science, volume 4 of LIPIcs, pages 215-226. chloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009.
[9] J. M. Hitchcock. Effective Fractal Dimension: Foundations and Applications. PhD thesis, Iowa State University, 2003.
[10] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractal geometry of complexity classes. SIGACT News, 36(3):24-38, September 2005.
[11] J. M. Hitchcock and A. Pavan. Resource-bounded strong dimension versus resource-bounded category. Information Processing Letters, 95(3):377-381, 2005.
[12] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer-Verlag, Berlin, 1997. Second Edition.
[13] C-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to a constant factor. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 602-611. ACM, 2003.
[14] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236-1259, 2003.
[15] J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation, 187(1):49-79, 2003.
[16] E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters, 84(1):1-3, 2002.
[17] J. S. Miller. Extracting information is hard. Advances in Mathematics. To appear.
[18] J. S. Miller and A. Nies. Randomness and computability: open questions. Bulletin of Symbolic Logic, 12(3):390-410, 2006.
[19] N. Nisan and A. Ta-Shma. Extracting randomness: A survey and new constructions. Journal of Computer and System Sciences, 42(2):149-167, 1999.
[20] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System Sciences, 52(1):43-52, 1996.
[21] A. Rao. Extractors for a constant number of polynomially small min-entropy independent sources. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 497-506. ACM, 2006.
[22] R. Raz. Extractors with weak random seeds. In Proceedings of the 37th ACM Symposium on Theory of Computing, pages 11-20. ACM, 2005.
[23] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated condensing. In Proceedings of the 41st Annual Conference on Foundations of Computer Science, pages 22-31. IEEE Computer Society, 2000.
[24] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pages 3-13. IEEE Computer Society, 2000.
[25] M. Santha and U. Vazirani. Generating quasi-random sequences from slightly random sources. In Proceedings of the 25th Annual Symposium on Foundations of Computer Science, pages 434-440. IEEE Computer Society, 1984.
[26] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-random generator. In Proceedings of the $42 n d$ Annual Symposium on Foundations of Computer Science, pages 648-657. IEEE Computer Society, 2001.
[27] A. Srinivasan and D. Zuckerman. Computing with very weak random sources. SIAM Journal on Computing, 28(4):1433-1459, 1999.
[28] A. Ta-Shma, D. Zuckerman, and M. Safra. Extractors from Reed-Muller codes. In Proceedings of the 42nd Annual Symposium on Foundations of Computer Science, pages 638-647. IEEE Computer Society, 2001.
[29] L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(1):860-879, 2001.
[30] N. Vereshchagin and M. Vyugin. Independent minimum length programs to translate between given strings. Theoretical Computer Science, 271(1-2):131-143, 2002.
[31] M. Zimand. Extracting the kolmogorov complexity of strings and sequences from sources with limited independence. In 26th International Conference on Symposium on Theoretical Aspects of Computer Science, volume 3 of LIPIcs, pages 697-708. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.
[32] M. Zimand. On generating independent random strings. In 5th Conference on Computability in Europe, number 5635 in Lecture Notes in Computer Science, pages 499-508, 2009.
[33] M. Zimand. Two sources are better than one for increasing Kolmogorov complexity of infinite sequences. Theory of Computing Systems, 46(4):707-722, 2010.
[34] D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algorithms, 11(4):345-367, 1997.

[^0]: *Research supported in part by NSF grants 0652601 and 0829754.
 ${ }^{\dagger}$ Research supported in part by NSF grants 0515313 and 0652601 and by an NWO travel grant. Part of this research was done while this author was on sabbatical at CWI.
 ${ }^{\ddagger}$ Research supported in part by NSF grants 0430807 and 0830479.
 ${ }^{\S}$ Research supported in part by NSF grants 0430991 and 0830730.
 ${ }^{4}$ Research supported in part by NSF grant 0430807 . Work done while this author was at Iowa State University.

