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Abstract Model-driven software modernization is a disci-

pline in which Model-Driven Development (MDD) techniques

are used in the modernization of legacy systems. When exist-

ing software artefacts are evolved, they must be transformed

into models in order to apply MDD techniques such as model

transformations. Since most modernization scenarios (e.g.,

application migration) involve dealing with code in general

purpose programming languages (GPL), the extraction of mod-

els from GPL code is an essential task in a model-based mod-

ernization process. This activity could be performed by tools

to bridge grammarware and MDD technical spaces, which is

normally carried out by dedicated parsers.

Gra2MoL is a Domain-Specific Language (DSL) tailored

to the extraction of models from GPL code. This DSL is

actually a text-to-model transformation language which can

be applied to any code conforming to a grammar. Gra2MoL

aims to reduce the effort needed to implement grammarware-

MDD bridges since building dedicated parsers is a complex

and time-consuming task. Like ATL and RubyTL languages,

Gra2MoL incorporates the binding concept needed to write

mappings between grammar elements and metamodel ele-

ments in a simple declarative style. The language also pro-

vides a powerful query language which eases the retrieval of

scattered information in syntax trees. Moreover, it incorpo-

rates extensibility and grammar reuse mechanisms. This pa-

per describes Gra2MoL in detail and includes a case study

based on the application of the language in the extraction of

models from Delphi code.

Key words Model-Driven Engineering, Model-Driven Soft-

ware Development, Domain-Specific Languages, Software Mod-

ernization, Model-Driven Software Modernization.

1 Introduction

Model-Driven Software Development (MDD) is gaining in-

creasing acceptance, mainly as a result of its ability to raise

the level of abstraction and automation in the construction

of software. Although the most common MDD approaches

(e.g., MDA, software factories or domain-specific develop-

ment) are aimed at building new software systems, models

have also shown the potential to evolve existing systems. MDD

techniques, as metamodeling and model transformations, can

help to reduce software evolution costs and improve the qual-

ity of the artifacts evolved by automating many basic activi-

ties in software change processes, such as representing source

code at a higher level of abstraction [1] or obtaining informa-

tion such as metrics [2].

The growing interest in using MDD to manage software

evolution is mainly focused on the reengineering or modern-

ization of legacy systems. Several software migration projects

have been carried out with model-driven approaches [1,3,4];

modernization tool vendors are offering model-driven solu-

tions (OBEO or Mia Software); and the OMG’s Architecture

Driven Modernization (ADM) initiative [5] is defining a set

of standard metamodels with which represent the information

normally managed in modernization tasks.

When software artefacts are evolved by applying MDD,

it is necessary for them to be represented as models in order

to execute model transformations that generate new evolved

artefacts. For example, in a scenario of language-to-language
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migration, the first step is to extract models from the applica-

tion code written in the source language. Similarly, in a mod-

ernization process to improve the data quality, models should

be extracted from data schemas. Once these initial models

have been obtained, model transformations can be applied to

generate higher level abstraction models and finally the new

artefacts (e.g., code in other language or an improved data

schema). Other operations on models, such as model com-

parison or synchronization, may also be applied.

Since most modernization scenarios [6], such as language-

to-language conversion or platform migration, involve deal-

ing with code expressed in some general purpose program-

ming languages (GPL), techniques and tools providing effi-

cient means to extract models from GPL code are essential

in model-driven modernization. In these scenarios, models

conforming to a target metamodel (e.g., an abstract syntax

tree metamodel) should be obtained from source code con-

forming to the grammar of a GPL. Although a modernization

can also involve non-GPL code, which could also conform

to a grammar (e.g., code of scripting language), most of the

source code to be evolved is GPL code.

The relationship between the pairs of concepts grammar/-

program and metamodel/model is an example of a bridge be-

tween two different technical spaces [7], in particular gram-

marware and MDD (a.k.a. modelware). Several tools whose

aim is to define textual Domain-Specific Languages (DSLs),

such as Xtext [8] or EMFText [9], provide a grammarware-

modelware bridge which allows models to be extracted from

a DSL program. However, these tools are not appropriate for

the extraction of models from GPL code because DSLs have a

simpler structure than GPLs, which require an in-depth cus-

tomization of the tool. Dedicated parsers (a.k.a. model dis-

coverers) [1,3] are therefore normally implemented to obtain

models from code conforming to a grammar. These parsers

perform model generation tasks in addition to code parsing.

Firstly, a syntax tree (i.e., an abstract or concrete syntax tree)

is created from the source code, and this syntax tree is then

traversed to obtain the information needed to create the model

elements. This is a complex task which requires both collect-

ing scattered information and resolving references in the syn-

tax tree.

Since the construction of such dedicated parsers is a time-

consuming task, we have defined a DSL, called Gra2MoL

(Grammar-to-Model Transformation Language), which has

been specifically designed to extract models from GPL code,

although it can be used for any software language conforming

to a grammar. Model transformations are classified into three

categories [10]: model-to-model transformations whose input

and output are models; model-to-text transformations, which

generate software artefacts (e.g., GPL code and database

schemas) from a source model, and text-to-model transfor-

mations which obtain models from existing software arte-

facts. Gra2MoL would therefore be a text-to-model transfor-

mation language whose source artifacts must be described by

a grammar. While there are a number of transformation lan-

guages for model-to-model transformations (e.g., ATL [11],

QVT [12] or RubyTL [13]) and model-to-text transforma-

tions (e.g., MofScript [14], Xpand [15]), Gra2MoL might be

considered the first proposal for a text-to-model language, at

least to the best of our knowledge.

When designing a model transformation language, two

key design choices are how to express the mappings between

source and target elements and how to navigate through the

source artefact. Gra2MoL allows mappings to be established

between grammar elements and target metamodel elements

in a declarative manner that is similar to how mappings are

expressed in model-to-model transformation languages such

as ATL or RubyTL by using the binding construct [11]. Fur-

thermore, as a Gra2MoL transformation represents the code

in the form of a syntax tree, Gra2MoL provides a powerful

query language to ease the navigation and querying of such a

tree when writing mappings.

A first version of Gra2MoL, which supported the core

features of the language, was presented in [16,17]. Since then,

the language has evolved to include new basic features such

as: i) reuse mechanisms at rule-level (i.e., mixin rules), ii)

a new kind of rule for dealing with expressions efficiently

(i.e., skip rules), and iii) an extensibility mechanism to add

new operators. In addition, the development of new features

along with the experience gained in using the language in

several case studies (model extraction from PL/SQL, Delphi,

Bash scripts and more are included in the Gra2MoL website

[18]) allowed us to identify new functionalities with which to

improve the expressiveness, usability and performance. The

new added extensions are the following: i) iterators and op-

erators in the query language, ii) copy rules as they exist in

ATL and RubyTL, iii) CDO and Morsa model repositories are

supported to manage large models efficiently, and iv) support

for island grammars. Experiences with Gra2MoL have shown

significant advantages in relation to using dedicated parsers: a
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Fig. 1 Process of extracting models from source code.

reduction in development time, the maintenance is facilitated

and existing grammars can be reused.

This paper is organized as follows. Section 2 analyzes

the difficulties encountered when using existing solutions for

model extraction, and the motivation for Gra2MoL is pre-

sented. In Section 3, we describe the language used to query

concrete syntax trees provided by Gra2MoL. Section 4 presents

the main features of Gra2MoL and explains how it has been

implemented, while Section 5 shows an example of the lan-

guage. Finally, Section 6 presents our conclusions and some

future work.

2 Model Extraction from Source Code

This section aims to motivate the approach proposed in this

paper. Firstly, model extraction is presented as a task which

requires a bridge to be built from grammarware to model-

ware, and then several approaches are contrasted as possi-

ble techniques for implementing such a bridge. We identify

the main issues to be addressed and discuss the limitations of

each approach. Finally, we introduce the Gra2MoL language

and indicate how this DSL overcomes the limitations identi-

fied previously.

Figure 1 shows the elements involved in the process of

extracting models from code conforming to a grammar. This

process is a text-to-model transformation T which has as its

input a program P along with the grammar definition G to

which it conforms. The transformation manages P as either

an Abstract Syntax Tree (AST) or a Concrete Syntax Tree

(CST). In this paper, we will use the term “syntax tree” to

refer to both AST and CST. The execution of T generates

a target model MT conforming to a target metamodel MMT

representing the information to be extracted, which is usually

more complex than a syntax tree. The extraction process is

driven by a specification of the mappings between the gram-

mar elements and the metamodel elements. As we will see,

Metamodel

Model

modelware

conforms

conforms

EBNF

Grammar

Program

grammware

conforms

conforms

Real World Things

conforms

Real World Things

conforms

M0
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M2

M3

M0
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M3
Meta-metamodel

(Ecore, MOF)

Fig. 2 Bridge between grammarware and MDE technical spaces.

the form of these mappings is different depending on each

approach considered for the extraction.

The notion of bridging technical spaces is proposed in [7]

to address the integration of MDD with other technologies

(e.g., grammar, XML or ontologies). A text-to-model trans-

formation is therefore an example of a task which requires a

unidirectional bridge to be built between grammarware and

modelware technical spaces as illustrated in Figure 2, which

shows OMG’s layered metamodeling architecture as realized

for these technical spaces.

With GPL code, creating this bridge requires an efficient

mechanism with which to traverse syntax trees since the model

elements to be extracted are usually composed of information

that is scattered in such trees. In particular, this scattering is

mainly caused by the means used to represent the references

between elements. Models are graphs and any model element

can directly refer to another, whereas in a syntax tree that

represents certain code which conforms to a GPL grammar,

the references between grammar elements are implicitly es-

tablished by means of identifiers. Transforming an identifier-

based reference into an explicit reference involves looking

for the “identified” node on the syntax tree. For instance, if a

model element is extracted from a “function call” statement

where one argument is a global variable, certain necessary

information, such as the type of the variable or the function

signature, is located outside the current scope ([19] calls this

kind of transformations global-to-local transformations). The

scattering problem may also appear when the semantic gap

between the source code and the target metamodel is high,

e.g., a model element representing a metric that counts the

number of classes could require the traversal of the source

code in order to count all class declarations in Java.
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Two main issues to be tackled by a mechanism for ex-

tracting models from GPL code are therefore: i) establishing

the mapping between grammar elements and metamodel el-

ements, and ii) retrieving scattered information from syntax

trees. Next, we analyze how dedicated parsers, DSL defini-

tion tools, program transformation languages and model-to-

model transformation languages could be used to build gram-

marware-modelware bridges in the case of GPL code.

2.1 Approaches for Model Extraction

Dedicated Parsers

The chosen strategy is normally that of creating dedicated

parsers. Given a grammar and a target metamodel, a dedi-

cated parser provides a specific solution which performs both

parsing and model generation tasks. The former is in charge

of extracting a syntax tree from the source code and the lat-

ter traverses this syntax tree in order to generate the target

model. For example, both in [1] and [4] dedicated parsers are

built to extract models from PL/SQL code. However, dedi-

cated parser development is a time-consuming and expensive

task because the syntax tree traversals must be hardcoded in

order to both collect scattered information and resolve refer-

ences. In addition, mappings are also hardcoded, which hin-

ders mantainability. The effort required is usually alleviated

by automatically extracting an AST from the source code.

This step is performed by using an API, which is intended to

make the management of this tree easier. An example of such

APIs is the JDT Eclipse project [20], which works with Java

source code. But APIs do not currently exist for a number of

the GPLs widely used in modernization (e.g., PL/SQL lan-

guage). In addition, although these APIs tackle AST extrac-

tion and management, a mechanism for retrieving scattered

information must still be hard-coded, so APIs do not consid-

erably shorten the development time.

A strategy to help to build dedicated parsers is supported

by the MoDisco (Model Discovery) modernization frame-

work [21], which is part of the Eclipse Generative Model-

ing Technology (GMT) component [22]. This framework is

currently under development and its objective is to facilitate

the construction of tools to support software modernization

use cases. It provides i) a set of metamodels to describe soft-

ware systems (e.g., an implementation of the KDM meta-

model [23]), ii) tools to understand complex systems (e.g.,

a model editor specially adapted to deal with huge models)

and iii) dedicated parsers (“discoverers” in MoDisco termi-

nology) to obtain models from legacy systems and use them

in modernization use cases. The discoverers which are cur-

rently available allow models representing the syntax tree to

be extracted from XML files and Java source code. The de-

veloper must therefore traverse the extracted models to obtain

models conforming to the target metamodel and model-to-

model transformations are still needed. It is also important to

note that our approach was developed at the same time that

MoDisco was being implemented.

DSL Definition Tools

The definition of textual DSLs aimed to express models in

MDD solutions is another scenario in which a grammarware-

modelware bridge is needed. Since textual DSL definition

tools (a.k.a language workbenchs [24]) provide the function-

ality of converting DSL programs into models and vice versa,

they must implement one of these bridges. These tools gener-

ate a dedicated parser and a DSL editor from the specification

of the DSL’s abstract and concrete syntaxes. They may there-

fore be considered as an alternative to developing a dedicated

parser.

Two approaches are supported by these tools in order to

specify both the abstract and the concrete syntaxes. In grammar-

based tools, such as Xtext [8] and TEF [25], the developer

uses an EBNF-like notation to specify both the grammar, which

include rules intended to specify the mapping for the corre-

sponding metamodel, and the concrete syntax. In some cases,

such as in Xtext, the metamodel can also be automatically

generated from this specification. On the other hand, metamodel-

based tools, such as EMFText [9] and TCS [26], have as in-

put a metamodel with annotations that specify the concrete

syntax, and the grammar is automatically generated from this

annotated metamodel. Indeed, a tool can support both ap-

proaches as in the case of the last version of Xtext.

Metamodel-based definition tools are not well suited to

dealing with GPLs as is stated in [26]: “If the problem at

hand is to develop a single, eventually general purpose lan-

guage then the efforts for developing a dedicated parser are

worthwhile” (rather than using TCS). As a DSL has a simpler

structure than a GPL, these tools do not address several prob-

lems encountered in the management of GPL code. This un-

suitability is evidenced when EMFText is used to implement

bridges for GPLs. The tool must be customized in depth,

mainly to adapt the generated grammar to the GPL one. For

instance, the work needed to implement a Java bridge im-



Extracting Models from Source Code in Software Modernization 5

plied so many changes to the tool that a new project called

Jamopp [27] had to be created. Moreover, these approaches

are not well suited to a model-driven modernization since a

metamodel corresponding to the GPL grammar is not usually

available.

With regard to grammar-based approaches, several im-

portant limitations arise when they are used to extract mod-

els from GPL code. Regarding Xtext, the metamodel gen-

erated is of poor quality because it includes superfluous el-

ements and grammatical aspects, and the semantic gap be-

tween this metamodel and the desired target metamodel (e.g.,

an AST metamodel) is thus very high. A model-to-model

transformation is therefore required to convert models gen-

erated by Xtext into models conforming to the desired meta-

model. However, since current model-to-model transforma-

tion languages do not offer an efficient mechanism to resolve

the problem of gathering scattered information, the definition

of this transformation is a complex task, as described below

when commenting on model transformation languages. With

regard to TEF, although this tool can use any target meta-

model, it only provides mechanisms to resolve simple refer-

ences existing in DSLs (i.e., identifier-based references), for

more complex references (e.g., package-based references in

GPLs) it would require reference solvers to be hardcoded.

Moreover, neither existing grammar reuse (i.e., the reuse

of grammars for well-known parser generators such as ANTLR)

nor the reuse of Xtext/TEF grammar specifications is pro-

moted. On the one hand, translating a grammar specification

provided by a parser generator into the EBNF-based specifi-

cation used is extremely complicated since some parser op-

tions which are needed to recognize GPLs cannot be speci-

fied (e.g., in Java, the use of backtracking or the inclusion of

syntactic predicates). On the other hand, these grammar spec-

ifications are oriented towards a specific metamodel so they

include specific rules for such a metamodel.

Wimmer et al. [28] and Kunert [29] have proposed im-

proving the quality of the generated metamodel by applying

heuristics and including manual annotations to the grammar.

However, the quality of the metamodel generated from a GPL

grammar is still low and it is necessary to additionally define

a model-to-model transformation. Moreover, tools supporting

these two approaches are not yet available.

Prinz et al. [30] presented a metamodel-based approach

to define the SDL language which outlines a notation for

expressing mappings between grammar and metamodel el-

ements. However, when using this framework with GPLs, the

main problem which arises is the lack of support for resolv-

ing references. Although the concept of identifier resolvers

is incorporated to tackle this problem, it is still necessary to

hardcode them.

Program Transformation Languages

Program transformation languages, such as Stratego/XT [31]

and TXL [32], could be used to extract models from source

code by expressing the abstract syntax as a context-free gram-

mar rather than a metamodel. However, when such languages

are used, the following limitations are encountered. Firstly,

the result of a program transformation execution is a program

conforming to a grammar, and a tool for bridging grammar-

ware and modelware would still therefore be needed to ob-

tain the model conforming to the target metamodel. Secondly,

grammar reuse is not promoted because each toolkit uses

its own grammar definition language. Moreover, each toolkit

only provides a limited number of GPL grammars (i.e., Java

and C in Stratego and TXL).

Model Transformation Languages

Similarly, model-to-model transformation languages could also

be used by first obtaining a simple intermediate model (i.e.,

a syntax tree model) from the code by means of a dedicated

parser. However, defining the transformation would lead to

an important problem: the inadequacy of the query language.

Most model transformation languages, such as ATL or QVT,

provide a variant of the OCL navigation language [33] which

allows model graphs to be traversed. Although OCL-like ex-

pressions are appropriate for most practical model-to-model

transformations, they are not convenient for typical global-

to-local transformations involved in a model extraction from

GPL code: long navigation chains must be written using dot

notation, as we illustrate in Section 3. Integrating a more suit-

able query language into an existing model transformation

language would involve important changes if a language sup-

porting two different query mechanisms were to be obtained.

For instance, a plugin mechanism could be implemented.

2.2 Our approach for Model Extraction

In the context of an Oracle Forms migration project, we con-

fronted model extraction from PL/SQL code. We therefore

considered the definition of a domain specific language in or-

der to overcome the limitations of the previously discussed

approaches. This DSL had to shorten the development time,
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rule 'example'
   from methodDeclaration mDec
   to Method
   queries
      q1 : /mDec///#param;
   mappings
      name    = mDec.Name;
      params = q1;
end_rule

methodDeclaration:
  Name "(" param ")" 
  ...
  ;

param:
  Type Name param?
  ;
...

Method
name : String

Parameter
name : String

params0..*

grammar mapping rule metamodel

Fig. 3 Simple example of a Gra2MoL mapping definition.

make the maintenance easier and promote the reuse of ex-

isting grammars (e.g. ANTLR and JavaCC grammars). To

achieve these objectives, it was necessary to raise the two

key design issues indicated in Section 2: how can mappings

between grammar elements and metamodel elements be ex-

pressed in a simple and readable way, and what notation is

appropriate when retrieving scattered information from syn-

tax trees.

The DSL created, denominated as Gra2MoL (Grammar

To Model Transformation Language), provides constructs with

which to write mappings at a high level of abstraction in

a declarative style similar to how mapping are expressed in

model-to-model transformation languages such as ATL or

RubyTL. With regard to the support of traversing syntax trees,

Gra2MoL provides a powerful query language for syntax trees.

This query language is introduced in the following section

and the DSL is described in detail in Section 4.

Figure 3 shows a first example of how Gra2MoL is used.

A Gra2MoL definition consists of a set of rules, each one

of which express the mapping between a grammar element

and a model element. The Gra2MoL definition shown in the

example is very simple, and only contains the rule named

❡①❛♠♣❧❡ which transform a ♠❡t❤♦❞❉❡❝❧❛r❛t✐♦♥ grammar

element (see Figure 3a) into the ▼❡t❤♦❞ metamodel element

(see Figure 3c) according to the from and to parts of the rule.

The mapping part express how the information of the model

element is obtained from the information in the syntax tree.

In this example, the ♥❛♠❡ attribute of the ▼❡t❤♦❞ model el-

ement is first initialized by accessing to the ◆❛♠❡ grammar

element of the ♠❡t❤♦❞❉❡❝❧❛r❛t✐♦♥ grammar element re-

ceived by the rule (variable ♠❉❡❝). The ♣❛r❛♠s reference

is then initialized by using the q✶ query, which collects ev-

ery ♣❛r❛♠ grammar element representing the paramteres of

the method. Note that mappings are specified explicitly and a

specific query language is used to traverse the syntax tree.

Table 1 contrasts Gra2MoL with the approaches analyzed.

The columns show the properties which are compared: the

ability to navigate the syntax tree; which artifacts must be

created; whether pre-processing (only required in MoDisco

when there is no discoverer for the GPL at hand) and/or post-

processing is necessary (it is normally required to eventu-

ally obtain a model conforming to the desired metamodel);

whether it is possible to reuse existing (e.g., grammars pro-

vided by ANTLR) and provided grammars (i.e., grammars

defined by the formalism used in the approach); and the main

purpose of the approach. The artifacts to be created, and both

the pre-processing and post-processing tasks determine the

level of effort involved in each approach. For instance, we

note that bridging and program transformation approaches

require more complex tasks than Gra2MoL, such as writing

model-to-model transformations or defining a GPL grammar,

whereas in Gra2MoL it is only necessary to create the trans-

formation definition and the target metamodel. Both model-

to-model and MoDisco approaches requires a great effort to

define the model transformation needed to obtain the target

model. In addition, MoDisco also requires implementing the

discoverer if the language involved is not Java or XML. With

regard to the creation of a dedicated parser, Gra2MoL turns

a hard-coding task into the writing of a grammar-to-model

transformation definition using a language specially tailored

to the extraction of models. As a consequence, development

time is reduced by using Gra2MoL.

3 A Query Language for Concrete Syntax Trees

As stated previously, transforming GPL into models involves

the intensive use of traversals through the syntax tree to col-

lect scattered information. A model extraction language must

therefore provide a powerful query language, which facili-

tates the access to tree nodes outside the current construct

scope (i.e., a rule). Figure 4 illustrates the scattering prob-

lem for a simple example of extracting an ASTM model ele-

ment from a Delphi procedure. ASTM (Abstract Syntax Tree

Metamodel) [35] is a metamodel provided by ADM to repre-

sent the source code of the software system as ASTs. Since

the scattered information problem appears in both AST and

CST, and obtaining a CST is easier than obtaining an AST,

Gra2MoL uses CSTs to represent the source code. The CST

shown in Figure 4 corresponds with a procedure declaration

which includes a variable declaration and an assignment state-

ment initializing the declared variable. The ❇✐♥❛r②❊①♣r❡ss✐♦♥

model element represents binary expressions, which are used

to represent assignments in ASTM. This model element has
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Table 1 Comparison of Gra2MoL with the analyzed approaches. NA = Not applicable, G = Grammar, MMT = Target metamodel, MMI =
Intermediate metamodel, T = Transformation definition, P = Dedicated parser, TPT = Program transformation definition, Gxt = xText/TEF
grammar, m2m = model-to-model transformation definition, GAS = Abstract syntax grammar, D = Discoverer.

Approach Syntax tree
navigation

Artifacts
to be

created

Pre
processing

Post
processing

Existing
grammar

reuse

Provided
grammar

reuse

Purpose

Dedicated
parser

(+ API)

GPL code
(+ primitives)

MMT

P

None None Yes NA Specific model
extraction

MoDisco
OCL-like query
languages

MMT

D

Discoverer (if not
dealing with Java or
XML)

M2M transf.:
MMI → MMT

Yes NA General purpose
model extraction

DSL
definition

tools

Poor support Gxt

MMT

m2m

None M2M transf.:
MMI → MMT

No No DSL creation

Program
transf.

Stratego incor-
porates a query
language [34]

MMT

TPT

GAS

m2m

None Extracting a model
from a program
conforming to GAS

Limited
(a few
gram-
mars)

Yes Program transfor-
mation

Model
transf.

OCL-like query
languages

MMT

P

m2m

None None Yes NA Model transforma-
tion

Gra2MoL
Structure-shy

query language
MMT

T

None None Yes NA General purpose
model extraction

two properties to register the right-hand side and left-hand

side expressions of the assignment (i.e., r✐❣❤t❖♣❡r❛♥❞ and

❧❡❢t❖♣❡r❛♥❞ references, respectively) in addition to a prop-

erty to specify that the binary expression is an assignment

(i.e., ♦♣❡r❛t♦r reference). As can be observed, whereas all

the information needed to initialize the right-hand side at-

tribute (the ❡①♣r❡ss✐♦♥ grammar element of the assignment)

is inside the current scope (depicted as an oval), the informa-

tion needed to initialize the left-hand side attribute is outside

this scope, because the ♠s❣ variable declaration is referenced

by an identifier. A query language might therefore help to

resolve this reference to the ♠s❣ variable, by providing navi-

gation constructs for accessing the corresponding declaration

node and retrieving the variables properties.

We have created a structure-shy query language, inspired

by XPath [36], which allows a CST of the source code to be

navigated without the need to specify each navigation step.

The terms “structure-shy” is often used to refer to behaviour

specifications (e.g., queries) which are loosely bounded to the

data structures on which operations (e.g., syntax trees) are

applied.

In order to navigate the CST, the nodes are “typed” using

the grammar definition, and each tree node registers the name

of the grammar element as its type. Figure 5 illustrates the

conformance relationships between the CST and the gram-

mar definition, showing a CST for several Delphi procedures

along with the corresponding fragment of Delphi grammar.

The conformance rules are those commonly used to create a

tree of this kind:

– A non-terminal element corresponds to a tree node. For

instance, the ❞❡❝❧❴s❡❝t✐♦♥ non-terminal element cor-

responds to the ❞❡❝❧❴s❡❝t✐♦♥ tree node in Figure 5.

– A terminal element corresponds to a leaf. In Figure 5, the

■❉ terminal corresponds to the ■❉ leaf.

– A production rule is represented by a node hierarchy whose

parent corresponds to the non-terminal element on the

left-hand side of the rule, and a child for each grammar

element on the right-hand side by applying the previous

rules. In Figure 5, the ❞❡❝❧❴s❡❝t✐♦♥ production rule is

represented by the hierarchy whose root is a ❞❡❝❧❴s❡❝t✐♦♥

tree node.

A query consists of a sequence of query operations, each

of which includes four elements: an operator, a node type,

a filter expression (optional) and an access expression (op-

tional). Moreover, a query can be prefixed by a control state-

ment. The EBNF expression for a query operation is:

❬❝♦♥tr♦❧❪ ④ ✭✬✴✬⑤✬✴✴✬⑤✬✴✴✴✬✮ ✭✬★✬✮❄ ♥♦❞❡❚②♣❡

❬❢✐❧t❡r❊①♣r❡ss✐♦♥❪ ❬❛❝❝❡ss❊①♣r❡ss✐♦♥❪ ⑥

We have defined three operators with which to query and

navigate over CSTs: ✴, ✴✴ and ✴✴✴. The ✴ operator returns the
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Delphi Code Delphi CST ASTM Model

PROCEDURE print();
  var msg : string;
BEGIN
   ...
   msg = ...
   ...
END;

: BinaryExpression

: NameReferenceleftOperand

rightOperand
: Expression

: Assignoperator

: VariableDeclaration
refersTo

program
program_block

block

decl_section
var_section

var_decl
ident_list

type
string_type

compoundStmt
stmtList

statement

ID
'msg'

designator

expression
'msg'

decl_section
procFuncDelaration

designator
ID

block
'print'

ID

Fig. 4 Example of scattered information. The oval indicated the current scope and the dotted line indicates an identifier-based reference
between tree elements.

Delphi Code Delphi grammar definition Delphi CST

program:
  ('program' ident)? programBlock '.'
;

programBlock:
  (usesClause)? block
;

block
  : (declSection)* (exportsStmt)* 
     compoundStmt (exportsStmt)*  
  ;

declSection
  : varDeclaration
  | procFuncDeclaration
  | ...
  ;

procFuncDeclaration
  : 'function' designator (formalParam)? ':' type ';' block ';'
  | 'procedure' designator (formalParam)? ':' block ';'
  ;

varDeclaration
  : designator ':' type
  | ...
  ;

designator 
  : ID
  ;

PROCEDURE print();
  var msg : string;
BEGIN
   ...
   msg = ...
   ...
END;

PROCEDURE exec();
  ...
END;

PROCEDURE exit();
  ...
END;

program
program_block

block

...

decl_section
procFuncDelaration

designator
ID

block

...

decl_section
procFuncDelaration

designator
ID

block

...

decl_section
procFuncDelaration

designator
ID

block

'print'

'exec'

'exit'

Fig. 5 CST for an excerpt of the Delphi grammar.

immediate children of a node and is similar to dot-notation

(e.g., in OCL). The ✴✴ and ✴✴✴ operators permit the traversal

of all the child nodes (direct and indirect), thus retrieving all

nodes of a given type. The ✴✴✴ operator differs slightly from

the ✴✴ operator. Whereas the ✴✴✴ operator searches the syn-

tax tree in a recursive manner, the ✴✴ operator only matches

the nodes whose depth is less than or equal to the depth of

the first matched node. The ✴✴✴ operator is, therefore, only

used to extract information from recursive grammar struc-

tures. These two operators allow us to ignore intermediate

superfluous nodes, thus making the query definition easier,

since it specifies what kind of node must be matched, but

not how to reach it, in a structure-shy manner. The ♠❛♣❈❛❧❧
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Locals(p : program) : Sequence(varDeclaration)
post result = 
  if(p.programBlock.block.declSection = oclIsUndefined()) 
  then
    Sequence {}
  else 
    p.programBlock.block.declSection->
      select (pd | ds.oclIsKindOf(procFuncDeclaration))->
      collect(e | e.block.declSection)->flatten()->
      select (vd | ds.oclIsKindOf(varDeclaration))
  endif

Fig. 6 OCL query for extracting all the variable declarations of ev-
ery procedure of the Delphi CST shown in Figure 5.

❋✉♥❝t✐♦♥ rule defined in Section 5.3 will illustrate the dif-

ference between both operators.

Since a query could return one or more subtrees, the ★ op-

erator is used to indicate the root node from which the infor-

mation needed can be accessed. This operator must be asso-

ciated with one and only one query operation of the sequence

of operations forming a query.

For instance, in order to extract all the Delphi variable

declarations defined in every procedure of the Delphi CST

shown in Figure 5, the following query could be expressed as

✴♣r♦❣r❛♠✴✴★✈❛r❉❡❝❧❛r❛t✐♦♥. The same query expressed

in OCL is shown in Figure 6. It is worth mentioning how the

clarity, legibility and conciseness are improved.

Query operations can also include a filter expression, which

is enclosed in curly brackets. A filter expression is a logical

expression which is applied to the leaves of the node specified

in a query operation. Each operand of a filter expression is a

boolean function which checks the properties of a leaf, such

as its value or whether it exists. Only those nodes that satisfy

the filter expression will be selected. For example, the query

✴♣r♦❣r❛♠✴✴★✈❛r❉❡❝❧❛r❛t✐♦♥✴❞❡s✐❣♥❛t♦r④■❉✳❡①✐sts⑥

✫✫ ■❉✳❡q✭✬♣r✐♥t✬✮⑥ will select every procedure grammar

element with an ■❉ leaf and the value of this leaf must be

♣r✐♥t in the Delphi CST shown in Figure 5.

Finally, query operations can also include an access ex-

pression enclosed in square brackets, which is used to access

to sibling nodes through indexing. For instance, the query

✴♣r♦❣r❛♠✴✴♣r♦❝❋✉♥❝❉❡❝❧❛r❛t✐♦♥❬✵❪ will select the first

procedure grammar element of the CST in Figure 5, which is

the ♣r✐♥t procedure.

The sequence of query operations that forms a query ex-

pression can be prefixed by a control statement which is sur-

rounded by curly braces at the beginning of the query. This

statement allows the execution of a query to be managed by

performing either a pre-process (i.e., query parameterization)

or a post-process (i.e., filtering). On the one hand, the query

q1 : //#varDeclaration;
q2 : {for each v in q1} //#statement/designator{ID.eq(v.ID)};

q3 : {greatest varDeclaration.Value} //procFuncDeclaration
                                                             //#varDeclaration;

(a)

(b)

Fig. 7 Control statement examples: (a) shows the use of such state-
ment to parameterize a query whereas (b) shows a filtering post-
process.

parameterization allows a query to be executed by using ex-

ternal information such as each of the result elements of a

previous query. Figure 7a shows an example of query param-

eterization which includes two queries. The query q✶ col-

lects all the variable declarations of a Delphi program and

the query q✷ then uses a ❢♦r ❡❛❝❤ iterator which parameter-

izes the query in order to obtain all the assignment statements

which use such variables. Notice that the control statement is

in charge of launching the query q✷ as many times as result

elements have q✶, bounding each element in the ✈ variable.

On the other hand, control statements can also be used

to filter the result elements once a query has been executed.

Figure 7b shows a query which collects all the variable dec-

larations (i.e., ✈❛r❉❡❝❧❛r❛t✐♦♥ elements) included in a pro-

cedure and then the ❣r❡❛t❡st control statement then selects

the variable whose ❱❛❧✉❡ leaf is the greatest. Gra2MoL in-

cludes the control statements explained previously along with

the ✇❤✐❧❡ and ❧❡❛st statements, which allow executing a

query as many times as the while condition and selecting

the leaf whose value is the least, respectively. Moreover, the

developer can define new statements by using the extension

mechanism explained in Section 4.5.

4 The Gra2MoL Language

Gra2MoL has been designed as a text-to-model transforma-

tion language. It is a rule-based language with rules whose

structure is similar to that provided in languages such as ATL

or RubyTL, with two important differences: i) the source el-

ement of a rule is a grammar element rather than a meta-

model element and ii) the navigation through the source code

is expressed by the query language presented for CSTs, rather

than an OCL-based-language.

An excerpt of the Gra2MoL abstract syntax, expressed as

a metamodel, is shown in Figure 8a and the concrete syntax

is illustrated in Figure 8b. As can be seen, a transformation

definition consists of a set of transformation rules (❘✉❧❡ ele-

ment). Gra2MoL includes four types of rules: normal, copy,
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(a)

(b)

rule '<ruleName>'
  from <sourceGrammarElement> <alias>
  to <targetMetaclass>
  queries
    { variable : queryExpression; }
  mappings
    { receptor = literal | queryResult | expression; }
end_rule

StandardRule
From

alias : String

To

Query
variable : String

Binding
receptor : String

to

1..1
from

1..1

queries
0..*

mappings
0..* Expression

rightExp
1..1

«datatype»
Grammar Element

«datatype»
Metaclass

type
1..1

type
1..1

QueryExpression
queryExp

1..1

            filter

1..1

Transformation

rules 1..*
Rule

Fig. 8 (a) Excerpt of the abstract syntax of Gra2MoL and (b) a
skeleton of its concrete syntax.

skip and mixin, as illustrated in Figure 9. Normal rules are

used to express a mapping between a grammar element and a

metamodel element, and they are therefore the rules normally

required. Copy rules are normal rules but they can transform

a source element more than once. On the other hand, skip

and mixin rules incorporate special behaviour into Gra2MoL

transformations which is explained in Section 4.3. Since nor-

mal and skip rules have the same syntactical structure, they

are categorized as standard rules. A standard rule is composed

of four parts:

– The from part specifies a grammar non-terminal symbol,

and declares a variable that will be bound to a tree node

when the rule is applied. This variable can be used by any

expression within the rule. The from part can also include

query operations (i.e., a filter) to check the structure to

be satisfied by the nodes whose type is the non-terminal

symbol.

– The to part specifies the target element metaclass.

– The queries part contains a set of query expressions which

allow information to be retrieved from the CST. The re-

sult of these queries will be used in the assignments of the

mappings part.

– Finally, the mappings part contains a set of bindings to

assign a value to the properties of the target element. It is

also possible to use control or imperative structures such

Rule

StandardRule MixinRule

NormalRule SkipRule

CopyRule

Fig. 9 Gra2MoL rule types.

as ✐❢ statements or ♥❡✇ statement to create instances of

metaclases, as occurs in Section 5.

4.1 Bindings and Rule Conformance

In order to express the relationship between a source gram-

mar element and a target metamodel element, Gra2MoL in-

corporates the binding construct used in ATL and RubyTL.

The syntax and semantics of this construct have been slightly

altered to be incorporated into Gra2MoL. A binding is writ-

ten as an assignment using the operator ❂. The left-hand side

must be a property of the target element metaclass. The right-

hand side can be the variable specified in the from part of the

rule, a literal value or a query identifier.

The rule evaluation is determined by a binding-based schedul-

ing mechanism inspired by the mechanisms of ATL and RubyTL.

The definitions of rule conformance and well-formed trans-

formation stated for RubyTL in [13] are applicable to Gra2MoL,

with simple changes.

Rule conformance. A rule conforms to a binding if the type

in its from part conforms to the type in the right-hand side of

the binding and the type in its to part conforms to the type in

the left-hand side of the binding, where the type conformance

is defined as follows.

Type conformance. A metaclass Am conforms to a metaclass

Bm if they are the same or Am is a subtype of Bm, whereas a

node type An conforms to a node type Bn if they are the same.

Well-formed transformation definition. A transformation

definition is well-formed if for each binding involving a non-

primitive type as left-hand side type, there exist one or more

conforming rules but there is one and only one applicable

rule. This means that if two or more conforming rules exist,

their filter conditions must be exclusive, since only one of

them can be applied.

The application of a binding therefore implies that a con-

forming rule exists which transforms the type of the right-
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hand side of the binding into the type of the left-hand side of

the binding.

4.2 Rule Evaluation

Every Gra2MoL transformation definition must have an en-

try point in order to start the transformation execution. The

entry point is the first normal rule of the transformation defi-

nition and its mappings are in charge of starting the transfor-

mation execution. In a Gra2MoL transformation definition,

only standard rules (i.e., normal, copy and skip rules) are el-

igible to be applied by a mapping, whereas mixin rules are

applied when the referring rule is executed, as we explain in

the following section.

When a rule is applied to a node, the filter located in the

from part is first checked and then, if the node satisfies the

filter, the rule will be executed. If it is a standard rule, an

instance of the target metaclass is created. Finally, the rule

bindings are executed regardless the rule type. In the applica-

tion of a binding, three situations may arise according to the

nature of the right-hand side.

– If it is a literal value, the value is directly assigned to the

property of the left-hand side.

– If it is a query identifier, the query is executed and a rule

conforming to this binding is looked up in the transfor-

mation definition. Whenever a conforming rule is found,

it is applied by using the element of the right-hand side of

the binding as the source grammar element.

– If it is an expression, it is evaluated and two situations

may arise, depending on whether the result is a node whose

type corresponds to a terminal (a leaf) or a non-terminal

symbol. If it is a leaf, the result is a primitive type and is

directly assigned; otherwise, a rule to resolve the binding

is looked up and executed, as was explained in the previ-

ous case.

4.3 Skip and Mixin Rules

Transforming the arithmetic and logical expressions of the

source code requires Gra2MoL to provide a special mecha-

nism to deal with the grammar structures usually involved.

The use of expressions in a programming language normally

causes the addition of a number of grammar rules which cre-

ates a new parse tree. These grammar rules are normally de-

fined in a chained manner in which each rule adds a new

expression

expressionAnd

simpleExpression simpleExpressionAnd

exp1 exp2

(a) (b)

expression
  : expressionAnd 
    ('Or' expressionAnd)*
  ;

expressionAnd
  : simpleExpression 
    ('And' simpleExpression)*
  ;

simpleExpression 
  : expressionPart 
    (relOp expressionPart)*
  ;

(c)

skip_rule 'skipExpression'
  from expression{!TOKEN[0].exists} exp
  to   Expression
  queries
    next : /exp/#expressionAnd
  mappings
    skip next;
end_rule

Fig. 10 (a) Grammar rules to parse both AND and OR expressions
and (b) the corresponding syntax tree for the expression ❡①♣r✶ ❆♥❞

❡①♣r✷. (c) Skip rule for the ❡①♣r❡ss✐♦♥ grammar element.

operator to the expression (see Figure 10a). Using normal

rules, the mappings between the grammar and metamodel

elements are usually direct, for instance, an OR expression

is normally mapped into a metamodel element which repre-

sents OR binary expressions. However, in some cases, pars-

ing a grammar element does not mean creating a model ele-

ment. For instance, given the grammar in Figure 10a, if the

expression grammar element does not contain the operator

(i.e., the ❖❘ token in the example, see Figure 10b), parsing

an ❡①♣r❡ss✐♦♥ grammar element will not imply creating a

metamodel element which represents an OR binary expres-

sion.

Gra2MoL therefore provides a special type of rule, called

skip rules, which are mainly aimed at extracting models from

expressions of programming languages. Skips rules allow the

creation of the instance of the metaclass specified in the to

part of the rule to be delayed until some computations to

grammar elements have been performed, for instance, the ex-

istence of the ❖❘ token in the example. Depending on the re-

sult of such computations, the execution can be transferred

to the apropriate rule by using the s❦✐♣ operator in the map-

pings part. Figure 10c shows the skip rule dealing with those

❡①♣r❡ss✐♦♥ grammar elements which not contain the ❖❘

token, tranferring the execution to the rule dealing with the

❡①♣r❡ss✐♦♥❆♥❞ token (i.e., the following grammar rule deal-

ing with expressions in the example). Note that skip rules can

also be defined in a chained manner, as we illustrate in Sec-

tion 5.
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mixin_rule 'myMixinRule'
   from declSection dec
   queries
      q1 : /dec//#varDeclaration;
   mappings
      vars = q1;
end_rule

rule 'myNormalRule'
   from declSection dec
   to Declaration
   mixin myMixinRule
   queries
      q1 : ...
      ...
   mappings
      attr1 = ...;
      ...
end_rule

Fig. 11 Mixin rule use.

Like other model transformation languages such as RubyTL,

Gra2MoL includes a type of rule, called mixin rules, which

aims to provide a mechanism for reusing rules. The queries

and mappings which are common to several rules can be ex-

tracted into a mixin rule. Both normal and skip rules can then

import mixin rules in order to add the queries and mappings

they define. A mixin rule has the same syntactical structure

as a normal rule except that it does not have to part. A nor-

mal or skip rule can import a mixin rule only if the from part

of both rules specifies the same grammar element. In order

to express the importation of a mixin rule, the mixin part has

been added to the rule structure described above. Figure 11

shows a mixin rule called ♠②▼✐①✐♥❘✉❧❡ and a normal rule

called ♠②◆♦r♠❛❧❘✉❧❡ using it. The rule ♠②▼✐①✐♥❘✉❧❡ will

be executed just before executing the rule ♠②◆♦r♠❛❧❘✉❧❡.

Note that the from part of both rules is the same and the ❞❡❝

variable used in the query q✶ of the mixin rule is bounded to

the declaration grammar element received by the normal rule.

4.4 Implementation

The execution of a Gra2MoL transformation is split into three

steps. The first step is in charge of building the CST of the

source code, the second step obtains the abstract syntax model

from the Gra2MoL textual definition and finally the third one

interprets and executes the transformation definition.

Current implementation of Gra2MoL uses ANTLR gram-

mar definitions. These definitions can be enriched with ac-

tions in order to create the CST. However, we are interested in

using ANTLR grammar definitions without attached actions

for two reasons: (1) to alleviate the grammar developer from

the burden of creating the CST programmatically and (2) to

promote grammar reuse. We have therefore defined an enrich-

ment process which automatically adds the actions needed to

build the CST to the grammar rules. This process also sup-

ports the use of island grammars, which is a mechanism ap-

plied when the main language contains one or more sublan-

Element

type

annotation

Node

Tree

Leaf

value

line

column

children

0..*

Fig. 12 CST metamodel.

guages (e.g., the Javadoc language in Java). In this case, the

developer must modify the grammar rule of the main lan-

guage which links to the island grammar in order to config-

ure the enrichment process (more information on how to tune

the grammar to support island grammars is provided in the

Gra2MoL website [18]).

Gra2MoL uses a metamodel internally to generically rep-

resent CSTs of the parsed source code. This metamodel is

shown in Figure 12. There are three kinds of elements in

a CST model, namely ▲❡❛❢, ◆♦❞❡ and ❚r❡❡. ▲❡❛❢ repre-

sents a tree node which corresponds to a recognized terminal

symbol. ◆♦❞❡ represents a tree node which corresponds to a

recognized non-terminal symbol and is composed of one or

more children nodes, either of the ▲❡❛❢ or ◆♦❞❡ type. The

t②♣❡ attribute identifies the grammar symbol whose recog-

nition has yielded the tree node creation (this is needed to

navigate through the CST, as was explained in Section 3). Fi-

nally, ❚r❡❡ represents the root node of the tree. The creation

of models conforming to this metamodel is driven by the con-

formance rules explained in Section 3.

The execution process of a Gra2MoL transformation is

shown in Figure 13. Figure 13a shows the pre-processing step

T to enrich the ANTLR grammar while Figure 13b shows

the step to obtain the abstract syntax model from the tex-

tual definition. The latter step is actually a kind of bootstrap

process (i.e., Gra2MoL is used to extract a model from the

Gra2MoL transformation definition) which has four inputs:

the Gra2MoL concrete syntax definition, which is defined

by the grammar of the language (GGra2MoL); the Gra2MoL

abstract syntax (MMGra2MoL); the transformation definition

(G2MM) and the text input which conforms to the concrete

syntax (i.e., the transformation definition of the main pro-

cess). The result of the bootstrap process is the abstract syntax

model (MGra2MoL), which is later used by the Gra2MoL En-

gine. The bootstrap process allowed us to implement the DSL

without the need to use other DSL definition tools, thus illus-
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Fig. 13 Gra2MoL transformation process.

trating that our approach might also be used to implement

textual DSLs.

Figure 13c shows the Gra2MoL Engine, which receives

the abstract syntax model, the resulting enriched parser from

the pre-processing step and the source code to be transformed.

The artefacts generated by the Gra2MoL engine are the model

conforming to the target metamodel and a trace model con-

taining the information concerning which target elements have

been created, from which source grammar elements and by

which rule.

Note that Figure 13c is the same as Figure 1, except that

a parser is an input to the Gra2MoL engine to build the CST

model. This parser is generated from the grammar (Ge) en-

riched with actions intended to create CST models conform-

ing to the metamodel MMCST shown in Figure 12. Since the

CST can become huge when extracting a large number of

source files, the Gra2MoL transformation process can be con-

figured to store this tree into a model respositoy (CDO [37]

and Morsa [39] model repositories are currently supported),

which allows big models to be managed efficiently, thus im-

proving performance (more information about how to set up

the process is provided in the Gra2MoL website [18]).

Gra2MoL is distributed as a plugin for the Eclipse IDE

which can be downloaded from the Gra2MoL website [18].

The plugin incorporates an editor to manage transformation

definitions, which include some assistance mechanisms such

as syntax highlighting, auto-completion or code folding. Fig-

ure 14 shows a screenshot of the Gra2Mol editor. A launcher

with which to execute transformations from Eclipse is also

provided.

Fig. 14 Gra2MoL Eclipse plugin.

4.5 Extension Mechanism

Gra2MoL offers extension points to extend some language

capabilities. There are two main extension points: the map-

ping operators (i.e., operators to be used in the right-hand

side part of a binding) and the query language. Such exten-

sions can be implemented in and incorporated into the trans-

formation engine by using the extension framework provided,

which is shown in Figure 15. Since Gra2MoL has been de-

veloped in Java, implementing a new extension is achieved

by class inheritance.

When extending Gra2MoL with a new mapping operator,

a subclass of the ▼❛♣♣✐♥❣❊①t❡♥s✐♦♥ abstract class (located

in left-hand part of Figure 15) must be created. This subclass

must implement the abstract method ❡①❡❝✉t❡, which per-

forms the specific behavior of this operator, and optionally

incorporates a method called ❣❡t❑❡②✇♦r❞s to specify the
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ExtensionPoint

- params : List
- queries : List

+ getParam(position : int) : Object
+ getQueries() : HasMap

MappingExtension

+ returnString(value : String)
+ returnRule(rule : Rule, element : Element)
+ returnNode(element : Element)
+ execute() : ExtensionValueReturn

QueryExtension

# context : QueryContext

QueryOperationExtension

+ perform()

QueryControlExtension

+ preprocess

+ postprocess(nodes : List) 
ExtensionValueReturn

- type : ValueReturnType
- value : Object

«enum»
ExtensionValueReturn

STRING_VALUE
RULE_VALUE
NODE_VALUE

Fig. 15 Extending the Gra2MoL language. Classes composing the extension framework.

keywords which identify the new operator (if it is not pro-

vided, the keyword must be established by a property file).

The ▼❛♣♣✐♥❣❊①t❡♥s✐♦♥ abstract class also includes several

methods to help the developer to build the result of the map-

ping operator, which can be a string value (r❡t✉r♥❙tr✐♥❣

method), a rule (r❡t✉r♥❘✉❧❡method) or a node (r❡t✉r♥◆♦❞❡

method). Moreover, ▼❛♣♣✐♥❣ ❊①t❡♥s✐♦♥ inherits from the

common root of the hierarchy, the ❊①t❡♥s✐♦♥ P♦✐♥t abstract

class, which allows the parameters of the operator (❣❡tP❛r❛♠

method) or the queries included in the rule (❣❡t◗✉❡r✐❡s

method) to be accessed. Gra2MoL supports calls to new map-

ping operators by using the ❡①t keyword in the mappings part

of a rule. A binding which uses a new operator will thus use

the ❡①t keyword followed by the keyword of the new oper-

ator and optionally a list of parameters. For instance, Figure

16a shows a rule which uses the extension mechanism in the

mappings part and calls to t♦❯♣♣❡r❈❛s❡ operator, which re-

ceives the ❱❆▲❯❊ string and transforms it to upper case. Fig-

ure 16b shows the implementation of the class inheriting from

▼❛♣♣✐♥❣❊①t❡♥s✐♦♥.

The query language can also be extended to incorporate

new query control statements and operators for filter expres-

sions. They can be added to the language by extending the

◗✉❡r②❈♦♥tr♦❧❊①t❡♥s✐♦♥ and ◗✉❡r②❖♣❡r❛t✐♦♥❊①t❡♥s✐♦♥

abstract classes shown in the right-hand part of the Figure 15

respectively. Both abstract classes inherit from ◗✉❡r②❊①t❡♥s✐♦♥,

which allows accessing to the context of the queries part (i.e.,

accessing to the results of other queries) and in turns inherits

from ❊①t❡♥s✐♦♥P♦✐♥t. In the same way as the mapping op-

erators, the query language extensions can also incorporate a

rule 'extensionExample'
  from varDeclaration vd
  to ValuedElement
  queries
  mappings
    value = ext toUpperCase(vd.VALUE);
end_rule

public class UpperCaseExtension extends MappingExtension {
  @Override
  public ExtensionValueReturn execute() {
    String value = (String) getParam(0);    
    return value.toUpperCase()  
  }
  public String[] getKeywords() {
    return new String[] { "toUpperCase" };
  }
}

(a)

(b)

Fig. 16 New mapping operator example. (a) The use of the ext key-
word to call to the new mapping operator. (b) The implementation
of the mapping operator.

method called ❣❡t❑❡②✇♦r❞s to specify the keywords which

identify them.

With regard to new query control statements, the subclass

inheriting from the ◗✉❡r②❈♦♥tr♦❧❊①t❡♥s✐♦♥ abstract class

must implement both the ♣r❡♣r♦❝❡ss and the ♣♦st♣r♦❝❡ss

methods, which allow developers to manage the query execu-

tion. The ♣r❡♣r♦❝❡ss method is called before the query ex-

ecution whereas the ♣♦st♣r♦❝❡ss method is called after the

query execution and receives the list of result nodes. The new

query control operators can be called by using the ❡①t key-

word in the control part of a query. For instance, Figure 17a

shows a query control statement called r❡♠♦✈❡❉✉♣❧✐❝❛t❡s

which remove variables whose ❱❆▲❯❊ leaf is the same once

the query has been executed. Figure 17b shows an excerpt of

the implementation of the corresponding class. Note that it is

only necessary to implement the ♣♦st♣r♦❝❡ss method.
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q1 : { ext removeDuplicates } //#varDeclaration; 

public class TestControlExtension extends QueryControlExtension {
  public void preprocess() { }
  public List<Element> postprocess(List<Element> nodes) {
    List<Element> resultList = removeDuplicates(nodes);
    return resultList;    
  }
  private List<Element> removeDuplicates(List<Element> nodes) {
    ...
  }
  public static String[] keywords() {
    return new String[] { "removeDuplicates" };
  }
}

(a)

(b)

Fig. 17 New query control statement example. (a) The query using
the query control statement. (b) An excerpt of the implementation
of such statement.

On the other hand, when adding new query operators, the

subclass inheriting from ◗✉❡r②❖♣❡r❛t✐♦♥❊①t❡♥s✐♦♥ must

implement the ♣❡r❢♦r♠ method. This method is applied to

the leaf of the node to which the operator is applied and re-

turns a boolean value indicating whether the node satisfies

the operator. For instance, Figure 18a shows a query using an

operator called ✐s❙✉rr♦✉♥❞❡❞❇② which checks whether the

❱❆▲❯❊ leaf of the node is surrounded by a character given as

parameter. Figure 18b shows an excerpt of the corresponding

class implementing the query operator.

5 Example

Delphi is a programming language which is a dialect of Ob-

ject Pascal. The language has been extensively used to de-

velop business applications, especially in RAD solutions. How-

ever, there are a number of applications developed in old

versions of Delphi which require adaption or modernization

(e.g., supporting new language versions or migrating to other

platforms). Gra2MoL has been used within the context of a

project to migrate Delphi applications to Java platform, in or-

der to extract models from Delphi source code. This project

uses the ASTM to represent the source code of the software

system. Once the ASTM models are obtained, MDD tech-

niques (i.e., model-to-model and model-to-text transforma-

tions) are applied to obtain the migrated system. In this sec-

tion we describe how the Gra2MoL transformation definition

was implemented since the rest of the migration process is

not within the scope of this article. In particular, this example

covers the transformation of a subset of Delphi statements.

Figures 19 and 20 respectively show the parts of the Del-

phi grammar and the ASTM metamodel considered in this

q1 : //#var_decl{VALUE.isSurroundedBy("<"); 

public class testQueryOperation extends QueryOperationExtension {
  ...
  public boolean perform() {
    ExpressionElement element = filter.getElement();
    Leaf leaf = node.getLeaf(element.getName(), element.getPosition());
    return (leaf != null && leaf.isSurroundedBy(getParam(0))) ? true : false;
 }
  private boolean isSourrondedBy(String char) {
    ...
  }
  public static String[] keywords() {  
    return new String[] { "isSourrondedBy" };
 }
}

(a)

(b)

Fig. 18 A new query operator example. (a) The query using the
new query operator (b) An excerpt of the implementation of such
operator.

example. Both the grammar and the metamodel are explained

as follows and we then go on to describe the Gra2MoL trans-

formation rules for this example.

5.1 The Delphi Grammar

The grammar includes the rules needed to parse a subset of

Delphi statements. Note that some of them have been sim-

plified or reduced for the sake of simplicity. It therefore in-

cludes the ❜❧♦❝❦ grammar rule representing Delphi blocks

composed of an optional declaration section (❞❡❝❧❙❡❝t✐♦♥

grammar rule) and a set of statements (❝♦♠♣♦✉♥❞❙t♠t gram-

mar rule), which can be surrounded (i.e., including before

and/or after) by export statements (❡①♣♦rts❙t♠t grammar

rule). The ❞❡❝❧❙❡❝t✐♦♥ grammar rule derives into a ✈❛r

❉❡❝❧❛r❛t✐♦♥ and ♣r♦❝❋✉♥❝❉❡❝❧❛r❛t✐♦♥ rules, which al-

lows a variable and either a procedure or a function to be de-

clared. Although these declaration grammar rules are used in

the example to illustrate implicit references in the code, they

have been greatly simplified for the sake of conciseness. The

❝♦♠♣♦✉♥❞❙t♠t grammar rule refers to the st♠t▲✐st rule,

which in turn refers to the st❛t❡♠❡♥t grammar rule. The

statements considered in this example are assignments and

function calls (the two alternatives of the st❛t❡♠❡♥t gram-

mar rule, respectively).

The grammar also includes a subset of the grammar rules

needed to parse expressions, which will be used to illustrate

the use of skip rules. The ❡①♣r❡ss✐♦♥ grammar rule allows

defining optionally an ❖❘ logical expression where each operand

is represented by an ❡①♣r❡ss✐♦♥❆♥❞ grammar rule, which

in turn allows an ❆◆❉ logical expression to be defined. Each

operand of an ❡①♣r❡ss✐♦♥❆♥❞ grammar rule is represented
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block

  : (declSection)* (exportsStmt)* 

     compoundStmt (exportsStmt)*  

  ;

declSection

  : varDeclaration

  | procFuncDeclaration

  | ...

  ;

varDeclaration

  : designator ':' type

  | ...

  ;

procFuncDeclaration

  : 'function' designator (formalParam)? ':' type ';' block ';'

  | 'procedure' designator (formalParam)? ':' block ';'

  ;

compoundStmt 

  : 'begin' stmtList 'end'

  ;

stmtList

  : (statement ';')*

  ;

statement

  | designator ':=' expression

  | designator ('(' param ')')?

  | ...

  ;

param

  : expression (',' param)?

  ;

designator 

  : ID

  ;

expression

  : expressionAnd ('Or' expressionAnd)*

  ;

expressionAnd

  : simpleExpression ('And' simpleExpression)*

  ;

simpleExpression 

  : expressionPart (relOp expressionPart)*

  ;

expressionPart

  : NUMBER

  | designator

  | ...

  ;

relOp 

  : '=' | '>' | '<' | '<=' | '>=' | '<>' 

  | ...

 ; 

Fig. 19 An excerpt of the Delphi grammar used in the example.

by a s✐♠♣❧❡ ❊①♣r❡ss✐♦♥ grammar rule, which uses option-

ally a logical operator (r❡❧❖♣ grammar rule). The operands

of s✐♠♣❧❡ ❊①♣r❡ss✐♦♥ are represented by ❡①♣r❡ss✐♦♥P❛rt,

which can derive into a number (◆❯▼❇❊❘ token), a string value

(❙❚❘■◆● token) or an element reference (❞❡s✐❣♥❛t♦r alter-

native).

5.2 The ASTM Metamodel

The ASTM metamodel excerpt shown in Figure 20 includes

the elements used to represent the subset of statements and

expressions considered in the grammar. In ASTM, the ❙t❛t❡♠❡♥t

hierarchy represents the statements of a programming lan-

guage. The Figure includes the ❇❧♦❝❦❙t❛t❡♠❡♥t metaclass,

which represents blocks of statements (s✉❜st❛t❡♠❡♥ts ref-

erence) and the ❊①♣r❡ss✐♦♥❙t❛t❡♠❡♥t metaclass, which

represents an ❡①♣r❡ss✐♦♥ statement (❡①♣r❡ss✐♦♥ reference)

and allows assignments, references, literals and function calls

to be represented. Note that ASTM models are more com-

plex than AST models because they incorporate metaclasses

which allow cross-references between elements to be rep-

resented (i.e., ◆❛♠❡❘❡❢❡r❡♥❝❡ hierarchy explained below).

Thus, ASTM models are actually abstract syntax graphs.

In ASTM, the expressions of a programming language

are represented by means of the elements of the ❊①♣r❡ss✐♦♥

hierarchy. Figure 20 includes the ❇✐♥❛r②❊①♣r❡ss✐♦♥ meta-

class with which to represent both assignment and logical ex-

pressions; the ◆❛♠❡❘❡❢❡r❡♥❝❡ metaclass, which allows el-

ements referring to other abstract syntax tree elements to be

represented (e.g., the use of a variable and its declaration or

the call to a function and its declaration); the ▲✐t❡r❛❧ meta-

class with which to represent literal values; and the ❋✉♥❝t✐♦♥

❈❛❧❧❊①♣r❡ss✐♦♥ metaclass with which to represent func-

tion calls. The ❇✐♥❛r②❊①♣r❡ss✐♦♥ metaclass refers to the

right-hand and left-hand side of the binary expression (r✐❣❤t

❖♣❡r❛♥❞ and ❧❡❢t❖♣❡r❛♥❞ references, respectively) along

with the operator of such an expression (♦♣❡r❛t♦r refer-

ence), which is represented by the metaclasses of the ❇✐♥❛r②

❖♣❡r❛t♦r hierarchy. The ◆❛♠❡❘❡❢❡r❡♥❝❡ metaclass refers

to the ❉❡❢✐♥✐t✐♦♥ ❖❜❥❡❝t (r❡❢❡rs❚♦ reference), which is

the root metaclass of every definition or declaration element

in ASTM (e.g., ❱❛r✐❛❜❧❡❉❡❝❧❛r❛t✐♦♥ and ❋✉♥❝t✐♦♥

❉❡❝❧❛r❛t✐♦♥ metaclasses). The ■❞❡♥t✐❢✐❡r❘❡❢❡r❡♥❝❡ is

subclass of ◆❛♠❡ ❘❡❢❡r❡♥❝❡ and allows simple references to

be represented (e.g., the name of either a variable or a func-

tion). The ▲✐t❡r❛❧ metaclass includes the value attribute

for storing the literal value and has ■♥t❡❣❡r▲✐t❡r❛❧ and

❙tr✐♥❣▲✐t❡r❛❧ as subclasses of representing integer and

string values, respectively. Finally, the ❋✉♥❝t✐♦♥❈❛❧❧

❊①♣r❡ss✐♦♥ metaclass refers to the declaration of the called

function (❝❛❧❧❡❞❋✉♥❝t✐♦♥ reference) and the parameters

(❛❝t✉❛❧P❛r❛♠s reference), which are actually represented
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Statement

ExpressionStatement

Expression

1 expression

0..*

substatements

BinaryExpression FunctionCallExpression

BinaryOperator

1rightOperand

1leftOperand

1

operator

Assign

And

1 calledFunction

ActualParameter

0..*

actualParams

ActualParameterExpression

1 value

NameReference

IdentifierReference

DefinitionObject
1
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BlockStatement

Or

Equals

DeclarationORDefinition

Declaration

VariableDeclaration FunctionDeclaration

IntegerLiteral StringLiteral

Literal

value : String

Name

nameString : String
1

identifierName

Fig. 20 An excerpt of the ASTM metamodel used in the example.

by the metaclass ❆❝t✉❛❧P❛r❛♠❡t❡r❊①♣r❡ss✐♦♥ referring

to the expression used as a parameter.

5.3 Transformation Rules Dealing with Statements

The Gra2MoL transformation definition developed consists

of 38 rules but owing to lack of space, in this section we only

present the rules involved in the example (the complete def-

inition of the transformation can be downloaded from [18]).

We first describe the rules used to transform the statements

considered in this example and then the rules dealing with

expressions, as they will use the skip rule type.

Figure 21 shows the set of rules used to transform blocks

of statements. The ♠❛♣❇❧♦❝❦ rule starts the transformation

execution. This rule has only one binding whose right-hand

side is a query identifier (st❛ts) and whose left-hand side

refers to the s✉❜❙t❛t❡♠❡♥ts reference of the ❇❧♦❝❦

❙t❛t❡♠❡♥t metaclass. The query is therefore executed and

the rules conforming the binding are then looked up and exe-

cuted for each result element. In this case, ♠❛♣❈❛❧❧❋✉♥❝t✐♦♥

and ♠❛♣❆ss✐❣♥♠❡♥t rules conform to the binding, but the

from filter allows the selection of only one for each query re-

sult element, depending on the existence of the ✿❂ token in

the st❛t❡♠❡♥t grammar element.

The ♠❛♣❆ss✐❣♥♠❡♥t rule defines the mapping between

the st❛t❡♠❡♥t grammar element containing the ✿❂ token

and the ❊①♣r❡ss✐♦♥❙t❛t❡♠❡♥t metaclass. This rule there-

fore creates an instance of the ❊①♣r❡ss✐♦♥❙t❛t❡♠❡♥t meta-

class and its queries obtain both the left-hand side and right-

hand side elements of the assignment (❧❊❧❡♠ and r❊❧❡♠

queries, respectively). The rule includes a set of mappings

to initialize the ❡①♣r❡ss✐♦♥ reference of the instance cre-

ated. First, a new instance of ❇✐♥❛r②❊①♣r❡ss✐♦♥ is created

and assigned to this reference. Then, the operator reference is

established by creating an ❆ss✐❣♥ metaclass instance, which

specifies that the ❇✐♥❛r②❊①♣r❡ss✐♦♥ created by the rule is

an assignment expression. The last two mappings are bind-

ings whose right-hand side is a query identifier (❧❊❧❡♠ and

r❊❧❡♠, respectively) and left-hand side is a reference (❧❡❢t

❖♣❡r❛♥❞ and r✐❣❤t❖♣❡r❛♥❞, respectively). Note that the

last three mappings use the dot notation in the left-hand part

of the binding to access to the properties of the model element

referred by the ❡①♣r❡ss✐♦♥ property. The mapping using

the ❧❊❧❡♠ query identifier will apply the rule ❧♦❝❛t❡❋r♦♠

❉❡s✐❣♥❛t♦r since the query obtains the ❞❡s✐❣♥❛t♦r gram-

mar element from the left-hand side of the assignment code

statement and it is the only one that conforms to the binding.

On the other hand, the r❊❧❡♠ query obtains the ❡①♣r❡ss✐♦♥

grammar element of the assignment code statement and the

mapping result will therefore apply the rule that deals with

expressions, which will be explained in Section 5.4.

The ❧♦❝❛t❡❋r♦♠❉❡s✐❣♥❛t♦r rule defines the mapping

between the ❞❡s✐❣♥❛t♦r grammar element and the

■❞❡♥t✐❢✐❡r❘❡❢❡r❡♥❝❡ metaclass. The rule therefore cre-
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rule 'mapAssignment'
  from statement{TOKEN[0].eq(":="} st
  to     astm::gastm::ExpressionStatement
  queries
    lElem : /st/#designator;
    rElem : /st/#expression;
  mappings
    expression                       = new astm::gastm::BinaryExpression;
    expression.operator        = new astm::gastm::Assign;
    expression.leftOperand   = lElem;
    expression.rightOperand = rElem;
end_rule  

rule 'mapBlock'
  from block b
  to     astm::gastm::BlockStatement
  queries
    stats : /b/compoundStmt//#statement;
  mappings
    subStatements = stats;
end_rule

rule 'mapCallFunction'
  from statement{!TOKEN[0].eq(":=")} st
  to     astm::gastm::ExpressionStatement
  queries
    dElem : /st/#designator;
    eElem : /st///#expression;
  mappings
    expression                          = new astm::gastm::FunctionCallExpression;
    expression.calledFunction  = dElem;
    expression.actualParams    = eElem;
end_rule  

rule 'locateFromDesignator'
  from designator d
  to     astm::gastm::IdentifierReference
  queries
    varloc : //#varDeclaration//designator{ID.eq(d.ID)};
    metloc : //#procFuncDeclaration//designator{ID.eq(d.ID)};
  mappings 
    if(metloc.hasResults) then
      refersTo = metloc;
    else 
      refersTo = varloc;
    end_if
end_rule
  

rule 'mapParameter'
  from  expression exp
  to      astm::gastm::ActualParameterExpression
  queries
  mappings
    value = exp;
end_rule  

rule 'mapVariableDeclaration'
  from  varDeclaration varDecl
  to      astm::gastm::VariableDefinition
    ...
end_rule  
rule 'mapProcFuncDeclaration'
  from  procFuncDeclaration pfDecl
  to      astm::gastm::FunctionDefinition
    ...
end_rule  

Fig. 21 Transformation rules dealing with statements.

ates an instance of the ■❞❡♥t✐❢✐❡r❘❡❢❡r❡♥❝❡metaclass and

its purpose is to locate the referred element through the source

code. The queries of this rule thus traverse the CST in order

to locate either the variable or the referred function/procedure

declaration (✈❛r❧♦❝ and ♠❡t❧♦❝ query identifiers, respec-

tively). These queries use the ✴✴ operator to find the

❞❡s✐❣♥❛t♦r grammar element, which specifies the identi-

fier of either the variable or the function/procedure, facili-

tating the definition of the traversal of the syntax tree. Note

that such a reference is actually a cross-reference between el-

ements of the syntax tree and how easy is to resolve it by

using the Gra2MoL query language. It is also important to

note that the reference format could involve defining some

query extension (e.g., if the reference involves dealing with

particular scopes). In the mappings section, an if statement

checks whether either a variable or function/procedure has

been found (i.e., they have result elements) and establishes

the r❡❢❡rs❚♦ reference. If a function/procedure has been

found, the binding involving the ♠❡t❧♦❝ query identifier will

be applied and the ♠❛♣Pr♦❝ ❋✉♥❝❉❡❝❧❛r❛t✐♦♥ rule will then

be executed, which will initialize the r❡❢❡rs❚♦ reference to

the instance of the ❋✉♥❝t✐♦♥❉❡❝❧❛r❛t✐♦♥ metaclass. On

the other hand, if a variable has been found, the binding in-

volving the ✈❛r❧♦❝ query identifier will be applied and then

the ♠❛♣❱❛r✐❛❜❧❡❉❡❝❧❛r❛t✐♦♥ rule will be executed, which

will initialize the r❡❢❡rs❚♦ reference to the instance of the

❱❛r✐❛❜❧❡❉❡❝❧❛r❛t✐♦♥metaclass created by this rule. Since

the example only covers the transformation rules dealing with

some statements, these two rules are not shown in their en-

tirely.

The ♠❛♣❈❛❧❧❋✉♥❝t✐♦♥ rule defines the mapping between

the st❛t❡♠❡♥t grammar element, which does not contain the

✿❂ token, and the ❊①♣r❡ss✐♦♥❙t❛t❡♠❡♥t metaclass. Like

the ♠❛♣❆ss✐❣♥♠❡♥t rule, this rule also creates an instance

of ❊①♣r❡ss✐♦♥❙t❛t❡♠❡♥t metaclass but the ❡①♣r❡ss✐♦♥

property must refer to an instance of ❋✉♥❝t✐♦♥❈❛❧❧

❊①♣r❡ss✐♦♥. The queries contained in this rule obtain the

name of the called function/procedure (❞❊❧❡♠ query) and the

set of parameters (❡❊❧❡♠ query). The last query illustrates the

meaning of the ✴✴✴ operator. Since the ♣❛r❛♠ grammar rule

is defined recursively, the ✴✴✴ allows the CST to be traversed

in order to retrieve every ♣❛r❛♠ node. This rule includes a

set of mappings to initialize the ❡①♣r❡ss✐♦♥ reference of the

metaclass created. First, a new instance of ❋✉♥❝t✐♦♥❈❛❧❧

❊①♣r❡ss✐♦♥ is created and assigned to this reference. The

next mapping is a binding whose right-hand side part is a

query identifier (❞❊❧❡♠) and whose left-hand side the ❝❛❧❧❡❞

❋✉♥❝✐♦♥ reference. The query is applied and a rule conform-

ing this binding will be executed. In this case, the only rule

that can be executed is the ❧♦❝❛t❡❋r♦♠❉❡s✐❣♥❛t♦r rule ex-

plained above. The last mapping of the ♠❛♣❈❛❧❧❋✉♥❝t✐♦♥

is also a binding whose right-hand side is a query identifier
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rule 'mapOr'
 from expression{TOKEN[0].exists} exp
 to   astm::sastm::BinaryExpression
 queries
  lElem : /exp/#expressionAnd[0];
  rElem : /exp/#expressionAnd[1];
 mappings
  leftOperand   = lElem;
  operator        = "OR";
  rightOperand = rElem;
end_rule

skip_rule 'skipOr'
 from expression{!TOKEN[0].exists} exp
 to   astm::sastm::Expression
 queries
  next : /exp/#expressionAnd
 mappings
  skip next;
end_rule

rule 'mapNumber'
 from  expressionPart{NUMBER.exists} exp
 to   astm::gastm::IntegerLiteral
 queries
 mappings
  value = extract exp;
end_rule

rule 'mapAnd'
 from expressionAnd{TOKEN[0].exists} exp
 to   astm::sastm::BinaryExpression
 queries
  lElem : /exp/#simpleExpression[0];
  rElem : /exp/#simpleExpression[1];
 mappings
  leftOperand   = lElem;
  operator        = "AND";
  rightOperand = rElem;
end_rule

skip_rule 'skipAnd'
 from expressionAnd{!TOKEN[0].exists} exp
 to   astm::sastm::Expression
 queries
  next : /exp/#simpleExpression
 mappings
  skip next;
end_rule

rule 'mapString'
 from  expressionPart{STRING.exists} exp
 to   astm::gastm::StringLiteral
 queries
 mappings
  value = extract exp;
end_rule

rule 'mapRelOp'
 from simpleExpression/relOp{TOKEN[0].eq("=")} exp
 to   astm::sastm::BinaryExpression
 queries
  lElem : /exp/#expressionPart[0];
  rElem : /exp/#expressionPart[1];
 mappings
  leftOperand  = lElem;
  operator     = "EQUALS";
  rightOperand = rElem;
end_rule

rule 'skipRelOp'
 from simpleExpression exp
 to   astm::sastm::Expression
 queries
  next : /exp/expressionPart
 mappings
  skip next;
end_rule

skip_rule 'skipDesignator'
 from  expressionPart/designator exp
 to   astm::gastm::Expression
 queries
  next : /exp/#designator;
 mappings
  skip next;
end_rule
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Fig. 22 Transformation rules for dealing with expressions in the Delphi example.

(❡❊❧❡♠) and left-hand side is the ❛❝t✉❛❧P❛r❛♠s reference.

In this case, once the query is executed, the ♠❛♣P❛r❛♠❡t❡r

rule is applied for each query result.

The ♠❛♣P❛r❛♠❡t❡r rule defines the mapping between

the ❡①♣r❡ss✐♦♥ grammar element and the ❆❝t✉❛❧

P❛r❛♠❡t❡r❊①♣r❡ss✐♦♥ metaclass. The rule therefore cre-

ates an instance of ❆❝t✉❛❧ P❛r❛♠❡t❡r❊①♣r❡ss✐♦♥ meta-

class and contains only one binding whose right-hand side is

the grammar element received by the rule and the left-hand

side is the value reference. Since the application of this bind-

ing will execute the rules that deal with expressions, it will be

explained below.

5.4 Transformation Rules Dealing with Expressions

When defining Gra2MoL transformation rules for expression

grammar rules, the pattern to be used is the following: for

each expression grammar rule, two transformation rules must

be added. The former is a skip rule dealing with the gram-

mar element that does not contain the operator token and the

latter is a normal rule dealing with the grammar element that

contains it. The new skip rule must transfer the execution to

the next grammar element dealing with expressions, whereas

the new normal rule must transform the current grammar el-

ement. For instance, s❦✐♣❖r and ♠❛♣❖r are the rules which

deal with the ❡①♣r❡ss✐♦♥ grammar element. The s❦✐♣❖r

rule is a skip rule which transfers the transformation execu-

tion to the ❡①♣r❡ss✐♦♥❆♥❞ grammar element whether the

❡①♣r❡ss✐♦♥ grammar element does not have the OR token.

On the other hand, the ♠❛♣❖r rule is a normal rule which

deals with the ❡①♣r❡ss✐♦♥ grammar element containing the

❖❘ token.

Thus, when an expression grammar element is being eval-

uated (e.g., the last bindings of ♠❛♣❆ss✐❣♥♠❡♥ts and ♠❛♣

P❛r❛♠❡t❡r), either the s❦✐♣❖r or the ♠❛♣❖r could be exe-

cuted depending on the existence of the ❖❘ token. If it does

not exist, the s❦✐♣❖r rule is executed so that the ♥❡①t query

locates the next grammar element dealing with expressions

(i.e. the ❡①♣r❡ss✐♦♥❆♥❞ element) and executes the s❦✐♣

♥❡①t statement, which transfers the execution to that rule

whose from part conforms to ❡①♣r❡ss✐♦♥❆♥❞ and whose

to part conforms to ❊①♣r❡ss✐♦♥ metaclass. In this case, the

candidate rules are s❦✐♣❆♥❞ and ♠❛♣❆♥❞. On the other hand,

if the ❖❘ token exists, the ♠❛♣❖r rule is executed so that an

instance of the ❇✐♥❛r②❊①♣r❡ss✐♦♥ metaclass is created and

both its operator (♦♣❡r❛t♦r reference) and operands (❧❡❢t

❖♣❡r❛♥❞ and r✐❣❤t❖♣❡r❛♥❞ references) are initialized, which

causes those rules conforming to this binding to be triggered.

In this case, since the type of the queries are ❡①♣r❡ss✐♦♥❆♥❞

grammar elements, the candidate rules also are s❦✐♣❆♥❞ and

♠❛♣❆♥❞. For the sake of simplicity, the rule only deals with

expressions containing two operands.
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path : string;
procedure deleteFile (path : string, mode : integer); 
begin
  ...
end

begin
  path := "debug.txt";   
  deleteFile(path, 0);
end

Fig. 23 Delphi code example.

Notice that the pattern is repeated in the s❦✐♣❆♥❞ and

♠❛♣❆♥❞ rules for the ❡①♣r❡ss✐♦♥❆♥❞ grammar element as

well as in the s❦✐♣❘❡❧❖♣ and ♠❛♣❘❡❧❖♣ rules for the s✐♠♣❧❡

❊①♣r❡ss✐♦♥ grammar element. The ♠❛♣◆✉♠❜❡r, ♠❛♣❙tr✐♥❣

and s❦✐♣❉❡s✐❣♥❛t♦r rules are the end of the expression

transformation. The ♠❛♣◆✉♠❜❡r and ♠❛♣❙tr✐♥❣ rules cre-

ate an ■♥t❡❣❡r▲✐t❡r❛❧ or ❙tr✐♥❣▲✐t❡r❛❧ that stores the

value of the expression element in the ✈❛❧✉❡ attribute. On the

other hand, the s❦✐♣❉❡s✐❣♥❛t♦r rule transfers the execution

to that rule which deals with the ❞❡s✐❣♥❛t♦r grammar ele-

ment (i.e., the ❧♦❝❛t❡❋r♦♠❉❡s✐❣♥❛t♦r rule described be-

fore). Note that this use of skip rules differs slightly from the

use explained previously. In this case, it is used to transfer

the execution to that rule which is in charge of transforming

a particular grammar element (i.e., ❞❡s✐❣♥❛t♦r grammar el-

ement in this case), thus allowing developers to control the

transformation execution flow.

Figure 23 shows a Delphi code snippet and Figure 24

shows the model created by means of applying the transfor-

mation rules described previously. Note that the transforma-

tion starts dealing with the boxed source code.

6 Conclusions and Future Work

The description description in this paper has been focused

on its usefulness in extracting models from GPL code. How-

ever, this domain specific language is actually a text-to-model

transformation which can be used to extract models from any

code conforming to a grammar. To the best of our knowledge,

Gra2MoL is the first approach for the definition of a text-to-

model transformation language.

Figure 25 shows the main Gra2MoL features according to

the feature diagram proposed in [38] as a framework for the

classification of model transformation languages. Gra2MoL

is a unidirectional language, whose source domain is the gram-

mar realm and whose target domain is the MDE realm. A

Gra2MoL transformation definition consists of rules which

: BlockStatement

: ExpressionStatement

: BinaryExpression

: FunctionCallExpression

: IdentifierReference

: Assign

: StringLiteral

value = "debug.txt"

: IdentifierReference

: VariableDeclaration

name = "path"

: FunctionDeclaration

name = "deleteFile"

: ActualParameterExpression

: ActualParameterExpression

: IdentifierReference

: IntegerValue

value = "0"

: ExpressionStatement

: Name

nameString = "path"

: Name

nameString = "deleteFile"

Fig. 24 ASTM model obtained by means of applying the transfor-
mation rules to the Delphi code shown in Figure 23.

transform grammar elements into model elements by manip-

ulating the CST of the source code. Rules are resolved im-

plicitily and in a deterministic manner, although the devel-

oper can alter the rule scheduling by using skip rules. The

language also incorporates mixin rules as a reuse mechanism,

in addition to copy rules which allow a source element to be

transformed more than once. With regard to the trace infor-

mation, the Gra2MoL engine creates a separate trace model

automatically. Moreover, a powerful language has been de-

fined to navigate and query a CST in a structure-shy manner.

The language has been applied a several case studies (down-

loadable from [18]), thus allowing us to identify new func-

tionalities with which to improve its expressiveness, usability

and performance.

With regard to future work, we are working on scalability

issues such as analyzing the performance impact of managing

a CST either in memory or in a model repository. We are ad-

ditionally studying the incorporation of a phasing mechanism

to allow transformation definitions to be organized and mod-

ularity to be promoted. We also plan to incorporate a trace

query mechanism to improve the transformation control. Fi-

nally, we are working on supporting another parser generators

in order to increase the number of existing grammars that can

be reused.
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Fig. 25 Feature diagram showing the features of Gra2MoL according to [38]. Gra2MoL specific features are depicted as filled boxes.
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