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Abstract

The subject of this paper is the creation of knowl-
edge bases by enumerating and organizing all web
occurrences of certain subgraphs. We focus on
subgraphs that are signatures of web phenomena
such as tightly-focused topic communities, we-
brings, taxonomy trees, keiretsus, etc. For in-
stance, the signature of a webring is a central
page with bidirectional links to a number of other
pages. We develop novel algorithms for such enu-
meration problems. A key technical contribution
is the development of a model for the evolution
of the web graph, based on experimental obser-
vations derived from a snapshot of the web. We
argue that our algorithms run efficiently in this
model, and use the model to explain some sta-
tistical phenomena on the web that emerged dur-
ing our experiments. Finally, we describe the de-
sign and implementation of Campfire, a knowl-
edge base of over one hundred thousand web com-
munities.

1 Overview
The subject of this paper is the creation of knowledge
bases by enumerating and organizing all web occurrences
of chosen subgraphs. For example, consider enumerating
all cliquesof size four or more, where a clique is a set
of web pages each of which links to all the others. Each
such clique could represent an alliance between the cre-
ators of these pages: business partners, keiretsus, members
of a family, etc. If we could enumerate all cliques on the
web, then organize and annotate them into a usable struc-
ture, we would have created a knowledge base of all such
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alliances—patent as well as latent—as evident in the link
structure of the web. More generally, we consider the cre-
ation of knowledge bases from an analysis of the web graph
using the following paradigm: (1) identify a signaturesub-
graph that is likely to arise in every element to be repre-
sented in the knowledge base; (2) devise a method for enu-
merating every instance of this subgraph in the web graph;
(3) reconstruct, from each enumerated subgraph, the asso-
ciated element of the knowledge base; and (4) annotate and
index the elements to make the knowledge base usable. In
the example above, step (1) could consist of identifying a
clique of size four as likely to be present in every keiretsu
(say); step (2) would require an efficient method for enu-
merating cliques of size 4; step (3) would require assem-
bling all pages in a keiretsu given the portion represented
by the 4-clique; and step (4) could consist of extracting and
indexing statistically significant keywords from the assem-
bled pages.

While the first of these steps is specific to the ele-
ments that will populate the knowledge base, the other
three share some common challenges that will be our fo-
cus here. Foremost among these challenges: enumerating
subgraphs on large graphs is, in the worst case, infeasible—
from a complexity-theoretic as well as practical standpoint.
Clearly, we must exploit the fact that the web is not a
“worst-case” graph. To this end, we develop a stochastic
model of the web graph that exhibits good agreement with
statistics from the web, and show that a traditional random
graph model could not exhibit such agreement. We develop
an algorithmic paradigm for subgraph enumeration prob-
lems, run a concrete instance on the web, and show that
its good performance is predicted by our web graph model.
We describe the ongoing Campfire project, in which we
enumerate, annotate, and index over 100,000 web commu-
nities generated using our methods.

Locally dense regions and communities. We begin with
the following motivating example:

Example 1 Consider the set of web pages that point to
bothwww.boeing.comandwww.airbus.com. There
are more than two thousand such pages on today’s web, in-
cluding personal pages, aircraft museums, vendors, legal
services, and so forth. Almost all of these pages represent
some type of resource list of airplane manufacturers. The
subgraph induced by these thousand pages, and the pages
they point to, has a specific form: a number of resource lists
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all point to some subset of a set of resources, in this case
Boeing, Airbus, and dozens of other aircraft manufactur-
ers. Moreover, pages within the subgraph frequently—but
not always—cross-reference each other.(See Figure 1.)

A knowledge base containing all structures such as
the one in Figure 1—aircraft manufacturers, long distance
phone companies, US national parks, etc.—would clearly
be of tremendous value. This motivates the definition of
structures we call bipartitecores:a bipartite core in a graph
consists of two (not necessarily disjoint) sets of nodes L
and R, such that every node in L links to every node in R.
Note that links from R to L, or within R or L, may or may
not be present.

www.boeing.com

www.airbus.com

www.embraer.com

Figure 1: A bipartite core.
Indeed, one may envision building knowledge

bases from enumerations of many different interesting
structures—bipartite cores, cliques, webrings(which man-
ifest themselves as star-shaped graphs with bidirectional
links on the spokes), pages in a hierarchically organized
website, or newsgroups and newsgroup discussion threads
(which manifest themselves as bidirectional paths). The
reasons for doing so include: (1) Such knowledge bases
represent a better starting point for deeper analyses and
mining than raw web data. Indeed, this is the goal of
the Campfire project. (2) Structure can be used more
effectively for searching and navigation. For instance,
an agent responsible for searching a database containing
dense bipartite graphs could pay more attention to text
surrounding the relevant links, for their annotative value.
(3) Fine-grained structures provide a basis for targeted
market segmentation. (4) Studying these enumerated
structures over time gives us insight into the sociological
evolution of the web.

Challenges and approaches. From an algorithmic per-
spective, the naive “search” algorithm for enumeration suf-
fers from two fatal problems. First, the size of the search
space is far too large—using the naive algorithm to enumer-
ate all bipartite cores with two web pages pointing to three
pages would require examining approximately 1040 possi-
bilities on a graph such as the web with 108 nodes. Second,
and more practically, the algorithm requires random access
to edges in the graph, which implies that a large fraction of

the graph must effectively reside in main memory to avoid
the overhead of seeking a disk on every edge access.

Although these obstacles appear insurmountable, we ex-
ploit additional structure latent in the web graph. For in-
stance, the average number of links out of a page is small.
However, the web is not a randomsparse graph—it is a
sparse graph containing many structures (cliques for in-
stance) that arise only in far denser random graphs. The
reason the web contains these structures is that, despite its
overall sparseness, local regions of the web are dense. We
propose novel algorithms that exploit this structure of the
web graph to overcome these challenges.

To understand the performance of our algorithms, we
develop a stochastic model for “web-like” graphs. The
model exhibits two desirable properties: (1) it agrees with
a number of statistical observations about the web graph,
and (2) it is a useful tool in algorithm design, suggesting
both explanations for the performance of our algorithms,
and future directions for other efficient web analyses.

Here is a preview of a key technical element of our
stochastic web graph model: intuitively, new pages are cre-
ated by borrowing random fragments of existing pages.

Guided tour of this paper. In Section 2 we detail a
number of measurements we have made of a snapshot of
the web graph; these include the distribution of in- and out-
degrees of nodes, and the numbers of bipartite cores. In
Section 3 we motivate and develop our stochastic model for
the web graph. We give analyses showing that our model—
besides being a plausible high-level process for the cre-
ation of the web graph—explains our measurements from
Section 2 in ways that traditional random graph models
could not. Section 4 describes our three main algorithms:
the elimination/generation paradigm for subgraph enumer-
ation, an extension of a link-based web search algorithm
for extending bipartite cores into communities, and an in-
dex extraction algorithm. In Section 5 we give some results
of the Campfire project on organizing web communities.

1.1 Related previous work

Link analysis. A number of web search projects
have used links to enhance the quality and reliability of
the search results; see for instance HITS [19], its vari-
ants [5, 9, 10], and Google [6]. The connectivity server [4]
also provides a fast index to linkage information on the
web. Dean and Henzinger [12] combine heuristic improve-
ments from [5] and [10] and apply these to the problem of
finding related pages on the web.

Sociometrics. Statistical analysis of the structure of
the academic citation graph has been the subject of much
work in the Sociometrics community. As we discuss be-
low, Zipf distributions seem to characterize web citation
frequency. Interestingly, the same distributions have also
been observed for citations in the academic literature. This
fact, known as Lotka’s law, was demonstrated by Lotka in
1926 [23]. Gilbert [16] presents a probabilistic model ex-
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plaining Lotka’s law, which is similar in spirit to our pro-
posal, though different in details and application.

Data mining. Traditional data mining research (see for
instance Agrawal and Srikant [1]) focuses largely on al-
gorithms for finding association rules and related statisti-
cal correlation measures in a given dataset. However, ef-
ficient methods such as a priori [1] or even more general
methodologies such as query flocks [29], do not scale to
the numbers of “items” (pages) in the web dataset. This
number is currently around four hundred million, which
is two to three orders of magnitude more than the num-
ber of items in a typical market basket analysis. Further,
the graph-theoretic structures we seek could correspond to
association rules with very small support and confidence.
Our conviction that these structures are interesting comes
from additional insight about the web graph, rather than
from traditional support and confidence measures.

In the case of bipartite cores, the relation we are inter-
ested in is co-citation. Co-citation is effectively the join
of the web citation relation with its transpose, the web
“cited by” relation. The size of this relation is potentially
much larger than the original citation relation. Thus, we
need methods that work with the original, without explic-
itly computing the co-citation relation.

The work of Mendelzon and Wood [25] is an instance
of structural methods in mining. They argue that the tra-
ditional SQL query interface to databases is inadequate in
its power to specify several structural queries that are inter-
esting in the context of the web. We note that this is not
the case here. The signature graphs we are interested in are
relatively easy to specify in SQL.

Enumerating bipartite cores. In recent work [20] we
reported enumerating over 200,000 bipartite cores from a
snapshot of the web. The contributions reported in that pa-
per were: (1) a special case of the algorithmic paradigm
introduced here; (2) preliminary statistical observations
about the web that we extend and explain here, using the
web graph model developed in this paper; and (3) A ran-
dom sampling experiment showing that barely 5% of the
cores arose coincidentally. The large scale and high quality
of such enumerated structures provides a compelling basis
for building knowledge bases out of them. A number of
these results, including Kleinberg’s HITS algorithm [19],
are discussed in the survey paper [21].

Henzinger et. al. [17] study algorithmic and memory
bottleneck issues in related graph computations from a the-
oretical perspective, primarily to derive impossibility re-
sults. For a survey of database techniques on the web and
the relationships between them, see Florescu, Levy, and
Mendelzon [13].

2 Measurements of the web graph

In this section we describe a set of measurements generated
from a crawl of the web from 1997, provided by Alexa, Inc.
As our primary focus is the linkage patterns between pages,

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1 10 100 1000

N
um

be
r 

of
 v

er
tic

es

Indegree

Indegree distribution

Indegree distribution

Figure 2: In-degree distribution.
we consider only the interconnection patterns of hyper-
links, and abstract away the textual content of each page.
We view each page as a node of a directed graph, and each
hyperlink as a directed edge. These measurements provide
crucial insights for our web graph model (Section 3) as well
as in our efficient enumeration algorithms (Section 4).

In-degree. We say that a hyperlink is an out-link of
its source page, and an in-link of its destination page. We
call the number of out-links and in-links of a page the out-
degreeand in-degreeof the page, respectively. We begin
by counting the in-degree of each page. Since the aver-
age out-degree is around eight, and since each edge con-
tributes equally to the total in- and out-degree, the average
in-degree must also be around eight. Our interest is in un-
derstanding not just the average, but the complete distri-
bution of in-degrees. Figure 2 shows a log-log plot of the
number of pages that have in-degree i as a function of i.
The linearity of the curve indicates that the distribution is
an inverse polynomial. Fitting an inverse polynomial to the
data we find the probability that a page has i in-links to be
roughly proportional to i−2.1. We will also refer to inverse
polynomial distributions as Zipfian distributions[30].

An important characteristic of Zipfian distributions is
that they have high probability of deviating significantly
from the mean. Thus, although the mean in-degree of a
page is about 8, there is a significant probability that a page
will have 1000 in-links (for example, approximately 100K
pages on the web have ≥ 1000 in-links).

Out-degree. Our next observation concerns the roughly
Zipfian distribution of out-degrees in the web graph. Fig-
ure 3 shows a log-log distribution of i versus the number
of pages that have out-degree i. This curve also follows
a Zipfian distribution. Fitting an inverse polynomial to the
data, we note that a random web page has out-degree i with
probability approximately i−2.38.

Ci,j counts.
In Section 1 we described bipartite cores, which consist

of two sets of pages L and R, such that every page in L
links to every page in R. If L contains i pages, and R
contains j pages, we refer to the core as a Ci,j.
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Figure 3: Out-Degree distribution.
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Figure 4: Number of Ci,j’s as a function of i.

During the exhaustive enumeration [20] of bipartite
cores, we created a subgraph of the web consisting of all
pages remaining after the algorithm prunes away all nodes
of degree less than four. We enumerated all Ci,j’s in the
resulting graph, for all i ∈ {2, . . . , 7} and j ∈ {3, . . . , 20}.
We now analyze the trends in that dataset. We begin by
looking at the dependence of the number of Ci,j’s on i.
Figure 4 shows a number of curves representing fixed val-
ues of j and four values of i—we display only counts for
i ≥ 4 since the pruning removed nodes of degree less than
4. To avoid clutter, we show values of j ranging from 3 to
6, and 20—intermediate values have the same form. As the
figure shows, the number of Ci,j’s drops exponentially as a
function of i, in this range.

Next, Figure 5 shows the curves representing fixed val-
ues of i for various values of j. The graph shows a log-log
plot with linear behavior. Fitting an inverse polynomial to
the data, the number of Ci,j’s as a function of j drops as
j−c, where the value of c is between 1.09 and 1.4.
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Figure 5: Number of Ci,j’s as a function of j.

3 Models for web-like graphs
In this section we present our model for web-like graphs,
motivated by the following goals:

1. Understand various structural properties of the web
graph—in- and out-degrees, neighborhood structures,
etc. Of particular interest to us is the distribution of
web structures that are signatures of the components
of a knowledge base (e.g., the bipartite cores we are
interested in).

2. Perform a more realistic analysis of algorithms on
the web graph—this is of particular interest because
worst case analysis of many algorithms is particularly
pessimistic and unrealistic when applied to the web
graph.

3. Predict properties of the web graph based on the
model—this is of interest because it can lead to bet-
ter algorithmic and structural insight.

We seek to model the linkage structure of the web graph.
In particular, our models do not describe textual content

We begin with a discussion of the properties such a
model should have, and then present a general framework
for a class of graph models called copying models. Next,
we give a simple concrete instance of a copying model, and
analyze the concrete model to predict the parameters mea-
sured in Section 2. We show that measurements and pre-
dicted behavior exhibit strong agreement.

3.1 Desiderata for a web graph model.

1. Simplicity: It should have a succinct and fairly natural
description.

2. Plausibility: It should be rooted in a plausible macro-
level process for the creation of content on the web.
We cannot hope to model the detailed behavior of the
many users creating web content. Instead, we only de-
sire that the aggregate formation of web structure be
captured well by our graph model. Thus, while the
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model is described as a stochastic process for the cre-
ation of individual pages, we are really only concerned
with the aggregate consequence of these individual ac-
tions. Therefore we seek a model that is plausible at
this aggregate level.

3. Topics and communities: It should provide struc-
ture corresponding to the strongly-linked “topics” that
have emerged on the actual web, but it should not do
so by requiring some a priori static set of topics that
are part of the model description—the evolution of in-
teresting topics and communities should instead be an
emergent feature of the model.1 Such a model has
several advantages:

• Viability: It is extremely difficult to characterize
the set of topics on the web; thus it would be use-
ful to draw statistical conclusions without such a
characterization.

• Dynamism: The set of topics reflected in web
content has proven to be fairly dynamic. Thus,
the shifting landscape of actual topics will need
to be addressed in any topic-aware model of
time-dependent growth.

4. Statistics: We would like the model to reflect many
of the structural phenomena we have observed in the
web graph. These include:

(a) Zipfian distributions: A Zipfian distribution [30]
for the number of links to a web page; in par-
ticular, the number of pages with i in-links is
well-approximated [20] by 1/i2. A similar phe-
nomenon has been observed in the study of
scholarly citations [11, 23], and is the basis of
studies in the sociology of scientific communi-
ties [16].

(b) Locally dense globally sparse structure: Al-
though the web graph is relatively sparse (the
average number of links out of a page is roughly
7.2), the graph contains well over one hundred
thousand bipartite cores with at least six nodes
in them, even after mirrors are deleted. This is
because the web graph, though globally sparse,
has many locally dense regions.

5. Evolution: We should capture the phenomenon that
the web graph has nodes and edges appearing and dis-
appearing with time.

Interestingly and unfortunately, Items 3, 5, and all the
criteria of Item 4, fail to hold for traditional models [7]
of random graph theory. For instance, traditional random
graph models would predict in- and out-degrees that are
Poisson distributed, rather than the significantly heavier-
tailed Zipfian distributions we have observed. It is easy to

1In particular, we avoid models of the form “Assume each node is some
combination of topics, and add an edge from one page to another with
probability dependent on some function of their respective combinations.”

extend traditional random graph models to capture evolu-
tion, but this has not been addressed primarily because in
standard models it is unlikely that interesting mathematical
phenomena arise from evolution.

3.2 Intuition for our models

Items 1 and 2 of the desiderata listed above ask that our
model encapsulate a simple, plausible notion of content
creation on the web. Our notion is based on the following
intuition:

• some page creators on today’s web may create content
and link to other sites without regard to the topics that
are already represented on the web, but

• manypage creators will be drawn to existing topics of
interest to them, and will link to pages within some of
these existing topics.

Consider a user intent on creating a page about recre-
ational sailing. Like most content creators, this user would
probably wish to incorporate some links that would be
of interest to potential visitors to the page. In order to
gather together such links, the user would probably be-
gin to browse around, perhaps using the many excellent
resource lists2 already available about recreational sailing,
and choosing links based on his or her particular prefer-
ences within the topic. In the end, the resulting page would
be another resource list about the topic, albeit one with a
new personal spin.

We draw two lessons from this example: first, if a num-
ber of users have created links to a page, a new user will
be more likely to link to that page than to a random page
(partly because the page is probably of higher quality, and
partly because the page is easier to find). And second, a
user who has added a link to a sailing page is more likely
to add another sailing link than an arbitrary link. Or said
another way, if a user links to a page, and some existing
resource list also links to that page, the user may link to
something else appearing on the resource list.

Rephrasing these observations in purely graph-theoretic
terms:

1. A new page is more likely to link to pages with higher
in-degree.

2. A new page is more likely to link to two pages that co-
occur on some resource list than to two random pages.

We therefore propose the following intuition for a sim-
ple process of link creation, which results in behavior obey-
ing the previous observations: A new page adds links by
picking an existing page, and copying some links from that
page to itself.

2by Resource listswe mean pages that collect links on one or more
topics, ranging in scope from a carefully-researched node of Yahoo to
the small personal page of an individual who has collected several links
about lateen-rigged sailing vessels.
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We reiterate that this process is not meant to reflect in-
dividual user behavior on the web; rather, it is a local pro-
cedure which in aggregate works well in describing page
creation on the web. The model also implicitly captures
topic creation as follows: First, a few scattered pages be-
gin to appear about the topic. Then, as users interested in
the topic reach critical mass, they begin linking these scat-
tered pages together, and other interested users are able to
discover and link to the topic more easily. This creates a
“locally dense” subgraph around the topic of interest. Fur-
thermore, copying is a powerful mechanism for giving rise
to bipartite cores: an author creates a resource list, and oth-
ers create pages pointing to many pages on this resource
list.

This intuitive view summarizes the process from a page-
creator’s standpoint; we now recast this formulation in
terms of a random graph model.

3.3 A class of graph models

We model the web as an evolving graph, in which nodes
and edges appear and disappear with time. Our models
are described by four stochastic processes—creation pro-
cesses Cv and Ce for node- and edge-creation, and deletion
processes Dv and De for node- and edge-deletion. These
processes are discrete-time processes. Each process is a
function of the time step, and of the current graph.

Consider, for instance, the following node creation and
deletion process: at time step t, independent of all ear-
lier events, create a node with probability αc(t). We could
have a similar model with parameter αd(t) for node dele-
tion. Deleting a node also deletes all its incident edges.
Clearly, we would tailor these probabilities to reflect the
growth rates of the web and the half-life of pages respec-
tively.

We present edge processes ranging from simple to com-
plex to model the web with increasing fidelity. At this
stage, we state a complex model we believe to be largely
realistic. In Section 3.4, we show that even a greatly sim-
plified process induces a Zipf distribution on in-degrees.

At each step we choose (possibly by random sampling)
a node v to add edges out of, and a number of edges k that
will be added to v. With probability β we add k edges from
v to nodes chosen independently and uniformly at random.
With probability 1−β, we choose another vertex u, at ran-
dom, and copyk edges from u to v. That is, after choos-
ing a node u at random, create k (directed) edges (v, w)
such that (u, w) is a random edge incident at u. One might
reasonably expect that much of the time, u will not have
out-degree larger than k; if the out-degree of u exceeds k
we pick a random subset of size k. If on the other hand the
out-degree of u is less than k we first copy the edges out of
u, then pick another random node u′ to copy from, and so
on until we have enough edges. Such a copying process is
not unnatural, and consistent with the qualitative intuition
at the beginning of this section.

As a simple example of an edge deletion process, at time
t, delete a random edge with probability δ(t).

3.4 The α and (α, β) models

We illustrate these ideas with a very simple special case that
captures destination copying. We show that even in this
simple case, the induced in-degree distribution is Zipfian.
A node is created at every step. Nodes and edges are never
deleted, so the graph keeps on growing. This corresponds
to setting αc(t) to 1, and αd(t) and δ(t) to 0.

We now concentrate on the edge creation process. As
each node comes into being, with probability α ∈ (0, 1) it
adds an edge to itself, and with probability 1− α it picks a
random edge and copies the edge onto itself, i.e., choose a
random edge (u, w) created earlier and add the edge (v, w).

We now argue that the in-degree distribution of nodes in
the α model is Zipfian.

Let pi,t be the fraction of nodes at time t with in-degree
i. Assume t is sufficiently large that pi,t = pi,t+1. Then
at time t there are t · pi,t nodes with in-degree i, and at
t + 1 there are (t + 1) · pi,t+1 such nodes. Therefore the
probability that an additional node has in-degree i at time
t + 1 is (t + 1)pi,t − tpi,t = pi,t. The probability that
a node with in-degree i − 1 garners the single new edge
is (1 − α)(i − 1)tpi−1,t, and the probability that a node
with in-degree i gains the new edge and therefore becomes
in-degree i + 1 is (1 − α)(it)pi,t. It must be the case that:

(1 − α)(i − 1)tpi−1,t − (1 − α)(it)pi,t = pi,t

(1 − α)i(pi−1,t − pi,t) = pi,t

(1 − α)i
dpi,t

di
= −pi,t

(1 − α)
dpi,t

pi,t
= −di

i

(1 − α) ln pi,t = − ln i

pi,t = 1/i
1

(1−α) .

As an example, set α = 1/2. In this process, each new
edge flips a fair coin, and on heads points to the newest
page, but on tails points to the destination of a uniformly-
chosen random in-link. This process will then have an in-
degree distribution given by 1/i2, following our observa-
tions of the web.

Now, consider an extension to the α model yielding the
(α, β) model. Each time a new page arrives, a single edge
is added as follows. The process flips two independent
coins with probabilities α and β of coming up heads. The
new edge (u, v) is built as follows:

The “destination” v is set based on the α coin: if it
comes up heads, v is the newest page, and otherwise, v
is the destination of a random link. The “source” u is set
based on the β coin: if it comes up heads, u is the newest
page, and otherwise, u is the source of a random link.

Since the original α model chooses edge destinations
without reference to edge sources, the in-degree distribu-
tion of the (α, β) model will also be given by pi,t =
1/i

1
(1−α) . And since the same analysis applies if we flip

the definition of “source” and “destination,” the out-degree
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distribution q is given by qi,t = 1/i
1

(1−β) for large enough
t.

For example, setting α = .52 and β = .58, the model
generates a graph with the following properties:

1. Pr[A node has in-degree i] −→ i−2.1.

2. Pr[A node has out-degree i] −→ i−2.38.

Both of these values match the web.

3.5 Resource list copying for bipartite cores

The (α, β) model of Section 3.4 induces Zipfian in- and
out-degrees, but edges are added one at a time. In the gen-
eral framework of Section 3.3, a model with more topic
focus would copy several links from the same resource list.
In this section, we explore the impact of copying multiple
links on Ci,j formation.

Recall that a Ci,j is a bipartite core whose set L contains
i nodes, and whose set R contains j nodes. We will refer to
the elements of L as fans, and the elements of R as centers.
In [20] it is shown that the web contains over 133,000 C3,3

cores. We consider first a traditional random graph model,
showing that such a model will not predict this large num-
ber of C3,3’s. Next, we show that our model will in fact
predict such a large number.

Example 2 Let n = 100, 000, 000 = 108, and consider
a traditional random graph model where every link is in-
dependently present with probability10−7 (so that the av-
erage out-degree is 10, somewhat higher than reality). A
6-tuple of nodesL = {a, b, c} and R = {x, y, z} forms
a C3,3 if all nine edges fromL to R are present, an event
occurring with probability(10−7)9 = 10−63. There are
approximatelyn6/720 = 1047/72 ways of choosing such
6-tuples. Thus the expected number ofC3,3’s is approxi-
mately

10−63 × 1047/72 < 10−17 
 1,

Turning this calculation around, we can compute how
large an out-degree an average page must have in the tra-
ditional random graph model, in order for 133,000C3,3’s
to arise in the web: roughly 1200, a number that is again
inconsistent with the web.

A similar calculation with our model yields an expected
number of roughly 100,000 C3,3’s. Consider the model of
Section 3.3, with no deletion processes; thus we allow the
copying of a random subset of links from a resource list.
We omit the details, but the key idea is the following: the
probability that a and b both copy the same 3 links from a
single resource list c is Ω(1/n2) even though the out-degree
of a node is a small constant independent of n. When they
both copy the same 3 links from the same source, a C3,3

results. There are some technicalities that stand in the way
of this being a mathematically provable statement; chief of
these is the fact that in the early stages of copying, we may
attempt to copy from a resource list that does not have 3
links to copy. However, in the “steady state” this should
not be a significant effect; proving this rigorously remains
an interesting open direction in random graph theory.

4 Algorithms
We identify three steps in the construction of a knowledge
base of communities on the web: (i) efficiently enumer-
ating the subgraphs (i.e., cores) of interest; (ii) collecting
additional web pages related to each enumerated core to
build a community; and (iii) extracting statistically signif-
icant information from each such community, leading to a
searchable index of these communities. Accordingly in this
section we describe three algorithms that we view as cen-
tral to each of these steps: (i) the elimination/generation
paradigm for efficient subgraph enumeration on web-scale
graphs, using a relatively lean computational infrastructure;
(ii) an extension of Kleinberg’s HITS algorithm [19] that
can take as input only a set of URL’s present in a core (and
no query terms), to produce authoritative web pages on the
community centered around this core; and (iii) a method for
extracting statistically significant index terms with which
to index such communities. Note that the first and the third
steps are generic to building indexable knowledge bases of
communities from subgraph enumeration. The second is
specified in terms of bipartite cores for concreteness, al-
though the reader may readily see its extension to other
subgraphs.

4.1 Enumerating cores

An algorithm in the elimination/generation paradigm per-
forms a number of sequential passes over the web graph.
The graph is stored as a binary relation on disk, and thus is
not available for random access. During each pass, the al-
gorithm writes a modified version of the dataset to disk for
the next pass. It also collects some metadata in main mem-
ory which serves as state during the next pass. Passes over
the data are interleaved with sort operations, which change
the order in which the data is scanned, and constitute the
bulk of the processing cost. During each pass over the data,
eliminationand generationoperations are interleaved. The
details are given below:

Elimination. There are often easy necessary (though
not sufficient) conditions that have to be satisfied in order
for a node to participate in a subgraph of interest to us.
Consider for instance the problem of enumerating cliques
of size four. We can prune any node whose in-degree or
out-degree—at any stage of the process—is less than 4 (the
significance of this will become apparent below). Consider
next the example of C4,4’s. Any node with in-degree 3 or
smaller cannot participate on the right side of a C4,4. Thus,
edges which are directed into such nodes and the nodes
themselves can be pruned from the graph. Likewise, nodes
with out-degree 3 or smaller cannot participate on the left
side of a C4,4. We refer to these necessary conditions as
elimination filters.

Generation. Generation is a counterpoint to elimina-
tion. Nodes that barely qualify for potential membership in
an interesting subgraph can easily be established as either
belonging to such a subgraph or not. Consider again the
example of a C4,4. Let u be a node of in-degree exactly
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4. Then, u can belong to a C4,4 if and only if the 4 nodes
that point to it have a neighborhood intersection of size at
least 4. It is possible to test this property relatively cheaply.
We define a generation filterto be a procedure that identi-
fies barely-qualifying nodes, and for all such nodes, either
outputs a subgraph or proves that such a subgraph cannot
exist.

If the test embodied in the generation filter is success-
ful, we have identified an interesting subgraph. Further-
more, regardless of the outcome, this node can be marked
for pruning since all potential interesting subgraphs con-
taining it have already been enumerated.

Similar schemes can be developed for other structures.

Example 3 Consider enumerating all subgraphs in which
four web pages all point to one another. Then, any node
with fewer than three links out of it can be eliminated. Like-
wise, any node with fewer than three links into it can be
eliminated. Thus, the elimination filter for such an enumer-
ation finds nodes with fewer than three in-links or out-links.
The generation filter finds nodes with exactly three in-links
or out-links, and checks to see whether the resulting set
of four nodes, namely the original and the three adjacent
nodes, is a clique. Notice that the generation filter is sub-
stantially cheaper in this case since there is no exhaustive
enumeration of subsets of size4 required as would have
been the case if the in and out degrees had each been sub-
stantially larger than3.

Note that if edges appear in an arbitrary order, it is not clear
that the elimination filter can be easily applied. If, however,
the edges are sorted by source (resp. destination), it is clear
that the elimination filter can be applied to the out-links
(resp. in-links) in a single scan.

The generation filter is slightly more complicated to im-
plement efficiently. We first explain how this can be done
in 3 sub-passes over the data, in the setting of Example 3
above. In the first sub-pass, we construct a list of nodes
with in-degree or out-degree 3, along with their in- or out-
neighborhoods. We assume that this list fits in main mem-
ory during the second sub-pass; if not we can break the sec-
ond sub-pass into several phases, each processing a main
memory-sized chunk of candidates. In the second sub-pass,
we verify that each node in the neighborhood points to all
other nodes in the neighborhood. At the end of the second
sub-pass we output all the interesting subgraphs, and in the
third sub-pass, we delete all the candidate nodes.

Notice that the first and the third passes can be over-
lapped with the preceding and subsequent elimination fil-
tering pass. Thus, the effective cost of the generation filter
is just one pass over the data. Also, note that even the first
round of the elimination/generation paradigm will elimi-
nate a large fraction of the destination nodes in the graph
(see Example 4 for details).

After one elimination/generation phase, the remaining
nodes have fewer neighbors than before in the residual
graph, which may present new opportunities during the
next pass. We can continue to iterate until we do not make

significant progress. Depending on the filters, one of two
things could happen: either we repeatedly remove nodes
from the graph until nothing is left or after several passes,
the benefits of elimination/generation “tail off” as fewer
and fewer nodes are deleted at each phase. If for instance
our elimination filter were “delete all nodes with fewer than
100 in-links from .com pages”, we will eliminate almost
all pages on the web. On the other hand if the elimination
filter were “delete all nodes with fewer than 3 out-links”,
we will reach a fixed point at which repeated elimination
passes do not reduce the size of the residual graph substan-
tially (though this may not happen after the first such pass).

Why should such algorithms run fast? We make a num-
ber of observations about their behavior:

1. The in/out-degree of every node drops monotonically
during each elimination/generation phase.

2. During each generation test, we either remove a node
u from further consideration (by developing a proof
that it can belong to no instance of the subgraph of in-
terest), or we output a subgraph that contains u. Thus,
the total work in generation is linear in the size of the
graph plus the number of subgraphs enumerated, as-
suming that each generation test runs in constant time.
This is the case if we are enumerating a constant-sized
subgraph; thus our algorithm is output sensitive.

3. As shown in Example 4 below, elimination phases
rapidly eliminate most nodes in the web graph. A
complete mathematical analysis of iterated elimina-
tion is beyond current techniques, but the example be-
low shows that just the first elimination phase by itself
is quite powerful.

Example 4 Consider the enumeration ofC3,3’s. By the
inverse quadratic law for in-degrees, eliminating nodes
on the basis of in-degree prunes away any node with in-
degree≤ 2. As described in Section 2, out-degrees also
have a (different) Zipfian distribution, and we can prune
away any node with out-degree≤ 2. Finally, apply-
ing a generation phase means that we also remove nodes
with in/out-degreeequal to 3. From simple calculations
with the corresponding probabilities (noting for instance
that

∑
i 1/i2 = π2/6), we determine that these elimina-

tion/generation steps would account for nearly 90% of the
nodes in just the first iteration. Further iterations are less
dramatic—both in theory and in practice.

It is thus clear that the insights from our measurements and
model drive the efficiency of the elimination/generation
paradigm. A more mathematically precise analysis of the
running time of elimination/generation in our model ap-
pears to be beyond the reach of current random graph the-
ory, and is a worthwhile goal.

4.2 From cores to communities

We now describe an extension of Kleinberg’s HITS [19],
to expand a core Ci,j into its surrounding community. For
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brevity we only detail the novel aspects of our extension;
the reader is referred to [19] for details on the basic HITS
algorithm. To make our description succinct, we use the
notation p → q to denote that a web page p has a hyperlink
to a web page q.

Given a query, the basic HITS algorithm assembles a
small set of pages R (the root set) using a traditional text-
based search engine and then constructs R′ (the expanded
set) by adding all pages that points to or is pointed to pages
in the root set. I.e., R′ = R ∪ {p | p → q, q ∈
R} ∪ {q | p → q, p ∈ R}. Each page p is asso-
ciated with a pair of scores h(p), a(p) which are initially
set to 1. The algorithm iteratively updates these scores as
h(p) =

∑
p→q a(q) and a(p) =

∑
q→p h(q), (after appro-

priate normalization). The top-scoring pages based on a(·)
(resp. h(·)) are termed “authorities” (resp. “hubs”).

In our case, we have no text query; instead we have a
core Ci,j . Since there is no query, the root set R is con-
structed using the following rule: the root set consists of (i)
the core Ci,j, (ii) all pages pointed to by the nodes in L and
(iii) all pages that point to at least two nodes in R. I.e.,

R = L ∪ {p | q → p, q ∈ L} ∪

R ∪ {p | p → q1, p → q2, q1, q2 ∈ R}.
We apply the basic HITS algorithm to this root set (making
the assumption that the community around the core over-
laps significantly with the root set). The result is a set of
authoritative sources of information for that community, to-
gether with a set of hubs that collect together and annotate
these authoritative pages.

4.3 Extracting index terms

Having enumerated the cores and run the generalized HITS
algorithm above to expand each core into a full community,
we must extract from each community index terms to build
the knowledge base, and a summary that can be used to
identify the contents of the community.

We make the following observation: the title of a page
is likely to contain terms describing the page. Using this
heuristic, we implement the following algorithm for identi-
fying keywords that are useful for both indexing and sum-
marization:

1. Extract the titles of all web pages in a community
(which comprises the top 50 hubs and 50 authorities
as returned by the algorithm of Section 4.2)

2. Eliminate stop words (e.g., articles, “html”, “home”,
“page”, “web”, etc.)

3. Rank the resulting terms by frequency across the en-
tire set of pages

4. Return the top ten most frequent words

We use the resulting set of 10 terms to index the commu-
nity, and build a search utility against this index.

We are investigating more sophisticated strategies for
the future. For instance, anchortext—the text in the vicinity
of the “href” tags at the tails of hyperlinks—often repre-
sents a description of the contents of the linked-to page.
Thus, anchortext of good hubs around links pointing to
good authorities may be important for generation of index
terms and summaries. We also plan to use phrase extraction
techniques instead of simple keyword extraction.

5 Campfire: a knowledge base of communi-
ties

In this section we describe Campfire, a knowledge base of
communities. We spell out the details of our experimental
setup and give some examples of the communities indexed
in Campfire.

5.1 Experimental setup

The communities in the Campfire knowledge base were
constructed from a 1997 crawl of the web. In addition to
extracting cores from the tape, we also extracted the state
of Yahoo at the time of the crawl. As a reference point,
Yahoo contained slightly over 16,000 topics in this crawl.

The trawling algorithms were run on a PC with a 333
MHz Intel Pentium II processor. The machine had 256M of
main memory and a SCSI chain with multiple disk drives.
The cost of running the trawling algorithm has two ma-
jor components: (i) the data cleaning portion, and (ii) the
pruning-based mining algorithm.

Since 2 mirrored copies of a page would generate a
spurious C3,j , we removed mirrors using the shingling
method of Broder et al [8]. Our algorithm shingles 3100
pages/second. This implies that the entire set of poten-
tial fan pages (2 Million pages in our case) are shingled
in about 10 minutes. Eliminating duplicates (pages which
have the same shingle) runs at about the same speed (about
3000 pages/second). Thus, initial data cleaning takes only
about half an hour. The major cost in the pruning step is in
sorting the edge data. There are 60M edges in the dataset
after shingling. The time to sort the edge set is 5 minutes
per pass (on average). Our algorithms make 30 passes over
the data (for i, j = 3, 3) in the worst case. The total time to
trawl all C3,3 cores was about 1.5 hours.

Having enumerated the cores, we then expanded them
into communities using the algorithm of Section 4.2. To
construct the root set, we augmented the fans and centers
by following links on today’s web. However, since the
cores date back to 1997, and the half-life of a web page
is of the order of a few weeks, many of these fans and cen-
ters no longer exist. Therefore, we only expanded those
cores at least half of whose fans were still alive on today’s
web. For example, in the case of C4,j cores, 41% passed
this test. Interestingly, the fraction of centers that are still
alive is around 54%, suggesting that centers might have a
higher half-life than fans. Running HITS typically expands
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a core into a community of between 100 and 4000 pages,
with the average around 1300. The number of hyperlinks
between these pages varies from 200 to 15000, with the av-
erage around 3500. Parsing each page takes a few millisec-
onds, but running the expansion algorithm takes between 2
and 10 seconds.

The final task is to index these communities. To accom-
plish this, we run the index term extraction algorithm on
each of these communities. Given that we already have a
parsed version of these pages, running this algorithm takes
under a millisecond for each page. Using the keywords ex-
tracted, we index each community into Campfire.

5.2 Sample communities

We now provide 5 sample communities automati-
cally generated by expanding C4,j cores. We present
the top five hubs and authorities of each commu-
nity along with indexing keywords, and a brief
(manually-generated) annotation for the benefit of
the reader. A more detailed list of pages can be found at
www.almaden.ibm.com/cs/k53/campfire.html

To validate our conclusions further, we conducted the
following experiment on the extracted communities. We
took a random sample of about 100 communities and
manually applied our resource compilation tools [10] to
generate, for each community, a high-quality set of rele-
vant pages. We then computed the overlap between these
carefully-compiled resource lists and their counterparts in
Campfire. The average overlap of sites was around 60%,
suggesting that the quality and purity of communities ex-
tracted by our algorithm is fairly high.

6 Further directions

Our work raises a number of interesting directions and
questions.

1. What are other instances of subgraph structures (pos-
sibly in conjunction with text patterns) that can be
used to build valuable knowledge bases?

2. Our web graph model leads to very different areas for
further investigation:

(a) What are the dominant modes of content cre-
ation that different kinds of users exhibit, and
how can these be reconciled (in an aggregate
sense) with our model?

(b) We have only scratched the surface of the rig-
orous mathematical analysis of our graph model
(in contrast to the analysis of simpler, more tra-
ditional random graph models). Explicating the
structure of graphs generated by our model is far
more challenging than these traditional models,
but a worthwhile goal in being able to predict the
evolution of the web graph.

3. We have given illustrative examples and some gen-
eral principles for devising elimination/generation al-
gorithms for several interesting subgraph structures.
Are there systematic ways for developing elimina-
tion/generation algorithms for any web subgraph enu-
meration problem? How do we exploit the interplay
between the nature of the web graph and the elimi-
nation/generation phases? What are systematic tech-
niques for tuning this methodology for given resource
constraints?

4. In Campfire, we have a knowledge base built from
web communities by extending the cores we enumer-
ate from the web. We have not elicited significant se-
mantic content (beyond extracting title words and in-
dexing them for text search). Are there new paradigms
for annotating and organizing these knowledge atoms
in ways that are more valuable to users?
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AUTHORITIES HUBS

www.midnightbeach.com/hs user.pa.net/∼rtregl/schools.html
www.home-school.com larch-www.lcs.mit.edu:8001/∼raymie/linklist.html

www.comenius.org/chnpage.htm www.phonet.com/bsimon/educ-nat.html
users.aol.com/WERHSFAM/humor.html home.sol.no/∼hunwww/Elinker.htm

www.sound.net/∼ejcol/confer.html www.thefamily.net/educational.html
indexing keywords: homeschool homeschooling school education resource

Homeschooling.

AUTHORITIES HUBS

www.netimages.com/∼chile www.chetbacon.com/hotlinks.html
www.webring.org/cgi-bin/webring?list&ring=chile bigsun.wbs.net/homepages/g/g/h/gghosey/links.html

www.firegirl.com www.bizkid.com/food.htm
www.azstarnet.com/∼coriel www.catechnologies.com/cuisinesites.html

www.chilegod.com allison.clark.net/pub/yoda
indexing keywords: hot food sauce chile cooking recipes spicy peppers

Hot and spicy foods.

AUTHORITIES HUBS

manufacture.com.tw www.aunet.com.tw/steel.htm
www.rack.com.tw www.commerce.com.tw/c/metal
www.mold.net.tw www.acer.net/search/ee.htm
www.pack.com.tw www.hinet.net/source/business/steel/3.htm

www.or.com.tw www.hinet.net/source/business/steel/1.htm
indexing keywords: taiwan corporation products international machinery

Taiwanese machine shops.

AUTHORITIES HUBS

www.eren.doe.gov www.physic.ut.ee/∼janro/ab.html
www.doe.gov www.csmi.com/oaatweb/links.htm
www.epri.com www.azstarnet.com/∼dcat/Rec list.htm
www.epa.gov www.beasley.com.au/news.htm

www.ashrae.org wwwvms.utexas.edu/∼whcii/energy/bldglnks.htm
indexing keywords: energy wind renewable sustainable

Sustainable energy resources.

AUTHORITIES HUBS

cancer.med.upenn.edu www.allny.com/health/oncology.html
wwwicic.nci.nih.gov micf.mic.ki.se/Diseases/c4.html

www.cancer.org www.medmark.org/onco/onco.html
www.nci.nih.gov www.meds.com/cancerlinks.html
www.nlm.nih.gov www.mic.ki.se/Diseases/c4.html

indexing keywords: cancer breast oncology

Cancer.

650


