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Abstract

In many applications, the primary objective of numerical simu-
lation of time-evolving systems is the prediction of macroscopic, or
coarse-grained, quantities. A representative example is the prediction
of biomolecular conformations from molecular dynamics. In recent
years a number of new algorithmic approaches have been introduced
to extract effective, lower-dimensional, models for the macroscopic dy-
namics; the starting point is the full, detailed, evolution equations. In
many cases the effective low-dimensional dynamics may be stochastic,
even when the original starting point is deterministic.

This review surveys a number of these new approaches to the prob-
lem of extracting effective dynamics, highlighting similarities and dif-
ferences between them. The importance of model problems for the
evaluation of these new approaches is stressed, and a number of model
problems are described. When the macroscopic dynamics is stochas-
tic, these model problems are either obtained through a clear separa-
tion of time-scales, leading to a stochastic effect of the fast dynamics
on the slow dynamics, or by considering high dimensional ordinary
differential equations which, when projected onto a low dimensional
subspace, exhibit stochastic behaviour through the presence of a broad
frequency spectrum. Models whose stochastic microscopic behaviour
leads to deterministic macroscopic dynamics are also introduced.

The algorithms we overview include SVD-based methods for non-
linear problems, model reduction for linear control systems, optimal
prediction techniques, asymptotics-based mode elimination, coarse time-
stepping methods and transfer-operator based methodologies.
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1 Set up

The general problem may be described as follows: let Z be a Hilbert space,
and consider the noise-driven differential equation for z ∈ Z:

dz

dt
= h(z) + γ(z)

dW

dt
, (1.1)

where W (t) is a noise process, chosen so that z(t) is Markovian. We will focus
mainly on the case where W (t) is a multivariate Brownian motion and (1.1)
is a standard Itô stochastic differential equation (SDE). In addition, we will
also touch on the case where γ(z)dW (t)/dt is replaced by a Poisson counting
process dW (z, t)/dt, inducing jumps in z, whose magnitude depend upon
the current state. The problem (1.1) also reduces to an ordinary differential
equation (ODE) if γ ≡ 0; this situation will be of interest to us in some cases
too.

This overview is focused on situations where the dynamics of interest
for (1.1) takes place in a subspace X ⊂ Z and our objective is to find a
self-contained description of this dynamics, without resolving the dynamics
in Z\X . In particular we are interested in cases where Z has large (perhaps
infinite) dimension and the dimension of X is small (finite). Anticipating this,
we introduce the projection P : Z 7→ X and the orthogonal complement of
X in Z, Y = (I − P )Z.

Employing co-ordinates x in X and y in Y we obtain from (1.1) the
coupled SDEs

dx

dt
= f(x, y) + α(x, y)

dU

dt
dy

dt
= g(x, y) + β(x, y)

dV

dt

(1.2)

where U ,V are again noise processes.
We will study situations where the y variable can be eliminated, and an

effective, approximate equation for x alone is obtained. In many cases we
will be looking for a stochastic differential equation for X ∈ X :

dX

dt
= F (X) + A(X)

dU ′

dt
, (1.3)

where X(t) approximates x(t) in a sense to be determined for each class of
problems and U ′ is a noise process. In other cases, where memory must be
captured to adequately represent the dynamics in x, the approximate solution
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X(t) is a component of a problem which evolves in a space of dimension higher
than the dimension of X , but still smaller than the dimension of Z. We
consider cases where the original model (1.1) for z is either an autonomous
ODE or a noise-driven differential equation, such as an SDE, and where
the effective dynamics (1.3) for X is either an ODE or an SDE. The ideas
we describe have discrete time analogues, and some of the algorithms we
overview extract a discrete time model in X , such as a Markov chain, rather
than a continuous time model. We will also examine situations where the
effective dimension reduction can be carried out in the space of probability
densities propagated by paths of (1.1); this requires consideration of the
Master Equation for probability densities.

The primary motivation for this paper is to overview the wealth of recent
work concerning algorithms which attempt to find the effective dynamics in
X . This work is, at present, not very unified and our aim is to highlight
the similarities and differences among the approaches currently emerging. In
order to do this we will spend a substantial fraction of the paper explain-
ing situations in which it is possible to find closed equations for X which
adequately approximate the dynamics of x ∈ X . Thus most of the paper
will be devoted to the development of model problems, and the underlying
theoretical context in which they lie. Model problems are of primary impor-
tance in order to make clear statements about the situations in which we
expect given algorithms to be of use, and in order to develop examples which
can be used to test these algorithms. We do not state theorems and give
proofs— we present the essential ideas and reference the literature for details
and rigorous analysis.

Section 2 contains an introduction to the Master Equation, first for count-
able state space Markov chains. On uncountable state spaces, and for W (t)
Brownian motion in (1.1), the Master Equation is a partial differential equa-
tion (PDE)—the Fokker-Planck equation—and its adjoint—the Chapman-
Kolmogorov equation—propagates expectations; we describe these PDEs. In
Section 3 we outline the Mori-Zwanzig projection operator approach which
describes the elimination of variables at the level of the Master Equation.
Sections 4–8 describe a variety of situations where an effective equation for
the dynamics in X can be derived. Section 9 is devoted to a description of
a variety of algorithms recently developed, or currently under development,
which aim to find effective dynamics in X , given the full evolution equation
(1.1) in Z.

The following provides an overview of a number of important themes
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running throughout this paper.

i) Reduction Principles. In conceptualizing these algorithms it is impor-
tant to appreciate that any algorithm aimed at extracting dynamics in
X , given the equations of motion (1.1) in Z, has two essential com-
ponents: (i) determining the projection P which defines X through
X = PZ; (ii) determining the effective dynamics in X . In some in-
stances P is known a priori from the form of the model (1.1) and/or
from physical considerations; in others its determination may be the
most taxing part of the algorithm.

ii) Memory. An important aim of any such algorithm is to choose P
in such a way that the dynamics in X is memoryless. In principle,
y can always be eliminated from (1.2) to obtain an equation for x
alone but, in general, this equation will involve the past history of x;
this is the idea of Mori-Zwanzig formalism. In order to understand
and improve algorithms it is therefore important to build up intuition
about situations in which memory in X disappears or, alternatively,
in which it can be modelled by a few degrees of freedom. Sections 4-
8 are all devoted to situations where the effect of memory disappears
completely, except Section 7 which also describes situations where a
memory effect remains, but can be modelled by adding a small number
of extra degrees of freedom.

iii) Classification of Model Problems. It is useful to classify the model
problems according to whether or not the dynamics in Z and X are
deterministic or stochastic. The situations outlined in Sections 4, 5, 6,
7, 8 are of the form D-D, D-D, S-S, D-S and S-D respectively where D
denotes Deterministic, and S denotes Stochastic, and the first (resp. sec-
ond) letter defines the type of dynamics in Z (resp. X ).

iv) Scale Separation. Sections 4 – 6 all rely on explicit time-scale separation
to achieve the memoryless effect. In contrast the examples in Section 7
rely on the high dimensionality of Y relative to X ; the mean time-scale
in Y then separates from that in X , but there is no pure separation of
scales. Thus, whilst scale separation is a useful concept which unifies
many of the underlying theoretical models in this subject area, the
details of how one establishes rigorously a given dimension reduction
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differ substantially depending on whether there is a clear separation of
scales, or instead a separation in a mean sense.

2 The Master Equation

In this section we consider dynamical systems of the form (1.1) within a
probabilistic setting, by considering the evolution of probability measures
induced by the dynamics of paths of (1.1). There are two essential reasons
for considering a probabilistic description rather than a pathwise one:

i) Variable reduction is often related to uncertainty in initial data, hence
with ensembles of solutions. The reduced initial data x(0) = Pz(0)
are a priori compatible with a large set of initial data z(0) for the full
evolution equation. Every initial datum z(0) gives rise to a different
solution z(t) and to different projected dynamics x(t). In many cases it
is meaningless to consider how x(0) evolves into x(t) without specifying
how the eliminated variables, y(0), are initially distributed.

ii) The evolution of the measure is governed by a linear PDE. In spite
of the increased complexity due to the infinite dimensionality of the
system, the linearity enables the use of numerous techniques adapted
for linear systems, such as projection methods, and perturbation ex-
pansions.

A useful example illustrating the first point comes from statistical me-
chanics. It is natural to specify the temperature in (some components of)
a molecular system, since it is a measurable macroscopic quantity, without
specifying the exact positions and velocities; this corresponds to specifying a
probability measure on the positions and velocities, with variance determined
by the temperature.

A useful example illustrating the second point is passive tracer advec-
tion: the position of a particle advected in a velocity field, and subject to
molecular diffusion, can then be modelled by a nonlinear SDE; collections
of such particles have density satisfying a linear advection-diffusion equa-
tion. In the absence of noise this simply reflects the fact that the method of
characteristics for a linear hyperbolic problem gives rise to nonlinear ODEs.

In Subsection 2.1 we describe the derivation of the equation governing
probability measures for countable state space Markov chains; in Subsection
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2.2 we generalize this to the case of Itô SDEs, which give rise to Markov
processes on uncountable state spaces.

2.1 Countable State Space

Consider a continuous time Markov chain z(t), t ≥ 0, taking values in the
state space I ⊆ {0, 1, 2, . . . }. Let pij(t) be the transition probability from
state i to j:

pij(t) = P{z(t) = j | z(0) = i},
i.e., the probability that the process is in state j at time t, given that it was
in state i at time zero. The Markov property implies that for all t,∆t ≥ 0,

pij(t+ ∆t) =
∑

k

pik(t)pkj(∆t),

and so
pij(t+ ∆t) − pij(t)

∆t
=

∑

k

pik(t)ℓkj(∆t),

where

ℓkj(∆t) =
1

∆t
×

{
pkj(∆t) k 6= j

pjj(∆t) − 1 k = j

Suppose that the limit ℓkj = lim∆t→0 ℓkj(∆t) exists. We then obtain, for-
mally,

dpij

dt
=

∑

k

pikℓkj. (2.1)

Because
∑

j pij = 1 it follows that
∑

j ℓij(∆t) = 0, and we expect that

∑

j

ℓij = 0.

Introducing the matrices P , L with entries pij, ℓij, respectively, i, j ∈ I,
equation (2.1) reads, in matrix notation,

dP

dt
= PL, P (0) = I. (2.2)

Since P (t) = exp(Lt) solves this problem we see that P and L commute so
that P (t) also solves

dP

dt
= LP, P (0) = I. (2.3)
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We refer to (2.2) and (2.3) as the forward and backward equations of the
Markov chain. Equation (2.2) is also called the Master Equation.

Let µ(t) = (µ0(t), µ1(t), . . . )
T be the ith row of P (t), i.e., a column vector

whose entries µj(t) = pij(t) are the probabilities that a system starting in
state i will end up, at time t, in each of the states j ∈ I. By virtue of (2.2),

dµ

dt
= LTµ, µ(0) = ei, (2.4)

where ei is the ith unit vector, zero in all entries except the ith, in which
it is one; this initial condition indicates that the chain is in state i at time
t = 0. Equation (2.4) is the discrete version of the Fokker-Planck equation
described below.

Let w : I 7→ R be a real valued function defined on the state space;
it can be represented as a vector with entries wj, j ∈ I. Then let v(t) =
(v0(t), v1(t), . . . )

T denote the vector with ith entry

vi(t) = E{wz(t)|z(0) = i},

where E denotes expectation with respect to the Markov transition probabil-
ities. The function vi(t) denotes the expectation value at time t of a function
of the state space (an “observable”), given that the process started in the
ith state. This function can be written explicitly in terms of the transition
probabilities:

vi(t) =
∑

j

pij(t)wj (2.5)

If we set w = (w0, w1, . . . )
T then this can be written in vector form as

v(t) = P (t)w. Differentiating with respect to time and using the backward
equation (2.3), v(t) satisfies the following system of ODEs:

dv

dt
= Lv, v(0) = w. (2.6)

Equation (2.6) is the discrete version of the Chapman-Kolmogorov equation
described below.

If we set wj = jk for k = {0, 1, . . . }, and denote the solution of (2.6) by
v(k)(t) (the k-th moment), then

v
(k)
i (t) =

∑

l

µl(t)wl =
∑

l

µl(t)l
k,
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where µ(t) is defined as above. Notice that, if the evolution is deterministic,
then µ(t) will remain at all times a unit vector, em(t), for some fixed integer
m. Then

v
(k)
i (t) = [v

(1)
i (t)]k,

so that the first moment characterizes the process completely. This idea
generalizes to continuous state space processes, for example those in the
next subsection.

This suggests a more a general question: for a given Markov chain on I
starting in state i, do there exist a small number of linear functions of p(t)
(i.e., expectation values of functions on I) which, at least approximately,
characterize the behaviour of (some) components of the process? This ques-
tion is at the heart of the model problems and algorithms that we study
here.

Some of the algorithms we highlight work in discrete time. Then the
analogue of (2.4) is the iteration

µn+1 = Tµn, µ0 = ei.

Again, if the state space I is large or infinite, it is natural to ask whether
the expectation values of a small number of functions of the process can be
used to approximate the whole process, or certain aspects of its behaviour.

2.2 Fokker-Planck and Chapman-Kolmogorov Equa-

tions

The concepts introduced in Subsection 2.1 are now extended to continuous
time Markov processes over uncountable state spaces, specifically, to diffu-
sion processes defined by SDEs. Consider the case where W (t) is a multi-
dimensional Brownian motion and (1.1) is an Itô SDE. We assume that Z
has dimension d and let ∇ and ∇· denote gradient and divergence in R

d. The
gradient can act on both scalar valued functions φ, or vector valued functions
v, via

∇φ =
∂φ

∂zi

ei, ∇v =
∂vi

∂zj

eie
T
j
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for orthonormal basis {ei} in R
d. The divergence acts on vector valued

functions v, or matrix valued functions A via

∇ · v =
∂vi

∂zi

, ∇ · A =
∂Aij

∂zj

ei.

In the preceding we are assuming the Einstein summation convention, whereby
repeated indices imply a summation. Below we will use ∇x (resp. ∇y) to
denote gradient or divergence with respect to x (resp. y) co-ordinates alone.

With the functions h(z),γ(z) defining the SDE (1.1) we define

Γ(z) = γ(z)γ(z)T ,

and then the generator L by

Lφ = h · ∇φ+
1

2
Γ : ∇(∇φ), (2.7)

where · denotes the standard inner-product on R
d, and : denotes the inner

product on R
d×d which induces the Frobenius norm—A : B = trace(ATB).

We will also be interested in the operator L∗ defined by

L∗ρ = −∇ · (hρ) +
1

2
∇ · [∇ · (Γρ)] ,

which is the adjoint of L with respect to the scalar product

〈φ, ρ〉 =

∫

Z

φ(z)ρ(z) dz,

i.e., 〈Lφ, ρ〉 = 〈φ,L∗ρ〉.
If we consider solutions of (1.1) with initial data distributed according to

a measure with density ρ0(z) then, at time t > 0, z(t) is distributed according
to a measure with density ρ(z, t) satisfying the Fokker-Plank equation

∂ρ

∂t
= L∗ρ (z, t) ∈ R

d × (0,∞),

ρ = ρ0 (z, t) ∈ R
d × {0} .

(2.8)

This is the analogue of the Master Equation (2.4) in the countable state space
case. We are implicitly assuming that the measure µt, defined by µt(A) =
P{z(t) ∈ A}, has density ρ(z, t) with respect to Lebesgue measure. Here P
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is the probability measure on paths of Brownian motion (Wiener measure),
and we denote by E expectation with respect to this measure. Whether or
not such a smooth density exists depends on the (hypo-) ellipticity properties
of L.

The adjoint counterpart of the Fokker-Planck equation is the Chapman-
Kolmogorov equation. Let w(z) be a function on Z and consider the function
v(z0, t) = E[w(z(t))|z(0) = z0], where the expectation is with respect to
all Brownian driving paths satisfying z(0) = z0. Then v(z, t) solves the
Chapman-Kolmogorov equation

∂v

∂t
= Lv (z, t) ∈ R

d × (0,∞),

v = w (z, t) ∈ R
d × {0} .

(2.9)

This is the analogue of (2.6) in the countable state space case. If γ ≡ 0 in
(1.1), i.e. the dynamics are deterministic, and ϕt is the flow on Z so that
z(t) = ϕt(z(0)), then the Chapman-Kolmogorov equation (2.9) reduces to
a hyperbolic equation, whose characteristics are the integral curves of the
ODE (1.1), and its solution is v(z, t) = w(ϕt(z)).

We will adopt the semigroup notation, denoting the solution of (2.8) by
ρ(z, t) = eL

∗tρ0(z), and the solution of (2.9) by v(z, t) = eLtw(z). The
connection between the two evolution operators is as follows:

eLtw(y) =

∫

Z

(eL
∗tρ0)(z)w(z) dz, (2.10)

where ρ0(z) = δ(z − y). This is the analogue of (2.5) in the countable state
space case. Indeed, both sides of (2.10) represent the expectation value at
time t of w(z(t)) with respect to the distribution of trajectories that originate
at the point y.

2.3 Discussion and Bibliography

A good background reference on Markov chains is Norris [Nor97]. For a
discussion of SDEs from the Fokker-Planck viewpoint, see Risken [Ris84] or
Gikhman and Skorokhod [GS96] . For a discussion of the generator L, and
the Chapman Kolmogorov equation, see Oksendal [Øks98]. For a discussion
concerning ellipticity, hypo-ellipticity and smoothness of solutions to these
equations see Rogers and Williams [RW00].
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3 Mori-Zwanzig Projection Operators

The Mori-Zwanzig formalism is a technique developed for irreversible statis-
tical mechanics to reduce, at least formally, the dimensionality of a system
of ODEs. For a system of the form (1.2), with α = β ≡ 0, the Mori-Zwanzig
formalism yields an equation for x(t) of the form

dx(t)

dt
= f̄(x(t)) +

∫ t

0

K(x(t− s), s) ds+ n(x(0), y(0), t). (3.1)

The first term on the right hand side is only a function of of the instantaneous
value of x at time t, and therefore represents a “Markovian” term. The second
terms depends on values of x at all times between 0 and t, and therefore
represents a “memory” effect. The function K : X × [0,∞) 7→ X is the
memory kernel. The function n(x(0), y(0), t) satisfies an auxiliary equation,
known as the orthogonal dynamics equation, and depends on full knowledge of
the initial conditions. If the initial data for y(0) is random then this becomes
a random force. The Mori-Zwanzig formalism is a nonlinear extension of the
method of undetermined coefficients for variable reduction in linear systems.

The reduction from (1.2) to an equation of the form (3.1) is not unique.
It relies on the definition of an operator P, the projection1, which maps
functions of (x, y) into functions of x only. The projection operator that is
most appropriate in our context is the following. The state of the system
is viewed as random, distributed with a probability density ρ(x, y). Any
function w(x, y) has then an expected value, which we denote by Ew; the
expected value is the best approximation of a function by a constant in an L2

sense. If the value of the coordinate x is known, then the best approximation
to w(x, y) is the conditional expectation of w given x, usually denoted by
E[w|x]. The conditional expectation defines a mapping w 7→ Pw = E[w|x]
from functions of (x, y) to functions of x. Specifically,

(Pw)(x) =

∫
Y
ρ(x, y)w(x, y) dy
∫
Y
ρ(x, y) dy

.

With the initial value y(0) viewed as random, the function n(x(0), y(0), t)
is a random function, or a stochastic process. The equation (3.1) is derived
such that n(x(0), y(0), t) has zero expected value for all times, which makes

1Not to be confused with the projection P defined in the Introduction
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it an unbiased “noise”. In the original context of statistical mechanics, where
the governing dynamics are Hamiltonian, the noise n(x(0), y(0), t) and the
memory K(x, t) satisfy what is known as the fluctuation-dissipation relation.
Equation (3.1) is often called a generalized Langevin equation. Analogously
to the Fokker-Planck versus Chapman-Kolmogorov duality there exist two
versions of the Mori-Zwanzig formalism: one for the expectation value of
functions and one for probability densities.

The derivation of (3.1) is quite abstract, and we only present here a
summary. If ϕt(x, y) is the flow map induced by (1.2) with α = β = 0, and
P is the projection (x, y) 7→ x, then the function x(t) is more accurately
written as Pϕt(x, y), where here (x, y) are the initial data. The x-equation
in (1.2) is

∂

∂t
Pϕt(x, y) = f(ϕt(x, y)), (3.2)

and, of course, is not a closed equation for Pϕt(x, y).
The first step in the Mori-Zwanzig formalism is to replace f on the right

hand side by its best approximation given only its first argument. Thus (3.2)
is rewritten as follows:

∂

∂t
Pϕt(x, y) = (Pf)(Pϕt(x, y)) +

[
f(ϕt(x, y)) − (Pf)(Pϕt(x, y))

]
. (3.3)

The function Pf is identified with f̄ in (3.1).
The next stage is to re-arrange the terms in the square brackets in (3.3).

Defining the operator L = f(x, y) · ∇x + g(x, y) · ∇y, the noise function
n(x, y, t) is defined as the solution of the orthogonal dynamics equation:

∂n

∂t
= (I − P)Ln

n(x, y, 0) = f(x, y) − (Pf)(x).
(3.4)

The memory kernel is defined as

K(x, t) = PLn(x, y, t).

One can then check explicitly that the residual terms in (3.3) can be written
as

f(ϕt(x, y)) − (Pf)(Pϕt(x, y)) = n(x, y, t) +

∫ t

0

K(Pϕt−s(x, y), s) ds, (3.5)
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hence (3.3) takes the form (3.1).
To understand the last identity, we note that the left hand side can be

written as
etL(I − P)Lw,

where w = w(z) = Pz, hence Lw(z) = f(z); semi-group notation has
been used for the solution operator of the flow map ϕt(z): exp(tL)w(z) =
w(ϕt(z)). The noise can, likewise, be written in the form n(z, t) = exp[t(I −
P)L] (I − P)Lw, so that the right-hand side of (3.5) reads

ǫt(I−P)L (I − P)Lw +

∫ t

0

e(t−s)L
PLes(I−P)L (I − P)Lw ds.

The validity of (3.5) is a consequence of the operator identity,

etL = et(I−P)L +

∫ t

0

e(t−s)L
PLes(I−P)L ds,

known in the Physics literature as Dyson’s formula [EM90].
It is important to point out that (3.1) is not simpler than the original

problem. The complexity has been transfered, in part, to the solution of
the orthogonal dynamics (3.4). The value of (3.1) is first conceptual, and
second that it constitutes a good starting point for asymptotic analysis and
stochastic modelling. In particular it suggests that deterministic problems
with random data may be modelled by stochastic problems with memory. In
the case where the memory can be well-approximated by the introduction
of a small number of extra variables and so that the whole system is then
Markovian in time, this leads to a simple low dimensional stochastic model
for the dynamics in X . This basic notion underlies many of the examples
used in the following.

3.1 Discussion and Bibliography

The original derivation of Mori-Zwanzig formalism can be found in Mori
[Mor65] and Zwanzig [Zwa73]. Most of the statistical physics literature uses
the Mori Zwanzig formalism with a projection on the span of linear functions
of the essential degrees of freedom. Zwanzig in [Zwa80] developed a nonlinear
generalization, which is equivalent to the conditional expectation used here.
All the above references use the “Chapman-Kolmogorov” version of this for-
malism; the “Fokker-Planck” version can be found in [MFS74]. The existence
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of solutions to the orthogonal dynamics equation (3.4) turns out to be very
subtle; see Givon et al. [GHK03]. An alternative to the Mori-Zwanzig ap-
proach is to derive convolutionless, non-Markovian evolution equations; this
approach, and an application in plasma physics, is outlined in [VEG98] and
a more recent applications in [KMVE03]. Recent uses of the Mori-Zwanzig
formalism in the context of variable reduction can be found in Just et al.
[JKRH01, JGB+03] and Chorin et al. [CHK02].

4 Scale Separation and Invariant Manifolds

In the classification of Section 1, this section is devoted to problems of the
type D-D – deterministic systems with lower dimensional deterministic sys-
tems embedded within them. The key mathematical construct used is that
of invariant manifolds, and scale separation is the mechanism by which these
may be constructed. For such problems the initial conditions in Y are irrel-
evant, after, perhaps, an initial transient.

4.1 Theory

Consider equations (1.2) in the deterministic setting when α, β ≡ 0 and let
f(x, y) and g(x, y) be written in the following form:

f(x, y) = L1x+ f̂(x, y),

g(x, y) = L2y + ĝ(x, y).
(4.1)

Assume for simplicity that the operators L1, L2 are self-adjoint and that the
maximum eigenvalue of L2 is less than the minimum of L1. If the gap in the
spectra of L1 and L2 is large then for the purely linear problem, found by
dropping f̂ and ĝ, the dynamics is dominated, relatively speaking, by the
dynamics in X . In the fully nonlinear problem, if the gap is assumed large
relative to the size of f̂ and ĝ (and the argument can be localized by use
of cut-off functions), then the existence of an exponentially attractive and
invariant manifold

y = η(x)
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may be proved. Thus, after an initial transient, the effective dynamics in X
is governed by the approximating equation

dX

dt
= L1X + f̂(X, η(X))

X(0) = x(0).
(4.2)

Specifically, under suitable conditions on the spectra of L1 and L2, X(t) and
x(t) remain close, at least on bounded time intervals. In many cases, the
validity of this approximation requires assumptions on the initial value of
the discarded variables y(0).

4.2 Model Problem

A useful model problem arises when X = R
n, Y = R and (1.2) has the form,

for ǫ≪ 1,
dx

dt
= f(x, y)

dy

dt
= −y

ǫ
+
g̃(x)

ǫ
.

(4.3)

In reference to the spectral properties of L1, L2 in (4.1), the unique eigenvalue
of L2 is −1/ǫ, which for small enough ǫ is less than the minimum eigenvalue
of the linear component of f(x, y).

Assume that f , g̃ are smooth and bounded, with all derivatives bounded.
Then, seeking an approximate invariant manifold in the form

y = g̃(x) + ǫg1(x) +O(ǫ2)

gives, substituting into the y-equation in (4.3), expanding to O(1) and using
the x-equation in (4.3),

∇g̃(x) · f(x, g̃(x)) = −g1(x).

Thus, up to errors of O(ǫ2), the reduced dynamics are

dX

dt
=f(X,G(X)), (4.4)

G(X) =g̃(X) − ǫ∇g̃(X) · f(X, g̃(X))), (4.5)

with X(0) = x(0). Note that for the derivation to be consistent the initial
value y(0) should be close to the invariant manifold, |y(0)− g̃(x(0))| = O(ǫ),
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otherwise, an initial layer forms near time t = 0; after this initial layer the
initial condition in Y is essentially forgotten.

Example 4.1 Consider the equations

dx1

dt
= −x2 − x3

dx2

dt
= x1 +

1

5
x2

dx3

dt
=

1

5
+ y − 5x3

dy

dt
= −y

ǫ
+
x1x3

ǫ
,

(4.6)

so that X = R
3 and Y = R. The expression (4.5) with ǫ = 0 indicates that,

for small ǫ, y ≈ x1x3, so that the solution for x = (x1, x2, x3) should be well
approximated by X = (X1, X2, X3) solving the Rossler system [Ros76]

dX1

dt
= −X2 −X3

dX2

dt
= X1 +

1

5
X2

dX3

dt
=

1

5
+X3(X1 − 5)

(4.7)

Figure 4.1 shows the attractor for (x, y), projected onto (x1, x2), compared
with the attractor forX projected onto (X1, X2) at the value ǫ = 0.01. Notice
the clear similarities between the two. Figure 4.2 compares the histograms
for x1 and X1 over 105 time units; the two histograms are clearly closely
related.

4.3 Discussion and Bibliography

The reduction of differential systems with attracting slow manifold into
differential-algebraic systems is due originally to independent work of Levin-
son and Tikhonov (O’Malley [O’M91], Tikhonov et al. [TVS85]). The use of
a spectral gap sufficiently large relative to the size of the nonlinear terms is
used in the construction of local stable, unstable and center manifolds (e.g.,
Wiggins [Wig90]), slow manifolds (Kreiss [Kre92]) and inertial manifolds
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(Constantin et al. [CFNT94]). A variety of methods of proof exist, pre-
dominantly the Lyapunov-Perron approach (Hale [Hal88], Temam [Tem99])
and the Hadamard graph transform (Wells [Wel76]). The numerical calcula-
tion of slow dynamics, via dimension reduction in fast-slow systems and with
application to problems in chemical kinetics, is described in [DH96].

5 Scale Separation and Averaging

There exists a vast literature on systems, which in the classification of Sec-
tion 1 are of type D-D, that can be unified under the title of “averaging
methods”. Averaging methods have their early roots in celestial mechanics,
but apply to a broad range of applications.

Averaging methods are concerned with situations where, for fixed x, the
trajectories of the y-dynamics do not tend to a fixed point. Instead, the
fast dynamics affect the slow dynamics through the empirical measure that
its trajectories induce on Y . The simplest such situation is where the fast
dynamics converge to a periodic solution; other possibilities are convergence
to quasi-periodic solutions, or chaotic solutions.

5.1 The averaging method

For concreteness, we limit our discussion to systems with scale separation of
the form

dx

dt
= f(x, y)

dy

dt
=

1

ǫ
g(x, y),

(5.1)

where ǫ≪ 1.

The starting point is to analyze the behaviour of the fast dynamics with
x being a parameter. In the previous section we considered systems in which
the fast dynamics converge to an x-dependent fixed point. This gives rise to
a situation where the y variables are “slaved” to the x variables. Averaging
generalizes this idea to situations where the dynamics in the y variable, with
x fixed, is more complex.

We start by discussing the case when the dynamics for y is ergodic. A
general theorem on averaging, due to Anosov, applies in this case. Let ϕt

x(y)
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be the solution operator of the fast dynamics with x a fixed parameter. Then

d

dt
ϕt

x(y) = g(x, ϕt
x(y)), ϕ0

x(y) = y (5.2)

(the 1/ǫ rate factor has been omitted because time can be rescaled when the
fast dynamics is considered alone). The fast dynamics is said to be ergodic,
for given fixed x, if for all functions ψ : Y → R the limit of the time average

lim
T→∞

1

T

∫ T

0

ψ(ϕt
x(y)) dt,

exists and is independent of y. In particular, ergodic dynamics define an
ergodic measure, µx, on Y , which is invariant under the fast dynamics; note
that the invariant measure depends, in general, on x.

Anosov’s theorem states that, under ergodicity in Y for fixed x, the slow
variables x(t) converge uniformly on any bounded time interval to the solu-
tion X(t) of the averaged equation,

dX

dt
= F (X) (5.3)

F (ζ) =

∫

Y

f(ζ, y)µζ(dy). (5.4)

Similar ideas prevail if the invariant measure generated by the y dynamics
depends upon the initial data in Y , but are complex to state in general. We
outline some of these situations in the remainder of this section.

5.2 Model Problem

An application area where averaging techniques are of current interest is
molecular dynamics. Here one encounters Hamiltonian systems with strong
potential forces, responsible for fast, small amplitude, oscillations around
a constraining sub-manifold. The goal is to describe the evolution of the
slowly evolving degrees of freedom by averaging over the rapidly oscillating
variables. Bornemann and Schütte [BS97] developed a systematic treatment
of such systems that builds upon earlier work by Rubin and Ungar [RU57],
using the techniques of time-homogenization [Bor98].

The general setting is a Hamiltonian of the form

H(z, p) =
∑

j

p2
j

2mj

+ V (z) +
1

ǫ2
U(z),
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where z = (z1, . . . , zn+m) and p = (p1, . . . , pn+m) are the coordinates and mo-
menta, V (z) is a “soft” potential, whereas ǫ−2U(z) is a “stiff” potential. It is
assumed that U(z) attains a global minimum, 0, on a smooth n-dimensional
manifold, M. The limiting behaviour of the system, as ǫ→ 0, depends cru-
cially on the choice of initial conditions. The setting appropriate to molecular
systems is where the total energy E (which is conserved) is assumed inde-
pendent of ǫ. Then, as ǫ → 0, the states of the system are restricted to a
narrow band in the vicinity of M; the goal is to approximate the evolution
of the system by a flow on M.

Example 5.1 The following simple example, taken from [BS97], shows how
problems with this form of Hamiltonian can be cast in the general set-up of
equations (5.1). Consider a two-particle system with Hamiltonian,

H(x, p, y, v) =
1

2
(p2 + v2) + V (x) +

ω(x)

2 ǫ2
y2,

where (x, y) and (p, v) are the respective coordinates and momenta of the two
particles, V (x) is a non-negative potential and ω(x) is assumed to be uni-
formly bounded away from zero: ω(x) ≥ ω̄ > 0 for all x. The corresponding
equations of motion are

dx

dt
= p

dp

dt
= −V ′(x) − ω′(x)

2ǫ2
y2

dy

dt
= v

dv

dt
= −ω(x)

ǫ2
y.

The assumption that the energy does not depend on ǫ implies that y2 ≤
2ǫ2E/ω̄ and the solution approaches the submanifold y = 0 as ǫ → 0. Note,
however, that y appears in the combination y/ǫ in the x equations. Thus it
is natural to make the change variables η = y/ǫ. The equations then read

dx

dt
= p

dp

dt
= −V ′(x) − ω′(x)

2
η2

dη

dt
=

1

ǫ
v

dv

dt
= −ω(x)

ǫ
η.

In these variables we recover a system of the form (5.1) with “slow” variables,
(x, p), and “fast” variables, (η, v). The fast equations represent an harmonic
oscillator whose frequency, ω1/2(x), is modulated by the x variables.
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The limiting solution of a fast modulated oscillator can be derived using
a WKB expansion [BO99], but it is more instructive to consider the following
heuristic approach. Suppose that the slow variables (x, p) are given. Then,
the energy available for the fast variables is

Hη(x, p) = E − 1

2
p2 − V (x).

Harmonic oscillators satisfy an equi-partition property, whereby, on average,
the energy is equally distributed between its kinetic and potential contribu-
tions (the virial theorem). Thus the time-average of the kinetic energy of the
fast oscillator is

〈
ω(x)

2
η2

〉
=

1

2

[
E − 1

2
p2 − V (x)

]
,

where (x, p) are viewed as fixed parameters and the total energy E is specified
by the initial data. The averaging principle states that the rapidly varying
η2 in the equation for p can be approximated by its time-average, giving rise
to a closed system of equations for (X,P ) ≈ (x, p),

dX

dt
= P

dP

dt
= −V ′(X) − ω′(X)

2ω(X)

[
E − 1

2
P 2 − V (X)

]
,

(5.5)

with initial data E, X0 = x0 and P0 = p0. It is easily verified that (X,P )
satisfying (5.5) conserve the following invariant,

1

ω(X)

[
E − 1

2
P 2 − V (X)

]
,

Thus, (5.5) reduces to the simpler form

dX

dt
= P

dP

dt
= −V ′(X) − c ω′(X),

where

c =
1

2ω(X0)

[
E − 1

2
P 2

0 − V (X0)

]
.
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This means that the influence of the stiff potential on the slow variables is
to replace the potential V (x) by an effective potential,

V eff(x) = V (x) + c ω(x).

Note that the limiting equation contains memory of the initial conditions for
the fast variables, through the initial energy E. Thus the situation differs
slightly from the Anosov theorem described previously.

This heuristic derivation is made rigorous in [BS97], using time-homogenization
techniques, and it is also generalized to higher dimension. The condition
that ω(x) be bounded away from zero may be viewed as a non-resonance
condition. Resonances become increasingly important as the co-dimension,
m, increases, limiting the applicability of the time-homogenization approach
(Takens [Tak80]).

5.3 Discussion and Bibliography

A detailed account on the averaging method, as well as numerous examples
can be found in Sanders and Verhulst [SV85]. Much of the literature on av-
eraging was published in Russian and has remained untranslated; an English
review of this literature is found in Lochak and Meunier [LM88].

Anosov’s theorem requires the fast dynamics to be ergodic. Often ergod-
icity fails due to the presence of “resonant zones”—regions in X for which the
fast dynamics is not ergodic. Arnold and Neistadt [LM88] extended Anosov’s
result for situations in which the ergodicity assumption fails on a sufficiently
small set of x ∈ X .

The situations in which the fast dynamics tend to fixed points, periodic
solutions, or chaotic solutions can be treated in a unified manner through
the introduction of Young measures. Artstein and co-workers considered a
class of singularly perturbed system of type (5.1), with attention given to the
limiting behaviour of both slow and fast variables. In all of the above cases
the pair (x, y) can be shown to converge to (X,µX), where X is the solution
of

dX

dt
=

∫

Y

f(X, y)µX(dy),

and µX is the ergodic measure on Y ; the convergence of y to µX is in the
sense of Young measure. (In the case of a fixed point the Young measure is
concentrated at a point.) A general theorem along these lines is proved in
[Art02].
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There are many generalization to this idea. The case of non-autonomous
fast dynamics, as well as a case with infinite dimension are covered in [AS01].
Moreover, these results still make sense even if there is no unique invariant
measure µx, in which case the slow variables can be proved to satisfy a (non-
deterministic) differential inclusion [AV96].

In the context of stochastic systems, an interesting set-up for averaging
is to consider systems of the form

dx

dt
= f(x, y)

dy

dt
=

1

ǫ
g(x, y) +

1√
ǫ

dV

dt
.

(5.6)

If the y dynamics, with x frozen at ζ, is ergodic, then the analogue of the
Anosov result holds with µζ the invariant measure of this y dynamics. This
gives rise to a set-up of type S−D. This idea is generalized in Subsection 6.1
where the chosen scaling leads not only to an averaged deterministic vector
field in x, but also to additional stochastic fluctuations.

6 Scale Separation and White Noise Approx-

imation

In Section 4 a separation of time-scales led to deterministic dynamics in X
and the “slaving” of the y variable to the x variable. In the Fokker-Planck
picture this corresponds to a situation where, after a short transient, the
probability density has the approximate form

ρ(x, y, t) ≈ δ(y − η(x))ρ̄(x, t)

(the measure is concentrated near the approximation to the invariant mani-
fold, namely y = η(x)).

In this section we consider how to use the PDEs for propagation of ex-
pectations and probability densities to study stochastic dimension reduction
when there is a clear scale separation between the x and y dynamics, but
the effective dynamics in X is stochastic; the original dynamics in Z may be
deterministic or stochastic. Thus we study problems of the form D-S or S-S
in the classification of Section 1. The theory will be developed for problems
with a skew-product structure: the dynamics for y evolves independently of
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the dynamics for x. This simplifies the analysis, but is not necessary; in
the final subsection we review literature when full back-coupling between the
variables is present.

In the skew-product case we will look for an approximate probability
density of the form

ρ(x, y, t) ≈ ρ∞(y)ρ̄(x, t),

with ρ∞(·) a smooth probability density on Y , invariant under the y-dynamics.
This ansatz assumes that the distribution of y reaches equilibrium on a time
scale much shorter than the time scale over which x evolves. This is the
probabilistic analog of the slaving and averaging techniques of the previous
two sections. When full back-coupling is present, the approximate solution
will take the form

ρ(x, y, t) ≈ ρ∞(x, y)ρ̄(x, t), (6.1)

where ρ∞(x, y) is a density invariant under the y-dynamics, with x viewed
as a fixed parameter.

We start by studying the approach based on the Chapman-Kolmogorov
picture and then re-study the problem using the Fokker-Planck approach.
The two approaches are both illustrated by a model problem, accompanied by
numerical results. The final subsection overviews the literature and describes
a variety of extensions of the basic idea.

6.1 Chapman-Kolmogorov Picture

Consider the case of (1.2) where α ≡ 0 and f, g, β are of the form

f(x, y) =
1

ǫ
f0(x, y) + f1(x, y)

g(x, y) =
1

ǫ2
g0(y)

β(x, y) =
1

ǫ
β0(y),

(6.2)

that is
dx

dt
=

1

ǫ
f0(x, y) + f1(x, y)

dy

dt
=

1

ǫ2
g0(y) +

1

ǫ
β0(y)

dV

dt
.

Both the x and y equations contain fast dynamics, but the dynamics in y is
an order of magnitude faster than x (note that white noise scales differently
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from regular time derivatives and that, in the Fokker-Planck picture, the
contributions from both the drift term, g, and the diffusion term, β, are of
order 1/ǫ2). Then the variable y induces fluctuations in the equation for x,
(which will see below are formally of order 1/ǫ). We are going to assume that
f0(x, y) averages to zero under the y dynamics, but that f1(x, y) does not. In
certain situations it can then be shown that both terms in f contribute at the
same order. The term f0 will give the effective stochastic contribution and f1

the effective drift. One way to see this is by using the Chapman-Kolmogorov
equation and we now develop this idea. Although the underlying theory in
this area is developed by Kurtz [Kur73], we follow the recent presentation
given by Majda et al. [MTVE01] in which the mathematical structure is
made very clear through perturbation expansions.

Recall that v(x, y, t) satisfying equation (2.9), namely

∂v

∂t
= Lv, v(x, y, 0) = w(x, y),

is the expected value at time t of w(·) over all solutions starting at the
point (x, y); the probability space is induced by the Brownian motion in the
y variables. If w is only a function of x, then v(x, y, t) (which remains a
function of both x and y) describes the expected evolution of a property
pertinent to the essential dynamics on X .

Substituting (6.2) into the Chapman-Kolmogorov equation (2.9) with
w = w(x) gives,

∂v

∂t
=

1

ǫ2
L1v +

1

ǫ
L2v + L3v

v(x, y, 0) = w(x),
(6.3)

where

L1v = g0 · ∇yv +
1

2
(β0β

T
0 ) : ∇y(∇yv) (6.4)

L2v = f0 · ∇xv (6.5)

L3v = f1 · ∇xv. (6.6)

We seek an expansion for the solution with the form

v = v0 + ǫv1 + ǫ2v2 + · · ·
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Substituting this expansion into (6.3) and equating powers of ǫ gives a hier-
archy of equations, the first three of which are

L1v0 = 0 (6.7)

L1v1 = −L2v0 (6.8)

L1v2 =
∂v0

∂t
− L2v1 − L3v0. (6.9)

The initial conditions are that v0 = w and vi = 0 for i ≥ 1.
Note that L1, given by (6.4), is the Chapman-Kolmogorov operator con-

strained to the y-dynamics, and that constants (in y) are in the null-space
of L1. Assume that there is a unique density ρ∞(y) in the null-space of L∗

1

(i.e., a unique density invariant under the y-dynamics), and denote by 〈·〉
averaging with respect to this density. Assume further that the dynamics is
ergodic in the sense that any initial density ρ0(y), including a Dirac mass,
tends, as t→ ∞, to the unique invariant density ρ∞(y); the system “returns
to equilibrium”. By (2.10)

lim
t→∞

eL1tφ(y0) = lim
t→∞

∫

Y

φ(y)
(
eL

∗

1
tρ0

)
(y) dz =

∫

Y

φ(y)ρ∞(y) dy = 〈φ〉 ,
(6.10)

where ρ0(y) = δ(y − y0) and the limit is attained for any y0. Later we will
also assume that the operator L1 is negative definite on the inner product
space weighted by the invariant density and excluding constants; this kind
of spectral gap is characteristic of many ergodic systems.

We now argue that functions φ satisfying L1φ = 0 are independent of y.
Indeed,

d

ds
eL1sφ(y) = eL1sL1φ(y) = 0,

so that φ(y) = eL1sφ(y) for all s. Letting s→ ∞ and using (6.10) we get

φ(y) = 〈φ〉 ,

and the latter is independent of y. Thus, the first equation (6.7) in the
hierarchy implies v0 = v0(x, t).

Consider next the v1 equation (6.8). For it to be solvable, L2v0 has to
be orthogonal to the kernel of L∗

1, which by assumption contains only ρ∞(y).
Thus, orthogonality to the kernel of L∗

1 amounts to averaging to zero under
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the y-dynamics. The solvability condition is then 〈L2v0〉 = 0, or substituting
(6.5):

〈f0〉 · ∇xv0(x, t) = 0.

Thus, for the expansion to be consistent it suffices that 〈f0〉 ≡ 0; this means
that the leading order x dynamics averages to zero under the invariant mea-
sure of the y dynamics. It follows that the equation for v1 is solvable and we
may formally write

v1 = −L−1
1 L2v0.

Similarly, considering (6.9) the solvability condition for v2 becomes

∂v0

∂t
= −

〈
L2L−1

1 L2v0

〉
+ 〈L3v0〉 . (6.11)

In view of the fact that L2 and L3 are first order differential operators in
x, that L1 involves only y, and 〈·〉 denotes y averaging, this is a Chapman-
Kolmogorov equation for an SDE in X :

dX

dt
= F (X) + A(X)

dU

dt
,

U being standard Brownian motion. That is, (6.11) is of the form

∂v0

∂t
= F (x) · ∇xv0 +

1

2
[A(x)A(x)T ] : ∇x(∇xv0),

To see how F (X) and A(X) are determined note that, by virtue of the
linearity of L1 and structure of L2,

L−1
1 L2v0 = L−1

1 f0 · ∇xv0 = r · ∇xv0,

where r = r(x, y) solves L1r(x, y) = f0(x, y). Hence

L2L−1
1 L2v0 = f0 · ∇x(r · ∇xv0) = (rfT

0 ) : ∇x(∇xv0) + f0 · ∇xr · ∇xv0,

and (6.11) takes the explicit form

∂v0

∂t
= 〈f1 − f0 · ∇xr〉 · ∇xv0 +

1

2

〈
−2rfT

0

〉
: ∇x(∇xv0).

Thus A(x) satisfies
A(x)A(x)T = −2

〈
rfT

0

〉
.
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In order to be able to extract a non-singular matrix rootA(x) fromA(x)A(x)T

it is necessary to show that the right hand side, −2
〈
rfT

0

〉
, is positive definite.

Notice that, for all constant vectors a,

aT rfT
0 a = (a · r)(a · f0) = (a · r)L1(a · r).

If, as mentioned above when discussing ergodicity, L1 is negative definite
in the inner product space weighted by the invariant density and excluding
constants, we see that

aT (A(x)A(x)T )a > 0 ∀a 6= 0.

Finally,
F (x) = 〈f1 − f0 · ∇xr〉 .

Note that the explicit extraction of A(X), F (X) may not be possible in gen-
eral since it requires the inversion of L1.

6.2 Model Problem

Consider the equations in X = Y = R:

dx

dt
= −λx+

1

ǫ
yx,

dy

dt
= − 1

ǫ2
y +

1

ǫ

dV

dt
,

where V is standard Brownian motion on R. Here

L1v = −y∂v
∂y

+
1

2

∂2v

∂y2

L2v = xy
∂v

∂x

L3v = −λx∂v
∂x
.

From the definition of L1 it is easily verified that the only density invari-
ant under L∗

1 is π−1/2 exp(−y2), so that the averaging 〈·〉 is with respect to
Gaussian measure N (0, 1

2
). Now, L1v1 = −L2v0 reads

−y∂v1

∂y
+

1

2

∂2v1

∂y2
= −xy∂v0

∂x
,
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which has the solution

v1(x, y, t) = −L−1
1 L2v0 = xy

∂v0

∂x
.

Finally,

−
〈
L2L−1

1 L2v0

〉
=

〈
xy

∂

∂x

(
xy
∂v0

∂x

)〉
=
x

2

∂

∂x

(
x
∂v0

∂x

)
,

and

〈L3v0〉 = −λx∂v0

∂x
,

so that (6.11) yields the following equation for v0 = v0(x, t):

∂v0

∂t
=

(x
2
− λx

) ∂v0

∂x
+
x2

2

∂2v0

∂x2
.

Comparing with (2.9) we see that this equation arises as the Chapman-
Kolmogorov equation of the (effective) SDE

dX

dt
=

(
1

2
− λ

)
X +X

dU

dt
. (6.12)

Recall the Itô formula whereby a function Y = g(t, U) satisfies the SDE:

dY

dt
=

(
∂g

∂t
+

1

2

∂2g

∂U2

)
+
∂g

∂U

dU

dt
.

Using this, it is immediately verified that equation (6.12) has the exact so-
lution

X(t) = X(0) exp [−λt+ U(t)] .

In order to test the theory we compare the behaviour of x against known
theoretical properties of X solving the limiting SDE (6.12). From the exact
solution X(t) and the properties of Brownian motion (see Mao [Mao97], p.
105) it follows that:






λ > 0 ⇔ lim
t→∞

X(t) = 0 a.s.

λ = 0 ⇔ lim sup
t→∞

|X(t)| = ∞ and lim inf
t→∞

|X(t)| = 0 a.s.

λ < 0 ⇔ lim
t→∞

|X(t)| = ∞ a.s.
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Figure 6.1: Time evolution of log x(t) for ǫ = 0.1 and (a) λ = −1, (b) λ = 0,
and (c) λ = 1.

In Figure 6.1 we show three trajectories of log x(t) for λ = −1, 0 and 1
respectively. The value of ǫ is 0.1 . In Figure 6.2 we repeat this experiment
with smaller ǫ = 0.01 . Notice the agreement with theoretical predictions
from the SDE, although for λ = 0 the wild oscillations appear to stop at a fi-
nite time, rather than persisting indefinitely, and then x(t) dies out, decaying
to 0 (log x(t) tends to −∞).
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Figure 6.2: Time evolution of log x(t) for ǫ = 0.01 and (a) λ = −1, (b) λ = 0,
and (c) λ = 1.
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6.3 The Fokker-Planck Picture

If β0 ≡ 0 then the basic ideas outlined in Subsection 6.1 still apply formally,
provided the dynamics in z is mixing in a sufficiently strong sense2. The
approach based on the Chapman-Kolmogorov equations is no longer appro-
priate in the deterministic setting as it does not allow averaging with respect
to initial data; hence we develop a treatment similar to that in Subsection 6.1,
but using the Fokker-Planck equation. We will retain the noise term β0, but
allow it to be zero when interpreting the final results. In the Fokker-Planck
picture this corresponds to parabolic regularization.

With f , g, and β still of the form (6.2), the Fokker-Planck equation (2.8)
becomes

∂ρ

∂t
=

1

ǫ2
L∗

1ρ+
1

ǫ
L∗

2ρ+ L∗
3ρ,

where

L∗
1φ = −∇y · (g0φ) +

1

2
∇y ·

[
∇y · (β0β

T
0 φ)

]

L∗
2φ = −∇x · (f0φ)

L∗
3φ = −∇x · (f1φ).

We seek an expansion for ρ in the form

ρ = ρ0 + ǫρ1 + ǫ2ρ2 + · · · ,

substitute it into the Fokker-Planck equation, and equate powers of ǫ to
obtain

L∗
1ρ0 = 0

L∗
1ρ1 = −L∗

2ρ0

L∗
1ρ2 =

∂ρ0

∂t
− L∗

2ρ1 − L∗
3ρ0.

We assume that the y-dynamics is ergodic so that eL1tφ→ 〈φ〉 as t→ ∞,
with 〈·〉 denoting expectation with respect to an invariant measure, possibly
restricted to some submanifold, in Y . Thus L∗

1ρ∞(y) = 0 for some density
ρ∞(y). The solution for ρ0(x, y, t) is then of the form

ρ0(x, y, t) = ρ∞(y)ρ̄(x, t).

2Examples of deterministic dynamics with provably strong mixing properties include
geodesic flow on manifolds with negative curvature [KH95]; empirically there are many
interesting systems which appear to obey this condition, including the Lorenz equations,
for example, and the recent interesting “Burger’s bath” of Majda and Timofeyev [MT00].
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Thus, to leading order, the distribution of solutions is a product measure—
the x and y components of the solution are independent. The density of the
slow variables, ρ̄(x, t), is the quantity of interest.

To solve the equation L∗
1ρ = r we require that r be orthogonal to the

null space of L1, i.e., that it integrates to zero against constants (in y). If
〈f0〉 = 0, so that the leading order x dynamics averages to zero under the
invariant measure for y, the equation for ρ1 is solvable, and

ρ1 = −(L∗
1)

−1L∗
2ρ∞(y)ρ̄(x, t).

A similar solvability condition applied to the equation for ρ2 leads to the
following equation for ρ̄(x, t) :

∂ρ̄

∂t
= −

∫

Y

L∗
2(L∗

1)
−1L∗

2ρ∞ρ̄ dy +

∫

Y

L∗
3ρ∞ρ̄ dy. (6.13)

In view of the fact that L∗
2 is a first order differential operator in x, and

the averaging is over y, this is the Fokker-Planck equation for an SDE in X :

dX

dt
= F (X) + A(X)

dU

dt
,

U being standard Brownian motion. The arguments showing this are similar
to those in the previous subsection.

6.4 Model Problem

Consider the equations

dx

dt
= x− x3 +

4

90ǫ
y2

dy1

dt
=

10

ǫ2
(y2 − y1)

dy2

dt
=

1

ǫ2
(28y1 − y2 − y1y3)

dy3

dt
=

1

ǫ2
(y1y2 −

8

3
y3)

(6.14)

Note that the vector y = (y1, y2, y3)
T solves the Lorenz equations, at param-

eter values where the solution is chaotic [Wig90]. Thus the equation for x is
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a scalar ODE driven by a chaotic signal with characteristic time ǫ2. We will
show how, for small ǫ, the x-dynamics may be approximated by the SDE

dX

dt
= X −X3 + σ

dW

dt
, (6.15)

where σ is a constant. Although the asymptotics of the previous subsection
cannot be rigorously justified in this case without the addition of a white
noise term to the equations for y, we nonetheless proceed to find an SDE
in the small ǫ limit, showing by means of numerical experiment that the fit
between x and X is a good one. We interpret (6.13) by taking ρ∞(y) to be
the density generated by the empirical measure of the Lorenz equations.

Here f1 = f1(x) = x− x3 and f0 = f0(y) = 4y2/90. Since L1 is indepen-
dent of x we deduce that

(L∗
1)

−1L∗
2ρ∞ρ̄ = −(L∗

1)
−1 ∂

∂x
(f0ρ∞ρ̄) = r

∂ρ̄

∂x
,

where r = r(y) solves the equation

L∗
1r(y) = −f0(y)ρ∞(y).

(It is for this step that the regularization of the y dynamics, by addition of
white noise, is required; otherwise L∗

1 may not have a unique inverse on the
appropriate subspace, and r(y) will not be well-defined.) Proceeding with
this expression we find that

−
∫

Y

L∗
2(L∗

1)
−1L∗

2ρ∞ρ̄ dy =

∫

Y

∂

∂x

(
f0r

∂ρ̄

∂x

)
dy =

σ2

2

∂2ρ̄

∂x2

where

σ2 =
8

90

∫

Y

y2r(y) dy.

Also ∫

Y

L∗
3ρ∞ρ̄dy = − ∂

∂x

[
(x− x3)ρ̄

]
.

Thus the limiting equation for probability densities is

∂ρ̄

∂t
+

∂

∂x

[
(x− x3)ρ̄

]
=
σ2

2

∂2ρ̄

∂x2
,

which is the Fokker-Planck equation for the SDE (6.15).
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However we do not know r(y) explicitly (indeed it is only well-defined if
we add noise to the Lorenz equations) and thus do not know σ explicitly.
To circumvent this difficulty, we estimate σ from a sample path of x(t),
calculated with a small time step ∆t. We study the time-series γn defined by

γn = h−
1

2{xn+1 − xn − h[xn − xn+1x
2
n]}

for xn = x(nh) and h small (typically chosen as some multiple of ∆t so
that interpolation of numerically generated data is not necessary). If x were
governed by the SDE (6.15) then γn should be an approximately i.i.d sequence
distributed as N (0, σ2) and this fact can be used to estimate σ3.

Figure 6.3 shows the estimate of σ2 calculated from this data, using ǫ =
∆t = 10−3. The left figure shows the dependence of the estimate on the time
interval for h = 0.05; notice that the estimate converges very fast in time.
The right figure shows how this estimate varies with the sampling interval h.
For h ∈ [0.05, 0.4] we obtain σ2 = 0.126 ± 0.003.

To verify that the fit with the SDE at the predicted value of σ is a good
one, we compare the empirical density of the data in Figure 6.4 (which is over
the long time 104), generated from x(t), with the exact invariant measure for
the SDE (6.15), at the estimated value of σ. The agreement is very good.

6.5 Discussion and Bibliography

The basic perturbation expansion outlined in the Chapman-Kolmogorov case
can be rigorously justified and weak convergence of x to X proved as ǫ→ 0;
see Kurtz [Kur73]. Applications to climate models, where the atmosphere
evolves slowly relative to the fast oceanic variations, are surveyed in Majda
et al. [MTVE01]; as mentioned above, it is the presentation in [MTVE01]
which we have followed here.

Studying the derivation of effective stochastic models when the variables
being eliminated do not necessarily come from an Itô SDE, as we did in the
Fokker-Planck picture, is a subject investigated in some generality in [PK74].
The idea outlined here is carried out in discrete time by Beck [Bec90] who
also uses a skew-product structure to enable the analysis; the ideas can then
be rigorously justified in some cases. Related ideas in continuous time are

3This method of parameter estimation for the stochastic model is quite general and
does not exploit the scale-separation in an optimal fashion; other methods could be used
which do exploit scale-separation, such as the method outlined in [VE03].



36 D. GIVON, R. KUPFERMAN & A.M. STUART

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

σ
 2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.122

0.123

0.124

0.125

0.126

0.127

0.128

0.129

0.13

0.131

h

σ
 2

Figure 6.3: Left: estimated value of σ as function of the size of the time
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addressed in [JKRH01, JGB+03] for differential equations; however, rather
than developing a systematic expansion in powers of ǫ, they find the exact
solution of the Fokker-Planck equation, projected into the space X , by use of
the Mori-Zwanzig formalism (see Section 3) [CHK02], and then make power
series expansions in ǫ of the resulting problem.

There are many variants on the basic themes introduced in the previous
two sections. Here we briefly discuss two of them. The first is fast deter-

ministic dynamics. The set-up is as in Subsection 6.1, but we do not assume
that the vector field f0(x, y) averages to zero under 〈·〉 and, as a consequence,
there is additional fast dynamics not present in Subsection 6.1. Consequently
we introduce a new time variable

s = ǫ−1t

and seek a two-time-scale expansion of the Chapman-Kolmogorov equation,
setting

∂

∂t
→ ∂

∂t
+

1

ǫ

∂

∂s
.

Having performed this expansion and converting back from the Chapman-
Kolmogorov picture, combining to give one time variable yields

dX

dt
=

1

ǫ
F0(X) + F1(X) + A(X)

dU

dt
,

U being standard Brownian motion.
In the Fokker-Planck picture we are seeking an approximation of the form

ρ(x, y, t) ≈ ρ∞(y)ρ̄(x, t, s).

This situation, and more general related ones, is covered in a series of papers
by Papanicolaou and co-workers—see [PV73, Pap74, PK74, Pap76], building
on original work of Khasminkii [Kha63, Kha66]. See also [JKRH01, JGB+03,
Bec90, MTVE01].

The second generalization is to include back coupling. We again consider
a set-up similar to Section 6, but now allow back-coupling of the x-variable
into the equation for y. We consider (1.2) with α = 0

f(x, y) =
1

ǫ
f0(x, y), g(x, y) =

1

ǫ2
g0(x, y), β(x, y) =

1

ǫ
β0(x, y).
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The equation for y is thus

dy

dt
=

1

ǫ2
g0(x, y) +

1

ǫ
β0(x, y)

dV

dt
.

Since x evolves more slowly than y it is natural to study the equation

dY

dt
= g0(ζ, y) + β0(ζ, y)

dV

dt
, (6.16)

where ζ is viewed as a parameter. If this equation is ergodic, for each fixed ζ,
with invariant measure πζ , then it is natural to try and generalize the studies
of the previous sections, replacing 〈·〉 by by averaging with respect to πx,
since the slower time-scale of x relative to y means that it will be effectively
frozen in the y dynamics. In the Fokker-Planck picture we are seeking a
solution of the form (6.1), where ρ∞(ζ, y) is the invariant density for (6.16).
Such ideas can be developed systematically; see [Kha63, Kha66, MTVE01,
PV73, PK74, Pap76, JKRH01, JGB+03] for details. An approximation of
the form (6.1) also underlies the averaging techniques of Section 5.

7 White and Coloured Noise Approximations

of Large Systems

In the last section we showed how effective low-dimensional stochastic models
can arise from either higher dimensional SDEs or ODEs, when a separation
of time-scales occurs. We worked with the Chapman-Kolmogorov or Fokker-
Planck equations, rather than paths of (1.1) itself. In this section we describe
an alternative situation where effective low-dimensional SDEs can arise. This
is achieved by coupling a small problem weakly to a heat bath, a large Hamil-
tonian system. Here we will study the system from a pathwise perspective,
rather than using the Chapman-Kolmogorov or Fokker-Planck picture. We
are studying problems of the form D-S in the classification of Section 1.

7.1 Trigonometric Approximation of Gaussian Processes

Recall that mean zero Gaussian processes Z(t) have the property that given
any sequence of times t1, t2, . . . , tk, the vector

(Z(t1), Z(t2), . . . , Z(tk))
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is a mean zero Gaussian random vector in R
k. It is stationary if the statistics

are unchanged when the {ti}k
i=1 are all translated by a single time s. Subject

to some continuity properties on paths (see e.g. Karlin and Taylor [KT75])
a mean zero stationary Gaussian process is completely characterized by its
auto-covariance function

R(τ) := EZ(t+ τ)Z(t).

The basic building block in this section is trigonometric series for Gaus-
sian processes (see Kahane [Kah85]). We consider the approximation of
Gaussian processes by finite series of the form

ZN(t) =
1

N b

N∑

j=1

F (ωj) [ξj cos(ωjt) + ηj sin(ωjt)] , (7.1)

where the ξj and ηj are mutually independent i.i.d. sequences with ξ1, η1 ∼
N (0, 1). The sequence of frequencies ωj may or may not be random. The
process (7.1) is Gaussian, once the frequencies are specified. Letting E denote
expectation with respect to ξj and ηj, with the ωj fixed, we see that

EZN(t+ τ)ZN(t) = RN(τ)

where

RN(τ) =
1

N2b

N∑

j=1

F 2(ωj) cos(ωjτ). (7.2)

The idea is to choose the function F (ω) and the sequence of frequencies ωj so
that RN(τ) approximates R(τ) for large N , thus building an approximation
ZN(t) of the stationary Gaussian process Z(t). This basic idea, as well as its
applications, are made more precise in the following subsections.

7.2 Skew-Product Systems

Consider now the system of ODEs:

dx

dt
= f(x) +

N∑

j=1

kjqj

mj
d2

dt2
qj + qj = 0, j = 1, 2, . . . , N,
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where mj = ω−2
j and the kj are constants to be determined.

To put this in the general framework of Section 1 we set y = (q, dq
dt

), and

z = (x, y) = (x, q, dq
dt

), where q = (q1, q2, . . . , qN)T . The problem is in skew-

product form: the y dynamics evolves independently of the x dynamics. Full
coupling is considered in the next subsection.

We note that the q equations derive from the Hamiltonian

H(p, q) =
1

2

N∑

j=1

p2
j

mj

+
1

2

N∑

j=1

q2
j .

Here pj = mj (dq/dt). The functions qj(t) may be viewed as the trajectories
of N independent harmonic oscillators with mass mj, spring constant 1 and

natural frequencies ωj = m
−1/2
j . Together, the N oscillators constitute a

“heat bath”. If we choose initial data for this heat bath from the Gibbs
distribution at inverse temperature β, that is we pick from the density

1

Z
e−βH(p,q),

then

q(0) ∼ β−1/2 ξj, q̇(0) ∼ β−1/2ωj ηj,

where the random variables ξj and ηj are, as above, mutually independent
sequences of i.i.d. N (0, 1).

To establish a connection with the previous subsection we choose the
spring constants kj so that

kj =
F (ωj)

N b
.

Then,
N∑

j=1

kjqj = β−1/2 ZN(t),

where ZN(t) is given by (7.1), and thus the “essential dynamics”, x(t), satisfy
the randomly-driven ODE:

dx

dt
= f(x) + β−1/2 ZN(t). (7.3)
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Example 7.1 We start with an example where ZN(t) approximates a coloured
noise process. Choose a ∈ (0, 1), 2b = 1 − a, and ωj = Naζj where
ζ := {ζj}∞j=1 is an i.i.d. sequence with ζ1 uniformly distributed in [0, 1],
ζ1 ∼ U [0, 1]. Defining ∆ω = Na/N , which is the mean frequency spacing,
(7.2) takes the form

RN(t) =
N∑

j=1

F 2(ωj) cos(ωjt) ∆ω,

which, as N → ∞, is a Monte-Carlo approximation to the Fourier-cosine
transform of F 2(ω):

R(t) =

∫ ∞

0

F 2(ω) cos(ωt) dω.

If F 2(ω) is bounded and decays at least as fast as 1/ω1+δ, for some δ >
0,then for almost every ζ, RN(t) converges to R(t) point-wise and in L1[0, T ],
T > 0 arbitrary. The random forcing, (7.1), which takes the form

ZN(t) =
N∑

j=1

F (ωj)[ξj cos(ωjt) + ηj sin(ωjt)] (∆ω)1/2,

then converges weakly (with respect to the probability space for {ξj}, {ηj}) in
C([0, T ],R) to a zero mean Gaussian process with auto-covariance R(t) (see
[KSTT02] for details; see [Bil68] for a general reference on weak convergence).

In particular, if

F 2(ω) =
2α/π

α2 + ω2
,

where α > 0 is a constant, then

R(τ) = exp(−α|τ |),
and Z(t) is an Ornstein-Uhlenbeck (OU) process defined by an Itô SDE.
Finally, it can be shown that (7.3) defines a continuous mapping, ZN 7→ x,
between C([0, T ],R) functions. Since weak convergence is preserved under
continuous mappings it follows that x(t) is approximated, for N large, by
X(t) solving the SDE

dX

dt
=f(X) + β−1/2Z(t), (7.4)

dZ

dt
= − αZ + (2α)1/2 dB

dt
, (7.5)
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where B(t) is standard Brownian motion and Z(t) is an OU process.

Example 7.2 In this second example, ZN(t) approximates white noise, which
may be viewed as a delta-correlated Gaussian (generalized) process. We set
b = 0 and the ωj are chosen deterministically:

ωj = 2(j − 1), j = 1, 2, . . . , N ;

the F (ωj) are given by

F (ωj) =

{
(1/π)1/2 j = 1

(2/π)1/2 j = 2, . . . , N.

This choice makes RN(t) a truncation of the formal Fourier series for a delta
function. To exploit this fact rigorously it is necessary to work with the
integral of ZN(t) which we will call YN(t), normalizing by YN(0) = 0. The
function YN(t) converges almost surely to a function in C([−π/2, π/2],R)
which may be identified with Brownian motion ([Kry95]). Thus, for large N ,
x is approximated by the SDE:

dX

dt
= f(X) + β−1/2dU

dt
.

The mapping YN → x is continuous and hence Here U is standard Brownian
motion. x converges strongly to X as N → ∞ and error estimates can be
found [CSSW01]. However the convergence is only on a finite time-interval,
because of the periodicity inherent in the construction.

7.3 Hamiltonian Systems

We now generalize the ideas developed in the last subsection to situations
with back-coupling between the x and y variables so that the simplifying
skew-product nature is lost.

We consider a mechanical system, which consists of a “distinguished”
particle which moves in a one-dimensional potential field, and experiences,
in addition, interactions with a large collection of “heat bath” particles. The
goal is to derive a reduced equation for the distinguished particle under
the assumption that the initial data for the heat bath are random. Mod-
els of this type were first introduced in the 1960s by Ford, Kac and Mazur
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[FK87, FKM65] and by Zwanzig and co-workers [Zwa73, Zwa80]. The results
reported here can be found, in full detail, in [SW99, KSTT02].

The mechanical system is defined by the following Hamiltonian,

H(PN , QN , p, q) =
1

2
P 2

N + V (QN) +
N∑

j=1

p2
j

2mj

+
N∑

j=1

kj

2
(qj −QN)2, (7.6)

where QN , PN are the coordinate and momentum of the distinguished par-
ticle, and q, p are, as before, vectors whose entries are the coordinates and
momenta of the heat bath particles. The function V (Q) is the potential
field experienced by the distinguished particle; the j-th heat bath particle
has mass mj and interacts with the distinguished particle via a linear spring
with stiffness constant kj; the j-th heat bath particle has a characteristic
frequency ωj = (kj/mj)

1/2. The subscript N in QN , PN denotes the size of
the heat bath as we will be considering systems of increasing size.

Hamilton’s equations are

Q̈N + V ′(QN) =
N∑

j=1

kj(qj −QN)

q̈j + ω2
j (qj −QN) = 0,

(7.7)

with initial conditions QN(0) = Q0, PN(0) = P0, qj(0) = q0
j , and pj(0) = p0

j .
The system is set up so that Q0 and P0 are given, whereas the q0

j and p0
j

are randomly drawn from a Gibbs distribution with inverse temperature β,
i.e., from a distribution with density proportional to exp(−βH). It is easily
verified that this amounts to choosing

q0
j = Q0 + (1/βkj)

1/2ξj

p0
j = (mj/β)1/2ηj,

where the sequence ξj, ηj are defined as above.
The equations for qj can be solved in terms of the past history of QN , and

the qj can then be substituted back into the equation for QN . This yields
the following integro-differential equation for QN :

Q̈N + V ′(QN) +

∫ t

0

RN(t− s)Q̇N(s) ds = β−1/2ZN(t), (7.8)
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where

RN(t) =
N∑

j=1

kj cos(ωjt)

and

ZN(t) =
N∑

j=1

k
1/2
j [ξj cos(ωjt) + ηj sin(ωjt)] .

Equation (7.8) is an instance of a generalized Langevin equation, with memory
kernel RN and random forcing β−1/2ZN .

By choosing the parameters kj, ωj different limiting behaviours can be
obtained as N → ∞.

Example 7.3 By choosing ωj = Naζj, with i.i.d ζj and ζ1 ∼ U(0, 1], 0 <
a < 1, and

kj = F 2(ωj) ∆ω =
2α/π

α2 + ω2

Na

N
,

the functions RN , ZN coincide with those in Example 7.1. Thus RN con-
verges to R(t) = e−α|t|, and ZN weakly converges on any bounded interval
to the OU process Z(t) in (7.5). It can further be shown, using a continuity
argument, that QN weakly converges to the stochastic process Q(t) solving
the stochastic IDE:

Q̈+ V ′(Q) +

∫ t

0

R(t− s)Q̇(s) ds = β−1/2Z(t). (7.9)

Moreover, Q solving (7.9) is equivalent to Q solving the SDE

dQ

dt
= P

dP

dt
= Z − V ′(Q)

dZ

dt
= (−αZ − P ) + (2α/β)1/2dB

dt

(7.10)

where B(t) is standard Brownian motion. Thus, a Hamiltonian system with
2(N +1) variables has been reduced to an SDE for the distinguished particle
with one auxiliary variable, Z(t), which embodies, for large N , the memory
effects.
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Figure 7.1: Circles: empirical distribution of QN(t) for a sample path of
the Hamiltonian system in Example 7.3, with parameters n = 5000, α = 1,
β = 2, and a sampling time of T = 50000. The solid line corresponds
to the Boltzmann distribution. The graph on the left is for a single-well
potential, V (Q) = Q2/2; the graph on the right is for a double-well potential,
V (Q) = Q4/4 −Q2/2.

In Figure 7.1 we show empirical distribution of QN(t), n = 5000, for
sample paths over a time interval of T = 50, 000 (open circles). The two
graphs correspond to the cases of single-well, and double-well potential V (Q).
In each case, the solid line is the Boltzmann distribution, proportional to
exp(−βV (Q)), which is the empirical measure for the ergodic SDE (7.10).

Example 7.4 By a slight modification of the arguments in [SW99], a limit
to a memoryless Langevin equation can be obtained through Fourier series,
taking ωj = (2j − 1), and choosing the kj = F 2(ωj) appropriately so that
RN approximates a delta function, as in Example 7.2. As mentioned in that
context, the use of Fourier series means that long time behaviour cannot be
studied without seeing periodicity of KN and ZN . One way to circumvent
this is to re-randomize the data in {p, q} periodically in time which is done
in [HSS03].
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7.4 Discussion and Bibliography

Ford, Kac and Mazur [FKM65] were the first to study mechanical models
of masses and springs as a model of a particle interacting with a heat bath;
see also Ford and Kac [FK87] and Zwanzig [Zwa73, Zwa80]. There exists an
substantial amount of literature on the subject in both classical and quan-
tum contexts (see [FK87, JP97, BM96, LS81]). The more recent work on
heat bath models focuses on those aspects related to dimensional reduction
and coarse grained time stepping. In [SW99] the spectrum of the heat bath
was chosen such that the frequencies are rationally related and the trajec-
tories of the distinguished particle converge in a strong sense to Brownian
motion. A drawback of this approach is its restriction to a fixed time interval
since the approximate trajectories are periodic. Example 7.3 was studied in
[KSTT02]. While the main results concern the weak convergence of QN(t)
on bounded time intervals, certain convergence results, and notable ergodic
properties were also proven for infinite time intervals. A generalization of
those results for the case of heat bath interactions via nonlinear springs may
be found in [KS03]. This work contains, in addition, a systematic evaluation
of the effective models by means of time series analyses for the distinguished
particle trajectories QN(t), with N large. Aspects related to coarse grained
integration are studied in [SW99] and in [HK02a].

8 Chemical Kinetics

Here we present a class of examples of the form S-D, in the classification
of Section 1. Chemical reactions are often modelled through birth-death
processes, counting molecular concentrations of different chemical species,
with transition rates proportional to algebraic expressions related to species
concentrations [Gar85]. In this section we start with a very simple example
of this kind of model showing how, in a certain limit, a closed ODE for
the first moment describes the dynamics completely; formal expansions and
numerical experiments are used to study this example. We follow this with
a more involved example where numerical experiments show that a similar
closed system of ODEs governs the dynamics.
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8.1 Introductory Example

Consider the chemical reaction X ⇋
k2

k1
A, assuming the species A to be held

at a fixed concentration a. Let pij(t) denote the probability that at time t
there are j particles of species X, given that there were i at time zero. The
master equation (2.2) is thus

dpij

dt
= k1a pij−1 + k2(j + 1) pij+1 − (k1a+ k2j)pij, pij(0) = δij, (8.1)

for j = 1, 2, . . . , and

dpi0

dt
= k2 pi1 − k1api0, pi0(0) = δi0 (8.2)

for j = 0; see [Gar85].
Recall that for SDEs we have a direct connection between the Chapman-

Kolmogorov equation (Master equation) and a pathwise description through
SDEs. In this section the pathwise description is simply stated through
defining an algorithm. Sample paths z(t), t ≥ 0, with the master equation
(8.1) can be generated as follows. Assume that we are given z(tl), the number
of particles at time tl ≥ 0. Let T, S be independent exponential random
variables with rates k1a, k2z(tl) respectively. Define

tl+1 − tl = min(T, S).

We then set

z(tl+1) =

{
z(tl) + 1 if T = min(T, S)

z(tl) − 1 if S = min(T, S).
(8.3)

This gives a process whose Master equation is (8.1). Suitably modified, when
z(tl) = 0, it gives (8.2). This is an implementation of a birth-death process,
a basic continuous time countable state space Markov chain.

Figure 8.1 shows three sample paths of this model, calculated with initial
data z(0) = N , with k1 = 2, k2 = 1, and a = N ; the different paths
correspond to N = 100, 500, and 1000. In each case we plot y(t) = N−1z(t),
together with a smooth curve which is the function 2− exp(−t), for reasons
we now make apparent.

Consider (8.1) with k1 = 2, k2 = 1, and a = N . Setting ρj = pNj so that

dρj

dt
= 2N ρj−1 + (j + 1) ρj+1 − (2N + j) ρj, ρj(0) = δNj.
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Figure 8.1: Solid lines: sample paths of z(t)/N for the birth death process
(8.3) with z(0) = N , k1 = 2, k2 = 1, and a = N for (a) N = 100, (b)
N = 500, and (c) N = 1000. Dashed lines: the curve 2 − exp(−t).
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This may be re-written as, with ∆x = N−1,

dρj

dt
=

(j + 1)∆x ρj+1 − j∆x ρj

∆x
+ 2

ρj−1 − ρj

∆x
, ρj(0) = δNj. (8.4)

Viewing ρj(t) as a finite difference approximation of a continuous density
ρ(x, t), so that ρj(t) ≈ ρ(j∆x, t), we see that (8.4) formally approximates
the PDE

∂ρ

∂t
=

∂

∂x
(xρ) − 2

∂ρ

∂x
(8.5)

(such approximation is known as a Kramers-Moyal expansion [Gar85]). But
this is simply the Fokker-Planck equation for the ODE

dX

dt
= 2 −X, X(0) = 1. (8.6)

This may be viewed as a closed equation for the first moment of the process.
Since the limit dynamics is deterministic, because no diffusion is present in
(8.5), all other moments are determined by the first one.

This formal argument indicates that, as N → ∞, the fluctuations in
sample paths of (8.1) should diminish, following the deterministic dynamics
given by (8.6), that is

X(t) = 2 − exp(−t).
This is exactly what Figure 8.1 shows.

8.2 More Involved Example

A generalization of the previous example to more general chemical reactions
is as follows (see Gilespie [Gil76, Gil77]). As in the previous example it is
simplest to write down a pathwise description through an algorithm. Let
x(t) = (x1, . . . , xm) ∈ Z

m denote the number of molecules of species xj at
time t for j = 1, 2, . . . ,m. Let hi(x), i = 1, 2, . . . , n denote a set of n reaction
rates (which depend on the state x), and let νℓj ∈ Z, ℓ = 1, 2, . . . , n, j =
1, 2, . . . ,m, denote the change in the number of molecules of species j after
reaction ℓ. Assuming that the reactions occur at exponentially distributed
times, independent of one another, gives rise to a birth-death process which
can be computed as follows:

i) Initialize xj(0), j = 1, 2, . . . ,m; set k = 0 and tk = 0.
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ii) Compute the reaction rates ri = hi(x(tk)), i = 1, 2, . . . , n, and set
r =

∑n
i=1 ri.

iii) Select a reaction: partition [0, 1] into n disjoint intervals Ii of length
ri/r and select a uniform random variable p1 in [0, 1]. If p1 falls in Ii
then select reaction i .

iv) Pick a second independent random variable p2 uniformly in [0,1] and
set

τ = − ln(p2)/r, tk+1 = tk + τ.

v) Set xj(t) = xj(tk), t ∈ [tk, tk+1) and xj(tk+1) = xj(tk) + νij, j =
1, . . . ,m .

vi) Return to ii) with k → k + 1.

We assume that each hi(x) is a homogeneous polynomial of the form

hi(x) = N κi

(x1

N

)ei,1
(x2

N

)ei,2

. . .
(xm

N

)ei,m

≡ N h̃i

( x
N

)
.

Then, if Xi = xi/N , and X = (X1, . . . , Xm), arguments similar to those in
the previous subsection show that the Master Equation can be approximated
by the Fokker-Planck equation

∂ρ

∂t
+

m∑

i=1

∂

∂Xi

[Hi(X)ρ] = 0,

where

Hi(X) =
n∑

j=1

νjih̃j(X).

This indicates that the stochastic process for X will, for large N , be close to
the deterministic system of ODEs

dXi

dt
= Hi(X), i = 1, . . . ,m.

We illustrate this phenomenon with an example. Let ℓ = m = 3 and
x(0) = (1, 1, N), h̃1(x) = x2

1, h̃2(x) = x1x2, h̃3(x) = x3. If

ν11 = −1, ν12 = 1

ν22 = −1, ν23 = 1

ν33 = −1, ν31 = 1
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with all other νij = 0 then the limiting ODE system is

dX1

dt
= −X2

1 +X3

dX2

dt
= −X1X2 +X2

1

dX3

dt
= −X3 +X1X2

(8.7)

Figure 8.2 shows three sample paths of x(t)/N for x(t) given by the above
birth death process, for three values of N . As N increases, paths of the
stochastic process exhibit diminishing fluctuations about paths which solve
the ODEs (8.7).

8.3 Discussion and Bibliography

The fact that birth-death processes, of the type studied here, can be approxi-
mated for large N by ODEs, has been exploited in the physics and chemistry
communities for some time [Gar85]. Theorems making the formal asymptotic
expansions given here rigorous may be found in [Kur76, Kur78]; an overview
of these theorems, from an applied perspective, may be found in the paper
[FK91]. When the birth-death process has spatial dependence through a
lattice, then under appropriate scaling of the lattice variable with N it is
possible to obtain PDEs and stochastic PDEs when fluctuations remain in
the limit; see [HV02, Vve03], and the references therein, for example. The
derivation of reaction-diffusion equations, and stochastic reaction-diffusion
equations, from a birth-death process combined with random walks, is an
area of active interest in the physics community; see the lecture notes [Car].

9 Algorithms

There has been an explosion of interest in developing algorithms to compute
the evolution of macroscopic quantities from detailed microscopic systems,
at minimum cost. Here we briefly highlight some of these approaches, giving
pointers to the literature for details.

Recall from the discussion of Reduction Principles in the Introduction
that any algorithm for dimension reduction comprises two components: de-
termination of the space X and then determination of the dynamics in X .
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Figure 8.2: Solid lines: sample paths of x(t)/N , where x(t) is generated by
the birth death process with h̃(x), νℓj, and x(0) as described in the text, for
(a) N = 100, (b) N = 500, and (c) N = 1000. Dashed lines: trajectories of
X3(t) for X(t) solving (8.7) with initial data (1/N, 1/N, 1).
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The model problems in the previous sections have not addressed the first is-
sue at all: the space X is explicit from the form of the model problems in all
cases. In what follows, the first two subsections, on POD-Based Techniques
and Model Reduction, together with the last subsection on Transfer Opera-
tor Approaches, all describe algorithms which attempt not only to perform
dimension reduction, but also to identify the space X ; the methods based on
coarse-grained integration also attempt to identify appropriate coarse vari-
ables, possibly by the inclusion of further moments.

The subject is very much in its infancy and clear evaluation of the bene-
fits and drawbacks of the different algorithms has not been carried out in the
literature. A starting point for this would be to carefully compare the be-
haviour of algorithms when applied to the model problems described in this
paper, and to more challenging problems with similar character drawn from
the sciences and engineering. It is important to realize that the discussion in
this section is neither comprehensive, nor do we claim to make any serious
evaluation of the relative merits of the algorithms described.

9.1 POD-Based Techniques

Consider the deterministic version of (1.1), with γ ≡ 0. The basic idea is
to observe a single path of (1.1), use a POD (proper orthogonal decomposi-
tion or singular value decomposition) to extract dominant modes, and then
project the equation (1.1) onto them.

Let

z = [z(t1), z(t2), . . . , z(tN)]

be a matrix formed from a large number of samples of a single path of (1.1).
The SVD is used to approximate z as

z = UΣV ∗ ≈ UkΣkV
∗
k

where U∗
k projects from Z into a low dimensional subspace of dimension k.

Σk contains the k leading singular values of Σ. Then the dynamics in (1.1)
is approximated by

ξ̇(t) = U∗
kf (Ukξ(t))

For applications of this approach see [BHL96], [SS89]. The usefulness of
this method is sometimes limited by the fact that the low dimensional basis,
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onto which the solution is projected, is calculated from information which is
global in time. Nonetheless, information from PODs is used in a variety of
situations to identify an appropriate choice for the subspace X in situations
where it is not identifiable a priori.

9.2 Model Reduction

Here the usual application domain is control theory, and most work to date
concerns linear systems. With this in mind we set

h(z) = Az, γ(z) = B,
dW

dt
(t) = u(t)

in equation (1.1) and obtain

dz

dt
= Az +Bu.

We assume that the object of interest is a linear functional of z:

η = Cz.

The objective of model reduction is to find Â, B̂, Ĉ so that the reduced
dynamics

dx

dt
= Âx+ B̂u

η′ = Ĉx

provides a good approximation η′ to η, for a range of controllers u. In
the (x, y) picture of equations (2), this corresponds to finding co-ordinates
in which the y variable can be effectively eliminated without introducing
memory. On the assumption that A is negative-definite, by use of the Laplace
transform, the question reduces to finding Â, B̂, Ĉ so that η′(s) is a good
approximation to η(s), where

η(s) = C(sI − A)−1B

η′(s) = Ĉ(sI − Â)−1B̂.

This problem in approximation theory can be tackled in a number of different
ways, depending on the range of s over which good approximation is required.
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Two basic approaches are Krylov subspace (moment matching) and SVD
based. See [BG02, Fre99, ASG01].

It would be of interest to extend these ideas to systems, such as those
in Subsection 7.3, where stochastic effects arise when eliminating variables.
This would occur, for example, if A is skew, contrasting with existing work
on model reduction where A is negative-definite.

9.3 Optimal Prediction

In this work [CKK98, CKL00, CHK00, CHK02] the underlying assumption is
that the equation (1.1) carries a natural measure ν which is invariant under
the flow induced by (1.1). For simplicity assume that γ ≡ 0 so that the
problem is deterministic; thus α, β ≡ 0 too.

The objective is to find an equation for the conditional expectation,

X(t) = E[x(t)|x(0) = x0], (9.1)

where E is with respect to measure ν on z(0). This X(t) is the first moment
of x(t).

One basic approximation is to simply average f(x, y) with respect to ν,
conditional on x being held at its mean value, yielding

dX

dt
= F (X), X(0) = x0 (9.2)

where

F (ζ) =

∫
f(ζ, y)νζ(dy)∫

νζ(dy)
, (9.3)

and where νζ is the appropriate conditional measure.
In certain cases, where a separation of scale exists, this approximation

coincides with the method of averaging. It cannot work well in general, and
errors between the solution of (9.2) and the desired x solving (9.1) can grow
like t [Hal99]. However, for certain model problems, this method gives an
excellent prediction. One such set of problems are the particle-in-a-heat-bath
models of Subsection 7.3 [Kas00].

In order to understand the limitations of this approach, consider the
discussion of the Master Equation for countable state space Markov chains
in Section 2. It is clear that, in general, there will be no closed equation
for the first moment X(t). The approach of Chorin et al. in [BCC00] to



56 D. GIVON, R. KUPFERMAN & A.M. STUART

overcome this is to put fluctuations back into the model (9.2) to understand
how typical paths x might behave. This is done on an ad hoc basis by fitting

a diffusion co-efficient α in the model

dX

dt
= F (X) − γX +

√
2γT

dU

dt
,

where U is standard Brownian motion.

9.4 Coarse-Grained Integration

The aim of this approach is, as for optimal prediction, to produce algorithms
for X defined by (9.1). Again we assume α, β, γ ≡ 0 and random initial
data. However the methods generalize to random driving, as for optimal
prediction.

The motivation for the details of the approach is that, if the time t map
induced by the flow of the vector field F can be approximated numerically, a
variety of algorithms from computational bifurcation theory can be used to
compute families of steady solutions, their stability, periodic solutions and so
forth. It is possible, in certain circumstances, that stochastic equations for
z may have a choice of coarse-grained variables x, for which X is effectively
deterministic, as in Section 8, and the algorithm has been used in this context.

Let ρ(x, y, t;X) denote the probability density function for (9.2), started
from measure ν, conditional on x(0) = X. In its simplest form the method
introduced in [MMK02] is to consider the map

Xn+1 = Γ(Xn) (9.4)

where

Γ(X) =

∫
ρ(x, y, t;X) x dxdy. (9.5)

This may be viewed as an attempt to approximate the time t map for X(t)
given by (9.1), and it suffers from many of the same limitations as (9.2), (9.3);
however, through the time-scale parameter t, it has an additional flexibility
which may be useful. Infinitesimally the method reduces to (9.2), (9.3). To
see this we assume smoothness of ρ in t so that

ρ(x, y, t;X) ≈ ρ(x, y, 0;X) + t
∂ρ

∂t
(x, y, 0;X).
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Now
∂ρ

∂t
+ ∇x · (fρ) + ∇y · (gρ) = 0

and so, for ρ = ρ(x, y, 0;X),

Γ(X) ≈
∫
ρx dxdy − t

[∫
[∇x · (fρ) + ∇y · (gρ)]x dxdy

]

= X + t

∫
fρ dxdy.

Here we have used the fact that ρ(x, y, 0;X) acts as a delta function δ(x−X)
when integrated against functions of x alone, and integration by parts in x
and y on the second and third terms respectively. Thus

Γ(X) −X

t
≈ F (X),

with F (X) as in the previous subsection. Thus (9.4) is seen to be of the form

Xn+1 ≈ Xn + tF (Xn),

an approximation of (9.2), (9.3) which recovers the solution of these equations
in the limit t→ 0.

In situations where the approximation (9.2), (9.3) or (9.4), (9.5) fails, the
approach in [MMK02] proposes a rational closure scheme, in contrast to the
somewhat ad hoc closure proposed in [BCC00]. The idea in [MMK02] is to
propagate a number of moments of X rather than just the mean. Let

X(j) = E[x(t)j | x(0) = x0],

and let ρ(x, y, t;X(1), . . . , X(k)) denote the probability density function for
(1.2), started from measure ν, conditional on knowing the first k moments
of x(0). The natural generalization of (9.4), (9.5) is the map

X
(j)
n+1 = Γ(j)(X(1)

n , . . . , X(k)
n ),

where

Γ(j)(X(1), . . . , X(k)) =

∫
ρ(x, y, t;X(1), . . . , X(k)) xj dxdy.
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By increasing k this gives a rational way of improving the approximation un-
derlying equations (9.2), (9.3) because, under certain regularity assumptions,
the moments of x do form a basis for the Master Equation.

However, the moments may form an ill-conditioned basis and, in general,
a better choice of basis will give rise to improved approximation of the dy-
namics for x(t). However, for a number of problems similar to those outlined
in Section 8, including problems in chemical reactions, but also more com-
plex systems such as lattice Boltzmann models for fluids, the idea of using
moments to represent the system is physically natural, and algorithmically
successful.

The approach outlined here may yield considerable savings when embed-
ded in bifurcation or continuation software. The approach is studied, by
applying it to the heat bath examples of Subsection 7.3, in [BKS03]. An-
other possible saving arises if the computational approximation to F (X)
found by integrating the full system over step t, is used to propagate the
system through time T > t, using

Xn+1 = Xn + TF (Xn).

For systems with scale separation, such as (5.6) and those in Subsection
6, Vanden-Eijnden has derived a new numerical method designed to make
similar savings, exploiting decorrelation of fast variables to justify the ac-
curacy [VE03], and building on the asymptotics based mode elimination of
[MTVE01]. The method described in this section is more general than that
of [VE03], but is less efficient when applied to the particular classes of scale-
separated problems for which Vanden-Eijnden’s method is purpose-built.

9.5 Coarse Time-Stepping

A related idea is to integrate (1.1) by a time-stepping method which does
not resolve time-scales in y. In general this approach will fail because of nu-
merical instabilities or resonances between the time-step frequency and fast
unresolved-scales (see [AR99] for example). However, there are situations
where unresolved simulations correctly reproduce macroscopic behaviour,
and one example is for models similar to the Hamiltonian heat bath model
of Example 7.3 [SW99, CSSW01, HK02a]. One approach to coarse time-
stepping is introduced in [TQK00], with applications to problems of the type
described in Section 8 covered, for example, in [MMK02, MMPK02]. Appli-
cation of related algorithmic ideas to the dynamics of a biomolecule may be
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found in [HK02b]. Another approach is to use different time-steps for the
fast and slow contributions to the force [GASSS98].

9.6 Transfer Operator Approach

The methods of optimal prediction and coarse-grained integration, describe
algorithms which attempt to approximate the dynamics of various moments
of x, given the full evolution equations for z = (x, y). The transfer operator
approach is a more sophisticated, and in general more expensive, attempt
to represent the dynamics in x by a small number of degrees of freedom.
To simplify exposition of the method, we describe an idealization studied in
[HSS03]. In practice the algorithm is used in a more complex fashion and
details may be found in [DHFS00].

Imagine that we are given a sampled time series zn = z(n∆) ∈ Z for
some ∆ > 0, z(t) solving (1.1). By projecting into X we find the sequence
xn ∈ X , n ∈ Z. From this it is possible to find an empirical Markov chain
on some finite partition of X , say X δ. The maximum likelihood estimator
of this Markov chain simply counts the number of transitions xn makes from
state i to j as a proportion of all transitions from i. This gives a Markov
transition matrix P . The idea of the transfer operator approach is to try
and extract from this matrix P , a simpler Markov chain on a state space
of low dimension. This idea works well, and can be rigorously justified,
when the matrix P has a single eigenvalue on the unit circle, necessarily at
1, with a small cluster of eigenvalues, say m − 1, near to the unit circle,
and the rest of the eigenvalues separated by an order one amount (measured
in terms of the nearness of the m − 1 dominant eigenvalues) from the unit
circle. It is then possible to find a Markov chain on an m−dimensional state
space which accurately approximates the coarse dynamics of the problem. In
[HSS03] various models similar to those described in Subsection 7.2 are used
to evaluate the Transfer Operator approach.

9.7 Other Literature

The algorithmic derivation of effective coarse-grained equations for both
static and dynamic problems, and for both ODEs and PDEs, is a subject of
growing importance. It would be impossible to do justice to the whole field, so
we simply mention here several representative references. The asymptotics-
based mode elimination of Section 6 is developed into a numerical method in
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[VE03]. The work of Keverekidis, outlined in Subsection 9.4 is representative
of a general philosophy, which is further generalized in [GK, KGH+02]. A
related approach is developed in [EE03], with applications across a range of
problems. For PDEs with multiple-scales there is interesting recent work,
using finite elements built on micro-structure, which addresses spatial issues
analogous to the temporal issues considered in this paper; see for example
[Hug95, EHW00]; see [Bra01] for a recent review on multiscale methods.

The idea of scale separation and the resulting invariant manifolds, out-
lined in Section 4, has been used as the basis for numerical algorithms applied
to Galerkin truncations for PDEs. Here x represent the low wave number
modes, and y the remainder and the algorithms attempt to approximate
numerically the function η. A useful reference where this is studied in an
applied context is [KJT90], and a discussion of the rate of convergence of
such algorithms may be found in [DMT93]. A more recent perspective on
these methods, and a cheap implementation through post-processing of the
standard Galerkin method, is discussed in [GANT02].

Acknowledgements This paper is based on the 2002 Ron Diperna Memorial
Lecture, given by AMS at the Mathematics Department, University of Cal-
ifornia, Berkeley, February 7th 2002. The authors are grateful to Xinyu He
for helping with some preliminary numerical calculations and to Zvi Artstein,
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[HSS03] W. Huisinga, C. Schütte, and A.M. Stuart. Extracting macro-
scopic stochastic dynamics: model problems. Comm. Pure Appl.

Math., 56:234–269, 2003.

[Hug95] T.J.R. Hughes. Multiscale phenomena: Green’s functions, the
Dirichlet-to-Neumann formulation, subgrid-scale models, bub-
bles and the origins of stabilized methods. Computer Methods

in Applied Mechanics and Engineering, 127:387–401, 1995.

[HV02] C. Haselwandter and D. Vvedensky. Fluctuations in the lattice
gas for Burgers’ equation. J. Phys. A: Math. Gen., 35:579–584,
2002.

[JGB+03] W. Just, K. Gelfert, N. Baba, A. Riegert, and H. Kantz. Elimi-
nation of fast chaotic degrees of freedom: on the accuracy of the
Born approximation. J. Stat. Phys., 112:277–292, 2003.

[JKRH01] W. Just, H. Kantz, C. Rödenbeck, and M. Helm. Stochastic
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