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Extracting local nucleation fields in permanent magnets using

machine learning
Markus Gusenbauer 1✉, Harald Oezelt 1, Johann Fischbacher 1, Alexander Kovacs1, Panpan Zhao2,

Thomas George Woodcock 2 and Thomas Schrefl1

Microstructural features play an important role in the quality of permanent magnets. The coercivity is greatly influenced by

crystallographic defects, like twin boundaries, as is well known for MnAl-C. It would be very useful to be able to predict the

macroscopic coercivity from microstructure imaging. Although this is not possible now, in the present work we examine a related

question, namely the prediction of simulated nucleation fields of a quasi-three-dimensional (rescaled and extruded) system

constructed from a two-dimensional image. We extract features of the image and analyze them via machine learning. A large

number of extruded systems are constructed from 10 × 10 pixel sub-images of an Electron Backscatter Diffraction (EBSD) image

using an automated meshing procedure. A local nucleation field is calculated by micromagnetic simulation of each quasi-three-

dimensional system. Decision trees, trained with the simulation results, can predict nucleation fields of these quasi-three-

dimensional systems from new images within seconds. As for now we cannot quantitatively predict the macroscopic coercivity,

nevertheless we can identify weak spots in the magnet and see trends in the nucleation field distribution.
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INTRODUCTION

Permanent magnets are of great interest in today’s economy.
Especially green energy applications, such as in wind turbines and
hybrid/electric vehicles demand high-performance permanent
magnets. The performance of permanent magnets is mainly
determined by intrinsic magnetic properties and microstructural
features. The intrinsic properties are adjusted by including rare
earth (RE) elements, which mainly increase the magnetocrystalline
anisotropy. Due to economical and environmental considerations,
there is a high interest in reducing the use of RE elements1. MnAl-
C contains no RE or other critical raw materials and its intrinsic
magnetic properties make it an attractive alternative to certain
types of RE-based permanent magnets2. The microstructure of
MnAl-C magnets is known to contain a range of defects, such as
grain boundaries, twins, and antiphase boundaries3–7. Kronmüller
and Goll discussed microstructural properties of advanced hard
magnetic materials and its relation to the quality of permanent
magnets8. By investigating the various boundary types of MnAl-C,
their distribution and the effect on the coercivity by micromag-
netic simulations and machine learning, we hope to optimize the
overall performance of MnAl-C magnets.
Micromagnetic simulations can be a vital tool to improve the

understanding of permanent magnets and their macroscopic
properties. Widely used measures to determine the quality of
permanent magnets are the nucleation field Hn, the coercive field
Hc and the energy density product BHmax

9. Here we denote the
critical value of the external field at which the magnetization starts
to switch irreversibly as nucleation field Hn

10. First thing to know is
the microstructure of the magnetic material. In a second step an
accurate theory is needed to determine the quality measures from
this microstructure. Micromagnetic simulations can calculate
demagnetization processes and further on Hn, Hc, and BHmax with
the use of the present microstructure and the intrinsic magnetic
properties of the material. Intrinsic magnetic properties can be

obtained either from ab initio simulations or from the measure-
ments of the anisotropy constant, the magnetization and the
exchange constant. In addition to the intrinsic magnetic proper-
ties the microstructure of permanent magnets influences magne-
tization reversal. A useful technique to get local crystallographic
orientations from a microstructure is Electron Backscatter Diffrac-
tion (EBSD) microscopy11. It allows to analyze large areas in
comparison to transmission electron microscopy (TEM), with the
disadvantage of a worse resolution. The smallest spatial resolution
of standard EBSD is about 30–50 nm. Creating an EBSD image with
about half a million pixels takes a few hours on modern systems.
In order to create a micromagnetic simulation from an EBSD

image, several steps are necessary. The EBSD raw data need
to be scanned, the microstructure needs to be extracted and the
underlying crystallographic orientation needs to be stored. The
microstructure is then meshed with very small finite elements
(tetrahedrons). Only now a micromagnetic calculation can be
performed. The accuracy of micromagnetic simulations with a
known microstructure of a magnet is well described, as for
example in ref. 12. The simulations nicely reproduce trends, yet the
absolute value of the simulation results is always given with a
certain offset to the experiments. The simulations cannot
incorporate all effects, as for example inaccurate or unknown
phase distributions. The size limitation in the simulations affects
coercivity as well, because with larger samples (larger grains), the
coercivity is decreasing13. The same offset from experiments to
the simulations has been observed for MnAl-C6,14. In this work we
are interested in trends of the nucleation field distribution and to
find weak spots in the microstructure, which can still be done in
spite of this offset.
The size of a micromagnetic simulation model is limited. The

intrinsic length to represent magnetization reversal, the so-called
characteristic length scale, need to be chosen such, that
nucleation processes or domain wall movements can be reflected
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within the finite element mesh. The largest allowed length of a
finite element is typically in the range of a few nm only. There are
two ways to calculate the demagnetization curve numerically with
micromagnetic solvers:

(1) With state-of-the-art micromagnetic energy minimization
codes it is possible to calculate the demagnetization curve
of a permanent magnet with a size of 250 × 250 × 250 nm3

within 1–2 days15. Using a finite differences code, optimized
for massively parallel computing on a supercomputer, a
cube with the size of about 1 × 1 × 1 μm can be solved
within a reasonable time. For example, using 256 CPUs the
authors report a simulation time of 6.68 days for computing
a demagnetization curve16.

(2) Solving time-dependent Landau–Lifshitz–Gilbert (LLG) equa-
tions reduces the practical model size even further. With the
software applied in this work17 the computation of the
demagnetization curve of a cube with a size of 200 × 200 ×
200 nm3 on a single CPU lasts about 3–6 days depending on
the magnetic configuration.

Alternatively to the simulation of single large systems, several
small parts, each covering a specific aspect of the microstructure,
can be simulated. However, computing many small samples can
be challenging again in terms of available computational
resources. Predicting the coercive field directly from a micro-
structural image would speed up the computation tremendously.
A promising approach to reduce the computational costs is the
use of machine learning to predict the coercivity of permanent
magnets18. Even if it is only a rough approximation, one can gain
qualitative information of the influence of local microstructural
properties on the coercivity. In material sciences the use of
machine learning has helped determine microstructure-properties
relationships, automates and increases the speed in materials
characterization or fosters materials discovery19. Size limitations
can be overcome by e.g., bridging the gap between molecular
dynamics and macroscopic materiel sciences20. Machine learning
has been used for the characterization of e.g., steel microstruc-
tures21. In Mg-alloys, Orme et al. analyzed the formation and
propagation of twinning boundaries using decision trees22.
Typically in machine learning a large amount of data is required.

After acquisition, the data need to be prepared to fit a chosen
machine learning model that is suitable for the specific problem.
The model is fed with the data to incrementally improve the
predictive ability. Evaluation is performed on parts of the data,
that have not been used for training. Finally, a completely new set
of input data is tested. The errors are computed for this test set,
which is data the model have not seen before. In this work we
obtain the training data directly from EBSD data of MnAl-C and
micromagnetic simulations23. Using automated geometry con-
struction and discretization of the EBSD map, we can compute
local nucleation fields for many small image extracts (selections)
using micromagnetic simulations. Thus a large amount of input
data can be acquired. We tried random forest and gradient
boosting regressors24 for learning local nucleation fields Hn. We
also show that, when fitting Hn to a set of selected properties
derived from the EBSD image, a simple linear regression model
gives good results. The models were evaluated and their
hyperparameters optimized by averaging the error of a 5-fold
cross-validation. Afterwards we test the prediction performance of
the initial training data on a completely new EBSD map.
Generating the necessary data for a machine learning model
once takes very long (weeks or months), yet training and
predicting then only takes a few minutes. Even though the
prediction contains errors, the quality of a magnet can be
analyzed and good or bad spots in the magnet’s microstructure
can be found.
In other fields of material science it is common practice to use

machine learning for characterizing the influence of microstructure

on materials properties19. This work is a first attempt to bring
machine learning to the magnetism community. We think our
method is useful from several points of view:

(1) Machine learning is a building block for multiscale simula-
tions.

(2) Machine learning helps to identify weak spots with local
nucleation fields in the microstructure.

(3) Machine learning can contribute and act as an additional
tool that complements magnetic measurements and micro-
magnetic simulations.

RESULTS

In the Results section we show feature importance of our machine
learning model using different approaches:

(1) We predict nucleation fields for different feature vectors
(single features or feature combinations).

(2) Partial dependence plots show the relation from features to
predicted results.

(3) A linear regression model highlights the strength of
important derived features.

Further on we discuss problems with complex structures such
as grain boundary junctions. And we test the trained machine on a
new EBSD dataset (EBSD-B) to demonstrate the predictive ability.
In the end we suggest a way to use the predicted nucleation fields
for obtaining bulk magnetic properties.

Feature importance by feature vector

In section Feature engineering we defined five features from our
microstructural EBSD dataset. Not all features might be equally
important to accurately predict the nucleation field. In order to see
the feature importance we predicted the local nucleation field via
a single feature and combinations of features. Table 1 shows the
mean absolute error (MAE) and root mean squared error (RMSE)
for the various models trained with different feature vectors.
Please note that the hyperparameters of the regressors were
optimized just once using all features. Afterwards they are applied
to all feature combinations. A separate optimization for each
feature combination gave no significant improvement of the
prediction performance.
We compare predictions for the same map (EBSD-A) as well as

for a new map (EBSD-B) as outlined in Fig. 1a, b, respectively. The
lowest MAE is reached with the feature GRAIN, in which the
location information of the grains is not included. The PIXEL
feature, which contains the additional position information,
performs a little worse. Probably redundant data and the high
number of features (large feature vector F) make the training more
difficult25. The feature TWIN produces still an acceptable score,
whereas, SW and SIZE should only be used in addition to other
features.
The combination of several features introduces more possibi-

lities for accurately predicting the nucleation field. The best
feature combinations are shown in Table 1. Although a combina-
tion of many features should increase the prediction accuracy, the
best performance is given with the features GRAIN, SIZE, SW, and
TWIN. Due to the dependency of PIXEL and GRAIN, which
introduces a lot of redundant information to the feature vector
F25, the prediction accuracy is not improving, when adding the
PIXEL feature.
In Fig. 2a we show predictions for the local nucleation fields in

EBSD-A calculated by our voting regressors using all five features
(PIXEL, GRAIN, SIZE, SW, and TWIN). Local nucleation fields are
nicely reconstructed with lower values at grain boundaries and
higher values for bulk as shown in the simulations (Fig. 3c). For
visual comparison to the previous image we are using only GRAIN
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for predicting the local coercivity of the same EBSD map (Fig. 2b).
Although the differences in MAE and RMSE are quite large in
Table 1, the visual comparison shows a very similar trend. This
trend is also found in simplified hysteresis curves constructed
from the predicted nucleation fields in section Bulk magnetic
properties.

Feature importance by partial dependence plots

A partial dependence plot highlights the effect of a given feature,
while averaging the contributions of the other features26. In Fig. 4a
we show one-way partial dependence plots of the features SW
and TWIN, whereby the model was trained with a feature vector
containing all features: PIXEL, GRAIN, SIZE, SW, and TWIN. We
know from literature that SW is important, clearly the SW
dependence plot shows an almost linear relation to the predicted
values. For the TWIN feature we observe a similar trend, yet with a

much stronger influence on the predictions. Large misalignment
between adjacent grain’s orientations cause a drastic reduction in
Hn. A two-way partial dependence curve of SW and TWIN in Fig. 4b
shows, that best predicted nucleation fields can be expected with
a large feature value of both, SW and TWIN. Here again the strong
influence of the TWIN feature is visible, strong misalignment
drastically reduces Hn even for a large SW value. Partial
dependence plots for PIXEL, GRAIN, and SIZE are not reasonable,
as each one of it contains multiple features (see section Feature
engineering).

Feature importance by linear regression

Based on a qualitative understanding of magnetization reversal a
simple model for nucleation fields would be a linear regressor
having SW and TWIN as features. The importance of these two
features is also shown in Fig. 4. Therefore we trained a linear
regressor with an ordinary least square fit. We applied a 5-fold
cross-validation to see the performance of the model on EBSD-A
(Fig. 1a) and we tested the model on the new map EBSD-B
(Fig. 1b). In Table 2 we show the MAE and RMSE scores of the
linear regression model with the features SW and TWIN as input
feature vector. The mean cross-validation scores are slightly worse
than that obtained for the optimal feature combination with the
voting regressor (see Table 1). However, when tested with
previously unseen data, the linear regressor provides results
comparable to the voting regressor. The MAE and RMSE on the
test set (EBSD-B in Fig. 5) were 0.166 T/μ0 and 0.245 T/μ0 with the
feature combination SW and TWIN. Values for predicting the new
EBSD map are close to those of the voting regressor, which uses
GRAIN, SIZE, SW, and TWIN as features.
The comparison of the results for the optimized voting

regressor and the linear model shows that the voting regressor
fits better to the training data. Nevertheless both models achieve
similar performance measures for previously unseen data. The
very good results from the linear regressor suggests as well, that
the features SW and TWIN are very powerful in the proposed
machine learning model.

Microstructural complexity

Right now we have used all the simulation data of EBSD-A (Fig. 3)
for training and testing. For better understanding of the MAE and
RMSE values, we can split the data according to the number of
grains in the selections. Each dataset of EBSD-A with the same
number of grains is individually used for training and testing (80%
training data, 20% test data). With increasing number of grains,
the MAE of the prediction is increasing as well, which is shown in
Table 3. A large number of grains in the selections increases the
systems complexity with many possibilities of magnetization
reversal. Here most likely the number of input data has to be
extended, in order to improve the prediction accuracy. The RMSE
value is rather high with more than 1 grain, which indicates again
the lack of data.

Table 1. Machine learning scores.

EBSD-A EBSD-B Active features

MAE RMSE MAE RMSE PI GR SI SW TW

0.188 0.266 0.220 0.290 ×

0.175 0.267 0.206 0.284 ×

0.263 0.341 0.278 0.367 ×

0.242 0.337 0.328 0.426 ×

0.200 0.284 0.222 0.321 ×

0.167 0.258 0.196 0.281 × ×

0.146 0.236 0.170 0.242 × ×

0.146 0.220 0.175 0.245 × × ×

0.149 0.222 0.178 0.248 × × ×

0.142 0.221 0.167 0.235 × × ×

0.135 0.218 0.161 0.228 × × ×

0.144 0.236 0.163 0.234 × × ×

0.142 0.216 0.174 0.243 × × × ×

0.138 0.217 0.169 0.238 × × × ×

0.137 0.216 0.166 0.234 × × × ×

0.132 0.218 0.157 0.223 × × × ×

0.134 0.213 0.164 0.233 × × × × ×

Mean absolute error (MAE [T/μ0]) and root mean squared error (RMSE [T/

μ0]) from the voting regressor (VR) are given for single feature predictions

and best feature combinations. The multiplication sign (×) marks the

activated feature(s). For each scoring column the number in bold font

indicates the best performance. Results for EBSD-A (Fig. 3) are obtained

from the average of a 5-fold cross-validation (Fig. 1a). The results for EBSD-

B (Fig. 5) shows the performance of the models on the test set after

training the model with selections from EBSD-A (Fig. 1b). All feature

combinations as well as the values for random forest (RF) and gradient

boosting (GB) regressor can be found in Supplementary Table 1.

Fig. 1 Training and testing. a A 5-fold cross-validation is performed for the dataset EBSD-A (Fig. 3). b The full dataset EBSD-A is used for
predictions in a new map EBSD-B (Fig. 5).
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Prediction accuracy of new EBSD maps

With the already trained and validated machine learning model
from EBSD-A (Fig. 3), any new EBSD map from the same material
can be predicted in a matter of seconds rather than weeks as
needed for micromagnetic simulations. To determine the predic-
tion accuracy for new maps we test the model trained by EBSD-A
with selections of a new map EBSD-B (Fig. 5). Firstly, the machine
learning model is trained with the data from EBSD-A. Afterwards
the machine learning model is tested with an entirely new dataset
from EBSD-B, which is obtained from a different sector, but from
the same MnAl-C sample as in EBSD-A with a size of 180 × 81 μm2

(600 × 270 pixels). For this new data we compare micromagnetic
simulations with the predictions of the machine learning model.
We use the same sampling method as from EBSD-A. On a regular
grid every second selection with a size of 10 × 10 pixels is picked
and a finite element mesh is created for the simulations. Duplicate
selections are removed from the dataset. Figure 5a shows the
micromagnetically computed nucleation fields Hn of EBSD-B
(about 400 simulations).
Now we can predict the nucleation fields Hn on the very same

selections by using the trained regression trees from the original
data of EBSD-A. We use the feature vector with the highest
precision (see Table 1): GRAIN, SIZE, SW, and TWIN. Figure 5b
illustrates those predicted nucleation fields Hn, which show less
variation in Hn than the simulated map. Consequently the MAE is
larger than in previous results of EBSD-A with a value of 0.157 T/μ0
(see Table 1). In Fig. 5c we show the absolute deviation ∣ΔHn∣ of
the computed and predicted nucleation fields. There are regions
where the machine learning model nicely predicts the computed
results, whereas in other regions relevant training data is missing.
More data need to be produced to better model these under-
represented areas. And probably a large number of grains in the

selections causes some of the deviations as well, which is
discussed in section Microstructural complexity.
We created a residual plot according to ref. 27, where we show

the difference Hn,comp− Hn,pred versus the predicted nucleation
fields Hn,pred (Fig. 6). Most residuals lie in a range of ±1 T/μ0 and
show no trend in the distribution, which is an important indicator
for the quality of the machine learning model. In this work we are
interested in weak regions of the microstructure, hence absolute
values are not that important. With the help of the machine
learning model, trends in the distribution of the nucleation fields
can be obtained very fast.

Bulk magnetic properties

A trained machine learning model has the ability to predict the
local nucleation fields of a full EBSD map within seconds (see
EBSD-A in Fig. 2). From the prediction information we suggest a
method to construct the hysteresis curve of the whole EBSD
sample. In Fig. 7 we show a comparison of two demagnetization
curves computed from predictions of EBSD-A with two different
feature sets (shown in Fig. 2). We construct the curve with a
decreasing external field from 0 to −3 T/μ0. At each field value we
count the selections with a predicted nucleation field greater and
lower than this particular field value. As soon as the field value is
greater than a locally predicted nucleation field, we assume that

Fig. 3 Training map EBSD-A. a, b EBSD map of 600 × 400 pixels
with a pixel edge length of 0.3 μm divided in two halves. a The left
half of the figure shows an inverse pole figure (IPF) map converted
with Dream3D (dream3d.bluequartz.net, last visited on 17/12/2019).
b The right half of the figure shows crystallographic twin
boundaries: true-twins (red), order-fault-twins (green), pseudo-
twins (blue), and others (gray). c The same map is used to depict
the boundaries and the micromagnetically computed nucleation
fields Hn. Each square corresponds to a unique selection (10 × 10
pixels) color-coded with Hn. Red squares show weak spots in the
microstructure.

Fig. 2 EBSD-A prediction maps. Nucleation fields Hn predicted for
EBSD-A (Fig. 3) by using a PIXEL, GRAIN, SIZE, SW, TWIN, and
b GRAIN as training features.
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this selection is magnetically reversed (switched). With the ratio
from unswitched selections to all selections normalized from 1
to −1 we obtain the full curve. Due to the simplification we see a
rather high coercive field for both curves (Hc ≈ 2.35 T/μ0). In reality
the coercivity is much lower6. In the future we plan to include
stray field and exchange coupling between the selections to
improve the predicted hysteresis curves.

DISCUSSION

We have demonstrated a fast way to predict local nucleation
fields for MnAl-C. An automated script scans a large EBSD dataset,
selects hundreds of unique samples and creates quasi-3D finite
element meshes accordingly. For each selection the local
nucleation field Hn is computed by a fast Landau–Lifshitz–Gilbert
t micromagnetic solver. The microstructural features of the EBSD
selections and its nucleation fields are used to train random
forest and gradient boosting regressors. A voting regressor
combines those two methods for an improved prediction
accuracy. We use a 5-fold cross-validation to test the perfor-
mance of single features and feature combinations on an EBSD
map. We are using features like PIXEL, that are a set of multiple
features, the data points of the EBSD map. On one hand, training
the machine with PIXEL includes the orientation of the grains, the
geometry as well as the location information. On the other hand,
quite a lot of redundant information is in the dataset. The GRAIN

feature includes only the orientation of the single grains and has
no geometrical nor location information. This might be the
reason that none of the single or combined features reach a

mean absolute error below 0.1 T/μ0.

Fig. 5 Comparison of computation and prediction for EBSD-B.
EBSD map of 600 × 270 pixels with 0.3 μm pixel edge length.
a Nucleation fields Hn computed and b predicted by using the data
from EBSD-A (Fig. 3) with the features GRAIN, SIZE, SW, and TWIN.
c Absolute deviation between calculated and predicted nucleation
fields.

Fig. 4 Partial dependence plots. a One-way partial dependence plots of the features SW and TWIN showing the effect on the predictions.
b The interaction of SW and TWIN is shown in a two-way partial dependence plot (contour lines with predicted Hn). The model was trained
with a feature vector containing all features (PIXEL, GRAIN, SIZE, SW, and TWIN).

Table 2. Linear regression scores.

EBSD-A EBSD-B Active features

MAE RMSE MAE RMSE SW TW

0.268 0.348 0.287 0.361 ×

0.214 0.286 0.194 0.280 ×

0.186 0.258 0.166 0.245 × ×

Mean absolute error (MAE [T/μ0]) and root mean squared error (RMSE

[T/μ0]) from the linear regressor are given for the trained models with the

features SW and TWIN. The multiplication sign (×) marks the activated

feature(s). Results for EBSD-A (Fig. 3) are obtained from the average of a

5-fold cross-validation (Fig. 1a). The results for EBSD-B (Fig. 5) show the

performance of the models on the test set after training the model with

selections from EBSD-A (Fig. 1b).
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The trained machine learning model from the initial map EBSD-
A is used to predict local nucleation fields of a new map EBSD-B.
Comparison between predictions and computations show that
nucleation fields in large areas of the new EBSD map can be nicely
reconstructed. Some regions show larger deviations, which might
be caused by missing relevant training data and the complexity of
the microstructure. Partial dependence plots and a linear
regression model showed the strengths of the features SW
(minimum Stoner–Wohlfarth switching field) and TWIN (measur-
ing the maximum misalignment between adjacent grains in a
selection). Both are derived features based on the physics of
magnetization reversal. The feature SW is the classical minimum
switching field according to the Stoner–Wohlfarth theory.
Exchange interactions between neighboring grains reduce the
switching field with increasing misalignment angle28.
Predicting the nucleation fields on a new map with the linear

regressor (active features: SW and TWIN) showed a very good
result, coming close to those values, predicted with the best
feature combinations of the regression decision trees. Even for
differing resolutions of the EBSD datasets the machine learning
model could be used, because the geometrical information is not
absolutely necessary. In such a case, the error caused by the
different pixel size need to be quantified. Using the trained
machine learning model a large EBSD dataset can be fully scanned
and a map of local nucleation fields can be created within
seconds. This information can serve as an input for constructing a
hysteresis curve of the whole EBSD sample.

Machine learning for magnetic materials faces the following
challenges:

(1) Usually machine learning is related to big data whereas in
material science the amount of data is typically low. Since it
is difficult to get lots of experimental datasets, the use of
micromagnetic simulations is a way to generate training
data. For the future, we hope that data assimilation methods
that combine computed and experimental data will form
the basis for datasets that relate coercivity and microstruc-
ture. The term data assimilation refers to any systematic
procedure that uses experimental measurements to actually
improve model simulation29. For example, Matsumoto et al.
merges ab initio simulations and experimental data to
develop light-rare-earth-based permanent magnets30.

(2) Micromagnetic simulations with the currently available
input and computational resources are not accurate enough
to give quantitative predictions of nucleation fields and
coercivity. Nevertheless, it can be used to see trends in the
nucleation field distribution or to find weak spots in the
microstructure.

In the following we give prospective applications of machine
learning in magnetism:

(1) Machine learning can be used to build better models. It can
be seen as a reduced order model that spans over various
length scales.

(2) The proposed method can be used to identify weak spots in
a magnets microstructure.

(3) Most significant features can give a handle to improve the
development process of permanent magnets.

Machine learning in material science is commonly used to
characterize the materials’ microstructure. In this work we hope to
bridge the gap between machine learning and the magnetism
community and to foster research in magnetism.

METHODS

In the following section we explain the basics of machine learning and the
regression decision trees we used. We give insights in the selected
microstructural features and our optimized labels for training the machine
learning model. The input data are generated by an automated
micromagnetic meshing and simulation routine. It consists of many small
selections of a large Electron Backscatter Diffraction (EBSD) image. For each
selection we compute the local nucleation field with an external applied

Fig. 7 Full EBSD-A hysteresis curves. Constructed hysteresis curves
neglecting stray fields and exchange coupling between selections.
The local nucleation fields are taken from Fig. 2a (model with PIXEL,
GRAIN, SIZE, SW, and TWIN) and Fig. 2b (model with GRAIN).

Table 3. Prediction accuracy according to the number of grains in the

selections.

# grains # selections MAE [T/μ0] RMSE [T/μ0]

1 46 0.035 0.053

2 316 0.132 0.268

3 150 0.161 0.219

>3 101 0.188 0.246

The scores are obtained by the voting regressor (VR). GRAIN, SIZE, SW, and

TWIN are used as training features. The data of EBSD-A (Fig. 3) are split

firstly according to the number of grains and than randomly into 80%

training data and 20% test data.

Fig. 6 Residual plot. Residuals are given for predictions of the
nucleation fields in EBSD-A (Fig. 3) and EBSD-B (Fig. 5). For the values
of EBSD-A we use the validation set of each fold, whereas for EBSD-B
we use the full dataset (see Fig. 1a, b, respectively). The model for
predicting the nucleation fields used GRAIN, SIZE, SW, and TWIN as
features.
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field in y-direction (see coordinate system in all the figures). To improve
the prediction accuracy we optimize the hyperparameters of the
decision trees.

Machine learning

Machine learning is a statistical approach to automatically analyze large
datasets (explained in detail for instance in ref. 24). The dataset is structured
in features and labels. Features are the input for the machine learning
model in form of a vector. Labels are the quantities, which we want to
teach the model to predict. A model is fitted to the data (training), while it
is tested with a subset of the data to get the predictive performance
(validation). The trained and validated model is than used to predict the
results of new datasets (test). We apply supervised learning where the
input data are already given with the true solutions (labels). In this work we
use microstructural features of MnAl-C obtained by Electron Backscatter
Diffraction (EBSD) microscopy. We generate many small quasi-3D sub-
models (selections) of the EBSD dataset and compute the magnetic
nucleation fields Hn, the corresponding labels.
In a first step we create input data from EBSD-A (Fig. 3), where we apply

a 5-fold cross-validation (Fig. 1a). Training and testing is applied five times
with different subdivisions of the dataset, and the prediction accuracy is
averaged to obtain an overall training performance. In a second step the
machine learning model can be trained again with the full data of EBSD-A
(Fig. 1b). For testing we apply this model to EBSD-B (Fig. 5), which is
obtained from a different sector, but from the same MnAl-C sample. The
data associated with this new EBSD map were not seen before by the
machine learning model. For quantitative analysis of the predicted values
we are using the mean absolute error (MAE) and the root mean squared
error (RMSE). When using the RMSE, large errors are penalized
considerably, while using the MAE makes the results easier to interpret.
Classification and regression are the most commonly used tasks in

supervised learning. While the labels are split into classes (classification
problem), the real values are trained and predicted with regression
machine learning models. We use regression decision trees to predict the
nucleation field Hn. With linear regression the data are assumed to
correspond linearly, yet in real case scenarios, which are usually much
more complex, labels depend nonlinearly on the features. Similar to Exl
et al.18, we use random forest (RF) and gradient boosting (GB) decision
trees to account for the nonlinearity, which we observed in our results. RF
trees combine predictions of individual decision trees trained over
randomly generated sub-training samples (often called as ensemble
learning). GB trees combine again predictions from several generated sub-
training samples, but this time each sample tree learns from residual errors
from the previous one. A voting regressor (VR) is then used to average the
individual predictions on the whole dataset and to form a final prediction.
We are using Python with the Scikit-Learn framework24,31 to model the

decision trees and to have the respective scores, hyperparameter
optimization and visual representations available. The hyperparameters
of our RF and GB regressors are optimized with the GridSearchCV method
including the full feature vector (see details in section Feature engineering)
and a 5-fold cross-validation (see Fig. 1a). As a score we use the negative
mean squared error. Details on the optimized hyperparameters can be
found in Supplementary Note 1. We tested also a Bayesian optimizer32

with 5-fold cross-validation to tune the hyperparameters for each possible
feature combination (see section Feature importance by feature vector),
yet it showed no significant effect on the results. In other words, our
regressors are very robust when changing the hyperparameters. Therefore
we stick with the hyperparameters from the GridSearchCV approach for
the rest of this work.

Dataset generation

Machine learning usually requires a large amount of data to accurately
predict new datasets. Using micromagnetic simulations, a reasonable
amount of data can be generated for training our regression decision trees.
We are computing the nucleation fields Hn of MnAl-C selections obtained
from EBSD data. The original data are represented as crystallographic
orientations on a regular grid, which are split into two files. One file
contains the grain index of each pixel, and in the second the
corresponding crystallographic orientation matrices are stored. We
translate each orientation matrix into a unit vector, since we calculate
micromagnetic simulations on uniaxial grains. EBSD-A (Fig. 3) has a size of
180 × 120 μm2 (600 × 400 pixels). Since this sample is far too large to
simulate, we will simulate about 600 10 × 10 pixel selections of the entire

image. These selections are picked on a regular grid. In order to limit the
number of simulations, only every second selection is taken. We extrude
and triangulate each such selection into a finite element mesh with
elements much smaller than a pixel and determine their nucleation fields
by micromagnetic simulations.
All selections taken from inside the same grain, i.e., the selections

include no boundaries and have exactly the same magnetocrystalline
orientation, result in the same nucleation field. This is obvious because for
all such selections the features are the same. Thus taking more than one
selection from the interior of one grain just duplicates the datasets. Here
we want to understand how the local structure influences the local
nucleation field. Therefore, we can drop the duplicates. Indeed, tests
showed the following: Picking randomly 1500 selections from EBSD-A
(Fig. 3) without removing duplicates, the prediction accuracy was poor.
Sampling on a regular grid with removing duplicates gave the best
prediction accuracy. This is consistent with a Monte Carlo study of the
influence of duplicate records on regression estimates33. Duplicates were
found to increase the RMSE depending on their number and position.
Figure 3c shows the grain boundaries of EBSD-A and the simulation
selections (about 600) colored by their computed nucleation field Hn. Due
to the uniqueness constraint, the selections are preferentially located at
the grain boundaries. Since nucleation usually starts near defects, which
for MnAl-C are most often grain or twin boundaries (Fig. 3b), those
locations are the most important determining factors for the bulk
coercivity.

Feature engineering

We are using supervised learning, which means, that the input data
consists of features and labels (see section Machine Learning). As stated in
ref. 34, feature engineering is an essential step in establishing a machine
learning model. It is a process of transforming the raw data into good
quality features, which improves the overall performance of the machine
learning model. Features depend a lot on the underlying problem and on
the raw data. In our case the features are extracted from the microstructure
of MnAl-C, whereas the labels are the result of micromagnetic simulations
(nucleation field Hn).
For each selection of the large EBSD image we know the crystallographic

orientation. We can use each individual pixel of an EBSD selection, with its
orientation, as a feature and/or we can use each grain, with its orientation.
While pixels also include the location coordinates, this information is not
given in the list of grains. In our micromagnetic simulations we assume
grains with uniaxial magnetocrystalline anisotropy. Hence, it is sufficient to
define the magnetocrystalline orientation for each grain as unit vector that
points in the hemisphere of the positive y-direction (Fig. 3). The size of the
grains can affect the nucleation field and is therefore also considered as a
microstructural feature.
The coercivity of permanent magnets is often described by

Hc ¼ αHN;min � NeffMs; (1)

where HN;min is the minimum switching field of misoriented grains8. The
coefficient α expresses the reduction in coercivity due to defects and
intergrain exchange interactions. The microstructural parameter Neff is
related to the effect of the local demagnetization field near sharp edges
and corners of the microstructure. By using the Stoner–Wohlfarth (SW)
model for single-domain ferromagnets35 we analytically calculate the
minimum switching field overall grains i:

HN;min ¼ min
i

2K=Js cos ðβiÞ
2=3 þ sin ðβiÞ

2=3
� ��3=2

� �

; (2)

with the misorientation angle βi between the easy axis of a grain i and the
external field. We assume that the external field is applied parallel to the y-
axis of a Cartesian coordinate system (Fig. 3). The lowest field value of all
grains gives the irreversible switching event for this selection, if other
effects like stray field and grain boundary exchange coupling are
neglected. The minimum switching field HN;min is used as another feature
called SW.
Twin boundaries are known to have a strong influence on the quality of

permanent magnets. Especially in MnAl-C true-twins, order-fault-twins and
pseudo-twins are frequently found6, which have a clearly defined
misorientation angle. In previous work we computed hysteresis curves
for selections of MnAl-C and showed a significant effect of twinning
boundaries on the coercive field14,23. From manual observation of the
simulation results and from partial dependence plots in section Feature
importance by partial dependence plots we observe a negative influence
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on the coercivity, if the adjacent grains’ orientations have a large enclosed
angle. Therefore we incorporate the twin angles into a feature for machine
learning by calculating the minimum dot product of adjacent grains’
orientation unit vectors. A large angle implicitly means that both of the
adjacent grains are disadvantageously orientated to the applied external
field direction. Whereas the SW model incorporates only the misorienta-
tion angle of a single grain’s orientation with respect to the external field.
From the microstructural attributes and analytical equations we acquire

the following features used for machine learning. In brackets the short
feature name is given as well as the number of features as seen by the
machine.

● Crystallographic orientation for each data point as unit vector
(PIXEL, 300)

● Crystallographic orientation for each grain as unit vector (GRAIN, 60)
● Size of grains (SIZE, 20)
● Minimum Stoner–Wohlfarth switching field HN;min (SW, 1)
● Minimum dot product of adjacent grains’ orientation (TWIN, 1)

All the given features form the feature vector F:

F ¼ ½P1xyz ¼ P100xyz
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

PIXEL

G1xyz ¼ G20xyz
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

GRAIN

SI1 ¼ SI20
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

SIZE

SWTWIN�
(3)

PIXEL’s features are three components of the orientation unit vector for
each of the 10 × 10 pixels. The Scikit-Learn software requires a fixed feature
vector length, so we set an arbitrary maximum number of grains to 20,
which is higher than the maximum number of grains in our selections.
Therefore SIZE has 20 entries in the feature vector. And GRAIN has 20 times
three entries, which are the components of the orientation unit vectors.
We pad the remaining GRAIN and SIZE entries with zeros to fill up the
required feature vector length.
Each small selection of the large EBSD image is using the feature vector

F as input for learning. It is possible to use only a single feature or feature
combinations, but the feature vector length must be kept equal within a
training set. In other words, our machine learning model is always trained
with a single training set with a well defined set of features. Typical feature
correlation or feature elimination methods cannot be used in such a
configuration, because each component of the unit vectors in PIXEL and
GRAIN are already a feature, hence cannot be reasonably compared to
other features, like SW or TWIN. In models based on decision trees feature
scaling is less important. However, we found that some features contribute
more to a change in the nucleation field Hn than others. Feature
importance will be discussed in the Results section.

Labeling

Training the machine using supervised learning requires a well defined set
of features as well as a label. We defined the microstructural features in the
previous section. For the label we chose the nucleation field Hn defined as
the value of the external field at which the first irreversible switching event
occurs along the demagnetization curve. Irreversible switching can be
recognized by a kink in the demagnetization curve, where a discontinuity
of magnetization and susceptibility occurs10. Often, the switching field is
sufficiently defined by the coercivity, i.e., the field which is needed to
reverse the sign of the magnetization projected on the field direction as for
example the green line in Fig. 8. For such a curve the magnet is clearly in a
reversed state after the step. The blue line is much flatter and shows three
small steps.
There might be more than one irreversible switching event along the

demagnetization curve of a selection. Therefore we have different
possibilities in defining a label. It could be either the value of the external
field at the (a) first step, (b) the last step, or (c) the largest step in the curve.
In order to find the label with the best prediction performance we created
a simple classification problem, which tries to predict the 20% percentile of
the lowest switching fields. We obtained 90, 85, and 86% correct
predictions for using (a), (b), or (c) as label, respectively. Therefore we
decided to stick to the first step of the curve (Fig. 8a), the nucleation field
Hn, as definition of our label.

Micromagnetic simulations

We generate the input data for our machine learning model with
micromagnetic simulations (see section Dataset generation). The resolu-
tion of the EBSD dataset is not high enough to be directly used for
micromagnetic simulations. Grain boundaries, which are small compared
to the grid resolution are not accurately spatially resolved. Sharp angles

need to be smoothed for the simulations in order to reduce numerical
instabilities. In previous work we showed an automated meshing
procedure for the fast generation of simulation models23. We combine
multiple steps of the toolchain into a single meshing tool using the pre
and postprocessing software Salome (salome-platform.org, last visited on
29/07/2019). We load the pixelated EBSD data into the software, smooth
the grain boundaries and create a high quality finite element mesh
(Supplementary Algorithm 1). The software basically finds all intersection
points of the grain boundaries and reconnects them with Bezier curves,
replacing the stepped lines of the original pixelated EBSD image. Figure 9
shows an example of an original EBSD selection, the creation of a
smoothed 2-dimensional surface and the extruded 3-dimensional mesh.
The smoothing operation creates many more data points (pixels)
compared to the original selection. A higher number of data points
increases the number of components in the feature vector F (see section
Feature engineering), which slows down the learning process, but does not
significantly improve the machine learning accuracy. Therefore we stick to
the discretization points of the original EBSD data for training the machine
learning model.
The finite element mesh obtained from the automated meshing routine

is used by a hybrid finite element boundary method for magnetostatics17.
We are computing magnetization reversal curves, solving the
Landau–Lifshitz–Gilbert (LLG) equation. Intrinsic magnetic properties listed
in Table 4 are obtained from bulk MnAl-C36 at 300 K. The largest edge
length of the tetrahedral finite elements, i.e., mesh size, is set to be smaller
than the smallest characteristic length of the material23. Bance et al.
downsized the original EBSD dataset to reduce computational costs by
1:500 and 1:5014. Here we use a scaling ratio of 1:15, so that 1 μm in the
original EBSD dataset corresponds to 67 nm in the simulations. Please note
that scaling might only change the magnetostatic interactions, whereas
the influence of misalignment and exchange interactions between
different grains on the nucleation is fully taken into account. The final
mesh of a single selection has a size of 200 × 200 × 40 nm3 with about
370,000 tetrahedrons, consisting of 30,000 triangles or 70,000 nodes. A
simulation on a single CPU takes several hours depending on the magnetic
configuration.
The nucleation fields Hn, obtained by the micromagnetic simulations, are

the labels for the machine learning model. We compute the hysteresis
curves with an external field aligned in y-direction (Fig. 9) from 4 to −4 T/
μ0 with a sweep rate of 40 mT/ns and a Gilbert damping constant of 1. For
each selection we apply a free boundary, which creates demagnetizing
fields and may also cause edge nucleation. However we have discovered,
that misalignment between neighboring grains (twins) leads to a much
larger reduction of coercivity than demagnetizing fields at the edges. The
reversed domains nucleate at the interface between strongly misoriented
regions (twin boundaries). In other words, the effect of the demagnetizing
field is smaller than that of misoriented grains (see section Feature
importance by partial dependence plots). Nevertheless we are clear that
this gives only an approximation of the local nucleation field. Each squared
selection in Fig. 3c is color-coded according to its nucleation field Hn from

Fig. 8 Sample hysteresis curves. Hysteresis curves may contain
single (green) or multiple (blue) switching events. a First step, b last
step, and c largest step of the curve.
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red (1 T/μ0) to green (3 T/μ0). Please be aware of our definition of Hn being
the first step in the demagnetization curve as explained in section
Labeling.
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