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Abstract 1 

We present a framework for fitting multiple  random walks to animal movement paths 2 

consisting of ordered sets of step lengths and turning angles.  Each step and turn is 3 

assigned to one of a number of  random walks – each characteristic of a different 4 

behavioral state.  Behavioral state assignments may be inferred purely from movement 5 

data, or include the habitat type that animals are located in.  Switching between different 6 

behavioral states may be modeled explicitly using a state transition matrix estimated 7 

directly from data, or switching probabilities may take into account proximity of animals 8 

to landscape features.  Model fitting is undertaken within a Bayesian framework using the 9 

WinBUGS software.  These methods allow for identification of different movement 10 

states using several properties of observed paths and lead naturally to formulations of 11 

movement models.  Analysis of relocation data from elk released in east-central Ontario 12 

suggests a bi-phasic movement behavior: elk are either in an ‘encamped’ state in which 13 

step lengths are small, and turning angles high, or, in an ‘exploratory’ state, in which 14 

daily step lengths are several kilometers, and turning angles small.  Animals encamp in 15 

open habitat (agricultural fields and opened forest), but the exploratory state is not 16 

associated with any particular habitat type. 17 

 18 

Keywords: elk, landscape, GPS collars, WinBUGS, Bayesian, redistribution, switching 19 

behavior, spatial, scale 20 

21 
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Introduction 1 

Over limited time scales the path of a moving individual can often be characterized by 2 

relatively simple mathematical models.  Examples of such models include biased random 3 

walks and correlated random walks (Okubo 1980, Turchin 1998, Okubo and Levin 2001).  4 

Over longer time-scales these models often fail to describe patterns of movement because 5 

of the likelihood that individuals change movement behavior (Firle et al. 1998, Morales 6 

and Ellner 2002).  One way to accommodate these multiple behaviors is to develop 7 

different movement models for a number of discrete modes or states of movement 8 

(Grünbaum 2000, Skalski and Gilliam 2003).  In order to characterize long-term 9 

movement of individuals over landscapes it is necessary to estimate both the parameters 10 

of the model governing movement in each behavioral state, and the rate of transitions 11 

between states.  Data from VHF radio-tagging or radio-collars that use Global 12 

Positioning Systems (GPS collars) can be used to locate the spatial position of individuals 13 

at discrete time intervals and makes possible the reconstruction of movement paths of 14 

animals. An important methodological question is how to make inference about different 15 

movement behaviors given movement paths. This requires answers to three main 16 

questions: 1) how to distinguish different movement states from relocation data; 2) how 17 

to parameterize movement models for each different state; and 3) how to model 18 

transitions between different states. 19 

 20 

Recent analyses of animal movement data has focused on the distributions of distance 21 

moved or movement rate (Viswanathan et al. 1996, Johnson et al. 2002, Viswanathan et 22 

al. 2002). Other analyses rely on summary properties of movement paths such as fractal 23 
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dimension (Nams 1996, Fritz et al. 2003) or first passage times (Fauchald and Tveraa 1 

2003). We propose instead to fit mixtures of random walk models directly from observed 2 

trajectories. Furthermore, we present ways to incorporate environmental factors into such 3 

models.  4 

 5 

Combining relocation data with GIS mapping (Geographic Information System) is a 6 

potentially powerful way of deducing the influence of landscape features on movement 7 

behavior.  For example, we might expect an animal to move quickly through sub-optimal 8 

habitat, but slow down on encountering improved habitat. Consider for example an 9 

individual performing area-restricted search (Kareiva and Odell 1987, Bell 1991).  When 10 

in an intensive search state (for example after encountering a habitat patch with abundant 11 

food), step lengths will be short, turns will be frequent and turning angles large. In 12 

contrast, extensive search states will be characterized by longer step lengths and small 13 

and infrequent turning angles (Zollner and Lima 1999).   14 

 15 

Identifying movement states based on location data requires decomposing a single 16 

observed bivariate distribution (step lengths and turning angles) into two or more 17 

bivariate distributions (one for each behavioral state identified).  Using both step length 18 

and turning angles to attempt this decomposition is likely to be more powerful than using 19 

just one variable. The probability distributions used to characterize step length should be 20 

carefully chosen. When an individual is in a behavioral state characterized by small-scale 21 

movements, the most common step lengths should be short, (i.e. the mode of the step 22 

length distribution will be located relatively close to zero), and when in a behavioral state 23 
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characterized by larger-scale movements, the most common step lengths should be 1 

longer.  Consequently the distributions selected to model step length in different 2 

behavioral states should have different modes.  This is in contrast to the case of multiple 3 

exponential distributions used by Johnson et al. (2002) in which the mode of the step 4 

length distribution for both small and large-scale movements is the same and very small. 5 

 6 

Here, we use relocation data from GPS collared elk to classify movement into states, a 7 

small-scale movement pattern corresponding to elk that are ‘encamped’ (Bailey et al. 8 

1996), and larger-scale movements undertaken between camps, which we will refer to as 9 

the ‘exploratory’ state.  Specifically we attempt to: 10 

1) Devise a statistical basis for partitioning animal movements into multiple states 11 

based on ordered series of step lengths and turning angles; 12 

2) Include in this approach a method for estimating the switching rates between 13 

movement states; 14 

3) Show how landscape data can be integrated into this approach to explore whether 15 

certain particular landscape features are associated with movement state 16 

transitions. 17 

Such an analysis would be extremely difficult using classical methods of analysis and we 18 

therefore perform inference with WinBUGS (Bayesian Analysis Using Gibbs Sampler 19 

(Spiegelhalter et al. 1999), freely available at http://www.mrc-bsu.cam.ac.uk/bugs/) using 20 

data from the movement paths of 4 elk re-introduced into east-central Ontario. 21 

 22 

 23 
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Methods 1 

The data 2 

GPS collars were fitted to 4 cow elk (Cervus elaphus) that were translocated with 116 3 

other elk from Elk Island National Park, Alberta to east-central Ontario as part of a 4 

provincial re-introduction program.  Locations used in this study were the first obtained 5 

each day, typically 0200hrs, but sometimes 0000 or 0400hrs depending on fix 6 

availability.  An average speed of travel was calculated for each approximate 24 hour 7 

period by dividing distance between successive locations by the time interval that 8 

separated them.  Turning angles (in radians) were calculated for each trajectory. GPS 9 

paths were overlaid on a classified TM image obtained from the Ontario Land Cover 10 

Data Base (Spectranalysis-Inc 1999), with a pixel resolution of 25m.  Major habitat types 11 

were enumerated as follows: 1) water, 2) swamp, 3) treed wetland,  4) open forest, 5) 12 

non-treed wetland, 6) mixed forest, 7) open habitat, 8) dense deciduous forest, 9) 13 

coniferous forest, and 10) alvar.   14 

 15 

GPS fixes (obtained with an accuracy of 10-20 m’s) from 4 collars (elk-115, 161, 287, 16 

and 363) were obtained for 158, 164, 194 and 218 days respectively following release on 17 

April 15th 2001, and corresponding net displacements (straight-line distance from release 18 

point to the last relocation) were 7.1, 124.7, 89.5 and 92.5 km’s respectively.  Since all 19 

120 released animals were VHF collared we know from their combined trajectories that 3 20 

of these individuals were mostly solitary, while elk-115 was within 2km of other collared 21 

animals for much of its tracked history.  During the duration of the study, there was no 22 
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snow accumulation at any time, and none of the animals calved.  Displacement-time plots 1 

indicated no common effects of season or of the rut (data not shown).   2 

 3 

Models 4 

We assume that the movement path of an individual is composed of one or more Random 5 

Walks (RWs), each characterized by distributions of step lengths and turning angles. 6 

Correlated Random Walks (CRW) occur when turning angles are concentrated around 7 

zero (Turchin 1998).  When multiple RWs are considered, we want to classify each 8 

observation as belonging to one of these RWs and obtain the parameters for each of them. 9 

Obviously such a formulation may potentially be applied to movement paths from any 10 

species, and as we discuss later may be fitted at the individual and population level. 11 

 12 

The general model structure can be formulated as a latent variable model where each 13 

observation yt (t = 1, … T) is associated with an unobserved (latent) state-indicator 14 

variable { }, 1,...,tI i i M= ∈  where M is the number of different movement states 15 

considered.  In this way, every observation is assigned to only one of M movement states.  16 

Observations yt = [rt, φt], are pairs of daily average movement rates and turning angles.  17 

Conditioned on the ith movement state, each observation is assumed to be independently 18 

drawn from a Weibull distribution (for step length) with parameters ai, and bi 19 

( },...,1{ Mi ∈ ), and wrapped Cauchy distribution (for turning angles) with parameters µi 20 

and ρi ( },...,1{ Mi ∈ ). For a given vector of states I the likelihood function is 21 

 ( ) ( ) ( )
1

, , , , ,
t t t t

T

t I I t I I
t

P y a b W r a b Cµ ρ φ µ ρ
=

= ∏  (1) 22 
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where W and C denote Weibull and wrapped Cauchy distributions respectively. Part of 1 

the analysis involves finding the best combination for the elements in I. As the number of 2 

observations and behavioral states increases it becomes unfeasible to evaluate all possible 3 

forms of I and Bayesian methods become particularly useful in determining the best 4 

fitting combination. The Weibull distribution takes the form: 5 

 ( )1( ) expb bW x abx ax−= −  (2) 6 

Note that if b = 1 this reduces to an exponential distribution. When b = 3.6, the 7 

distribution is similar to a Gaussian.  For b ≥  1 the distribution has an exponential tail, 8 

and when b < 1 the distribution has a fat-tail.  A justification for the use of the Weibull 9 

distribution is presented in the Discussion.  Wrapped Cauchy distributions are governed 10 

by 2 parameters: µ  - the mean direction and ρ  - the mean cosine of the angular 11 

distribution. The density function is: 12 

 
2

2

1 1( ) 0 2 , 0 1
2 1 2 cos( )

C ρφ φ π ρ
π ρ ρ φ µ

−
= ≤ ≤ ≤ ≤

+ − −
 (3) 13 

As ρ goes to zero, the distribution converges to a uniform distribution over the circle.  As 14 

ρ goes to 1, the distribution tends to the point distribution concentrated in the direction of 15 

µ (Fisher 1993). 16 

 17 

Different movement models can be constructed by fitting different numbers of RW 18 

models – corresponding to different behavioral states – to the data, and by making the 19 

switching rate between these different RWs fixed, or dependent on one or more landscape 20 

features.  We present results for 7 models: 21 
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1) “Single”: A single RW.  The entire movement path is assumed to be generated within 1 

a single movement state, and we estimate parameters for step length distribution (a 2 

and b) and turning angle distribution (µ and ρ) for this state. 3 

2) “Double”: a mixture of two RWs with no model for switching.  Each observation is 4 

assigned to one movement state independently of previous states.  For this model we 5 

need to estimate parameters for step length and turning angles in each state.  In 6 

addition, for every observation we need estimates for the probability ( itη ) of being in 7 

one or the other movement state. 8 

3) “Double with covariates”: same as model (2) but with the probability of being in a 9 

movement state being related to habitat type h in which the individual is currently 10 

located (out of H possible habitat types) via a logit link with νh parameters estimated 11 

directly from the data.  12 

 
( ) ( )( )1

2 1

exp 1 exp , 1,...,

1
t h h

t t

h Hη ν ν

η η

= + =

= −
 (4)  13 

where itη is the mixture coefficient for the t-th observation and determines the 14 

probability that the individual was in the i-th movement state. 15 

4)  “Double switch”: two RWs with fixed switching probabilities.  Switching behavior 16 

between movement states is explicitly modeled.  At each time step an individual can 17 

decide to change from the current movement state to a different one with fixed 18 

probability.  For two possible movement states, we have a 2 by 2 matrix that defines 19 

the probabilities qij of being in movement state i at time t+1 given that the individual 20 

is in state j at time t. 21 
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5) “Switch with covariates”: same as model (4) but with switching probability from 1 

exploratory to encamped movement state (q21) being a function of distance to open 2 

sites. 3 

21 1 1
1 1

11 21

exp 1 exp

1

H H

h h h h
h h

q m d m d

q q

β β
= =

    
= + + +    

    
= −

∑ ∑  (5) 4 

where β1 and mh are parameters, and dh is distance (km) to habitat h.  The rationale 5 

behind this model is that elk may be more likely to switch from exploratory state to 6 

encamped movement when they are close to habitats in which they can obtain forage.  7 

A switch from encamped to exploratory state could be related to the internal state of 8 

the individual or some other factor but we chose not to include covariates in the 9 

determination of this transition probability.  Equations (4) and (5) are ‘logit’ links to 10 

transform the real covariates to the [0, 1] responses. 11 

6) “Switch constrained”: this model is identical to model (4) except the mode in the 12 

exploratory step length distribution is forced (by constraining the prior distribution) to 13 

have a mode greater than zero (i.e., b2 > 1). 14 

7) “Triple switch”:  Three RWs with fixed switching probabilities.  A 3-state analogue 15 

of model (4). 16 

 17 

Priors 18 

The use and choice of priors is probably the most controversial aspect of Bayesian 19 

methods (Dennis 1996).  We used vague priors whenever possible (Table 1).  However, 20 

due to lack of convergence of some models for some data sets, we chose to be more 21 

“informative” about some prior distributions (see Results). 22 
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 1 

The models were fitted using Monte-Carlo Markov-Chain (MCMC) techniques 2 

implemented within the software WinBUGS 1.4 (Spiegelhalter et al. 1999).  For each 3 

model we ran four MCMC chains for 20,000 iterations and examined autocorrelations 4 

and convergence to stationary distributions in sample paths of the parameters.  5 

Operationally, convergence is reached when the quantiles of interest for the posterior 6 

distributions do not depend on the starting points of the Markov chain simulations.  7 

WinBUGS calculates the Gelman-Rubin convergence statistic, as modified by Brooks 8 

and Gelman (1998).  This test compares variance between and within several Markov 9 

chains run in parallel and with different initial points.  Under convergence the ratio of 10 

pooled to within variances should asymptote to one.  We also checked that the width of 11 

the central 80% interval of the pooled runs and the average width of the 80% intervals 12 

within individual runs had stabilized. 13 

 14 

Model Comparison and Goodness of Fit  15 

Spiegelhalter et al. (2002) proposed a “Deviance Information Criterion” (DIC) as a 16 

natural generalization of Akaike’s Information Criterion (AIC).  As in AIC and other 17 

model comparison tools, DIC consists of two terms, one representing goodness of fit and 18 

the other a penalty for increasing model complexity.  Model fit is summarized by the 19 

expectation of the posterior distribution of the “Bayesian Deviance” (Dev), which is 20 

calculated from the posterior distributions of the set of parameters θ  as 21 

 ( ) ( )2log |Dev P yθ θ= −  (6) 22 
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Model complexity is measured by the “effective number of parameters”, pD, defined as 1 

expected deviance minus deviance evaluated at expectations for the posterior of the set of 2 

parameters, that is, mean deviance minus deviance of the means (see Spiegelhalter et al. 3 

(2002) for the derivation of pD) 4 

 ( ) ( )Dp Dev Devθ θ= −  (7) 5 

DIC is defined as  6 

 ( ) 2 DDIC Dev pθ= +  (8) 7 

We do not use DIC as a strict criterion for model choice; rather we use it as a method for 8 

screening alternative formulations in order to produce a set of candidate models for 9 

further consideration. 10 

 11 

The joint posterior distribution of parameters generated by the MCMC simulation can be 12 

used to check the ability of models to reproduce observed properties of the data.  We 13 

asked whether movement paths simulated with model parameters could produce 14 

autocorrelation functions (acfs) for mean daily movement rates similar to those observed 15 

in the data.  Autocorrelation in movement rate reflects temporal structure of changes in 16 

movement behavior.  For 5000 replicates, we sampled from the joint posterior 17 

distribution of model parameters.  A movement path was then simulated with each set of 18 

sampled parameters and we calculated the acf of daily distance moved.  In this way we 19 

produced a “posterior predictive distribution” (Brooks and Gelman 1998) for the acf that 20 

can be compared to the observed one.  Note that DIC assesses how well a particular 21 

model fits the daily movement rate and turning angles, while by doing the check on the 22 

posterior predictive distribution of the autocorrelation function we are assessing the 23 
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ability of models to fit a property of whole movement paths that are not explicitly 1 

included in the model. 2 

 3 

Results 4 

Convergence of the Markov chains was usually reached during the first few hundred 5 

iterations and autocorrelation was indistinguishable from zero for lags greater than 5.  In 6 

order to be conservative, we discarded the first 5000 iterations and kept every 10th 7 

MCMC sample for posterior estimation.  Thus, the posterior distribution of each 8 

parameter was estimated from a sample of 4 x 1500 independent MCMC observations.  9 

Tables of all estimated parameters (means and 95% credible intervals) are included in the 10 

Appendix, DIC values for each model and modal step lengths (calculated as 11 

( )
1

1 bb ab−    when b > 1 and zero otherwise) for each movement state are reported in 12 

Tables 2 and 3. 13 

 14 

Step length distributions derived from fitting a “single” RW were all zero-modal and fat-15 

tailed with mean values ranging from 0.99-1.32 km/day.  Mean turning angle for all 4 16 

animals was 165° suggesting a high tendency to reverse direction, but the mean cosine of 17 

turning angle was low, indicating a high variance around this tendency. 18 

 19 

The “double” model – in which there are two RWs and no model for switching (and 20 

therefore no constraints on changing from one movement state to another) – place elk in 21 

the encamped state about 60% of the time (range 0.47-0.70).  Expected daily movement 22 

rates in the encamped state range from 0.14-0.70 km/day, and in the exploratory state 23 
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from 1.651 – 3.26 km/day.  However, the Weibull distributions governing movement in 1 

the exploratory state are zero-modal and fat-tailed, indicating that most movement rates 2 

in the exploratory state are very close to zero, in contradiction to our interpretation of 3 

movement for this behavior.  Mean turning angle for all individuals in the encamped state 4 

was 172° indicating many reversals but only 20° in the exploratory state. 5 

 6 

The “double with covariates” model, in which the probability of being in any one 7 

movement state may be a function of the habitat type that the animal is located in, yielded 8 

RWs broadly similar to those of the “double” model described above (except for elk-115 9 

for which this model failed to converge).  The principal difference was that animals were 10 

identified to be in the encamped mode a greater proportion of the time (range 0.81-0.88) 11 

relative to the “double” model, and that the step length distribution in the exploratory 12 

state tended to have an interior mode – in contrast to the simpler double model, and 13 

slightly increased mean.  No habitat variables were associated with individuals when in 14 

an exploratory state but all individuals were more likely to be in an encamped state when 15 

in open habitat.  Other habitat types associated with the encamped state were mixed 16 

forest and alvar (elk-287); and water, dense deciduous forest, and coniferous forest (elk-17 

363). 18 

 19 

The “double switch” model (in which switching rates between movement rates are 20 

estimated from the data) yielded very similar results to the “double” model for step 21 

length, turning angles, and time spent in each movement state.  Daily switching 22 
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probabilities from encamped to exploratory states ranged from 0.096 to 0.295, and from 1 

exploratory to encamped states from 0.085 to 0.399. 2 

 3 

The “switch with covariates” model (in which switching probability may be a function of 4 

distance to various habitat types) generated results similar to the “double with covariates” 5 

– that is, a greater proportion of time in the encamped state (0.78-0.91), a longer mean 6 

step length in the exploratory mode (3.65-5.53 km/day), and a tendency for the step 7 

length distribution to have an interior mode in the exploratory state.  However, the 8 

switching rates were not related to distance to any habitat type for any of the individuals 9 

(no mh significantly different from zero) except elk-363 for which propensity to switch 10 

from exploratory to encamped state increased with distance from open habitat. 11 

 12 

The “switch constrained” model yielded RWs very similar to that of “switch with 13 

covariates” and “double with covariates”.  Mean values of step length varied from 0.233-14 

0.659 km/day in the encamped state, and 5.23-7.00 km/day in the exploratory state.  15 

Modes in the exploratory state varied from 1.78-4.43 km.  Daily switching probabilities 16 

from encamped to exploratory state ranged from 0.047-0.156, and from exploratory to 17 

encamped states from 0.372-0.616.  Figure 1 illustrates fitted distributions for turning 18 

angles and step length for elk-287 in the two movement states. 19 

 20 

The “triple switch” model, in which 3 RWs are fitted with switching parameters, tends to 21 

divide the encamped state into two further states – an almost stationary state where 22 

movement rates are very low (0.03-0.11 km/day) and a low movement state (0.33-0.73 23 
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km/day) – but leaves the parameters for the exploratory state almost unchanged compared 1 

to “switch constrained”, “switch with covariates” and “double with covariates”.  The 2 

proportion of time spent in the exploratory state is almost identical to these other 3 3 

models, but the proportions of time spent in the almost stationary and low movement 4 

states are variable with individual (ranges 0.10-0.40 and 0.40-0.80 respectively).  Figure 5 

2 shows the assignment of movement states with all the multiple mixed RW models fitted 6 

to elk-163, together with step length data for the movement path of this individual. 7 

 8 

DIC values for each model indicated that rank order of performance of these different 9 

models varied with individuals (Table 2).  Mixed multiple RWs were usually supported 10 

by a considerable margin over a single RW.  Furthermore, more structured models with 11 

explicit “switch” parameters or models that linked movement states to habitat tended to 12 

outperform the less structured “double” model in which states were freely assigned.   13 

“Single” and “double switch” models were always among the least supported 3 models 14 

for all individuals, “triple” and “switch constrained” were always ranked first or second 15 

in the level of support.  16 

 17 

Comparing the autocorrelation structure in the model output and data provides a further 18 

means by which model fit to the temporal structure of observed data may be judged.  In 19 

Figure (3) acfs from observed data are compared with those predicted by the “double 20 

switch” and “switch constrained” models applied to the 4 individuals.  The “switch 21 

constrained” model provides an improved representation of the observed acf for elk-115, 22 

163 and 363 compared to the “switch model”.  This improvement arises because the 23 
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constrained model forces a non-zero mode on the step length distribution which is 1 

modeled with zero-modal distributions by the unconstrained model.  There is no 2 

noticeable improvement for elk-287 because the step length distribution is non-zero 3 

modal in both versions of the model.  In general, only those models that adopted 4 

distributions with non-zero modes for the exploratory state were able to faithfuly 5 

represent the observed structure in the acf. 6 

 7 

Discussion 8 

 9 

Identifying behavioral states based on some set of observations is a common 10 

methodological problem in behavioral ecology.  For example, Sibly et al. (1990) 11 

developed a method to identify different behavioral states based on the rate of some 12 

activity such as the pecking of a feeding bird.  They assumed that pecking was a Poisson 13 

process (i.e. events arise at random and independently of the timing of any previous 14 

event), which means that the time interval between events will be exponentially 15 

distributed (Karlin and Taylor 1975).  Non-linear curve fitting on log transformed 16 

frequencies of waiting times between events can be used to ask whether the observed 17 

pecking intervals are best described by one or multiple exponential distributions, each 18 

corresponding to a different behavioral process.  This approach was modified by Johnson 19 

et al. (2002) in order to identify scales of movement in caribou.  Frequency distributions 20 

of rates of movement obtained from animal locations collected using GPS collars were 21 

modeled with 1, 2 or 3 exponential distributions.  Threshold values (or ‘scale criteria’) 22 

were used to differentiate between movement rates corresponding to different categories 23 
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of movement scale.  Other techniques have been developed to identify scale “domains” 1 

(Wiens 1989) from movement paths.  Changes in the fractal dimension (tortuosity) of 2 

movement paths have been interpreted as changes in movement behavior across scales 3 

(Nams 1996, Fritz et al. 2003).  Similarly, (Fauchald and Tveraa 2003) used changes in 4 

the variance of first passage times to measure how much time an animal uses within an 5 

area of a given spatial scale. 6 

 7 

We have presented a general and flexible framework by which movement paths may be 8 

described and behavioral states of animals inferred.  This framework has several 9 

advantages over previous approaches: 1) it uses information from both turning angles and 10 

step lengths in assigning behavioral states to movement events; 2) it accounts for 11 

temporal ordering of the data; 3) it provides a means of directly estimating switching 12 

rates between behavioral states; 4) it allows formulation of models in which the habitat 13 

that individuals are located in, or the proximity of different habitat types might influence 14 

behavioral state; 5) the methods presented lead naturally to formulation of models of 15 

movement as opposed to just a classification of movement states or the determination of 16 

“scale domains”. 17 

 18 

Given the high accuracy of GPS fixed locations, and the relatively large distances moved 19 

each day by these elk we chose to ignore measurement error.  However, it is 20 

straightforward to incorporate known measurement error in these analyses by specifying 21 

informative priors on measured variables (Jonsen et al. 2003).  Since we only have data 22 

for four animals we have fitted models to each path but it is readily extended  to a 23 



Morales et al. 

 19

population level by adding hyper-prior distributions - that is adding prior distributions on 1 

the parameters of prior distributions (Jonsen et al. 2003).  Each individual is assumed to 2 

sample its movement parameters (say turning angle variance for encamped mode) from a 3 

common, population-level distribution of individual parameters.  Analysis at the 4 

population level may generate more precise estimates of the underlying model parameters 5 

(Jonsen et al. 2003).  Moreover, this hierarchical approach would permit assesment of the 6 

degree of individual variability in movement behavior.  Further details on hierarchical 7 

Bayesian models can be found in Carlin and Louis (1996) and in the WinBugs user 8 

manual. 9 

 10 

We propose the use of Weibull distributions to model distance moved for the following 11 

reason.  Suppose that during the time period between successive GPS fixes the animal 12 

performs an unobserved ‘microscale’ correlated random walk.  Given enough time, such 13 

a CRW will converge to normal diffusion, in which displacement distance (rt) after time t 14 

is given by the probability density function: 15 

 2( ) exp 4
2

rf r r Dt
Dt

 = −   (9) 16 

where D is diffusion rate.  Equation (9) is equivalent to the two-parameter Weibull 17 

density (Eq. (2)) with shape parameter 2b = and a scale parameter 1
4

a
Dt

=  [Cain, 1991 18 

#1059].  Convergence to a simple diffusion and hence to a Weibull distribution with 19 

shape parameter 2 for distance moved is expected even for mixtures of CRWs (Skellam 20 

1973, Morales 2002, Skalski and Gilliam 2003).  Of course there is no reason to suppose 21 

that the distribution describing displacement of an individual has converged to a Weibull 22 
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distribution over the time interval between location fixes (convergence is less likely when 1 

this interval is short, or when individuals move little, and presumably more likely when 2 

movement rate is higher) but a Weibull distribution (with b ≠ 2) may be flexible enough 3 

to accommodate departures from this convergence.  For example, Rudd and McEvoy 4 

(1996) found that Weibull distributions provided good fit to observed cinnabar moth 5 

displacement.  The Weibull distribution not only describes distribution for distance 6 

moved under simple diffusion but it also has a very flexible shape, which may 7 

approximate distribution of distance moved under other forms of movement.  The only 8 

drawback of the Weibull is that its density at zero distance is undefined for some 9 

combinations of parameters. 10 

 11 

Elk are complex, cognitive animals, and it would be naïve to assume that their movement 12 

paths could be fully described by simple memory-less models of the type described here.  13 

Inevitably such models will only succeed in characterizing certain aspects of their 14 

movement paths.  However, our analysis suggests that, at least over the period of a few 15 

months, elk movement may be thought of as multi-phasic: elk spend the majority of their 16 

time in an encamped state in which step lengths are of the order of hundreds of meters, 17 

and turning angles tend to be very high, or, in an exploratory state, in which daily step 18 

lengths are several kilometers, and turning angles lower (Fig. 1).  Application of the 19 

“double with covariates” model consistently reveals that animals are likely to encamp in 20 

open habitat (agricultural fields and opened forest), but finds no habitat associations in 21 

the exploratory state (Table A3). 22 

 23 
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Visual inspection of movement paths suggested that elk alternate between at least two 1 

types of movement and that a single movement model such as a CRW could not 2 

adequately represent their behavior.  DIC values indicate that models with two movement 3 

states usually out performed the “single” model indicating that movement of elk is indeed 4 

better described as a mixture of movement behaviors rather than a single process, even if 5 

we use very flexible distributions for turning angles and distance moved.  However, our 6 

simplest bi-phasic models (“double” and “switch”) usually fitted fat-tailed and zero-7 

modal distributions to infrequent exploratory moves.  This presumably helped to account 8 

for variation in small to medium sized steps.  We considered the identification of a 9 

second state associated with exploratory behavior in which the most common moves 10 

were very small to be biologically problematic because by definition we expect the 11 

exploratory state to consist of long step lengths.  The problem may be overcome in two 12 

ways: 1) constrain the second Weibull distribution to have a mode greater than zero, or 2) 13 

add a third state that results in sub-division of the encamped state into two states 14 

permitting very small and small steps, leaving the exploratory state to be described by a 15 

distribution with non-zero mode characteristic of longer step lengths. While it is not clear 16 

that this triple-phase model containing the ‘very small steps’ really represents discrete 17 

behavioral states, or is biologically informative with respect to larger-scale movement 18 

patterns it does provide an improved fit of the model to the data. 19 

 20 

The interpretation of DIC requires caution.  While DIC values for the “switch 21 

constrained” model are smaller than the unconstrained “switch” model, only the 22 

differences for elk-163 and elk-363 are larger than 10 units.  Because the constraint we 23 
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imposed corresponds to putting a very strong prior on movement length in the 1 

exploratory state, which will have a large effect on DIC, we do not regard DIC as an 2 

appropriate criterion for choosing between these models.  Thus a more sophisticated 3 

assessment of model adequacy is required to compare models in which parameter values 4 

are constrained.  Rather than looking for the smallest DIC value we suggest that it is 5 

important to consider the ability of models to fit different aspects of data and especially 6 

those that have not been explicitly modeled.  For example, our insistence on having non-7 

zero modes for the exploratory state is justified by the fact that only in those cases where 8 

the exploratory state had a mode away from zero were we able to simulate 9 

autocorrelation functions similar to those observed for elk (Fig. 3).  We interpret the 10 

apparent cyclicity in observed autocorrelation in rate of movement as being a 11 

consequence of individuals moving at similar rate while in a particular movement state 12 

acting in conjunction with switching between movement states that results in a 13 

characteristic time spent in each state (see also Fig. 2). 14 

 15 

The generality and flexibility of methods presented here comes with the cost of 16 

computing time and need for careful assessment of MCMC convergence.  However, 17 

availability of WinBUGS software makes implementation of numerical techniques 18 

relatively easy and it also provides useful diagnostic tools.  As with any Bayesian 19 

method, an explicit quantification of uncertainty in model parameters is given by their 20 

posterior distributions.  Since we have used very vague priors (Table 1) and have a large 21 

number of sample points in each path,  we expect that these posterior distributions are 22 
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largely determined by the data.  The use of informative priors in the “switch constrained” 1 

model seems justified on biological grounds and on model fit. 2 

 3 

Simple homogenous movement models have succeeded in describing relatively short-4 

term movement paths within homogeneous environments.  Describing movement paths in 5 

heterogeneous environments and over longer time-scales for large cognitive animals will 6 

require more sophisticated models that account for greater behavioral complexity.  Fitting 7 

these more sophisticated models to data is technically challenging, but the increasing 8 

development and use of MCMC methods represents a promising means by which this 9 

challenge may be met. 10 

 11 

Acknowledgements 12 

We thank Peter Turchin and Rob Dunn, two anonimous reviewers and the editor Ottar 13 

Bjornstad for useful comments on the manuscript.  This work was supported by National 14 

Science Foundation grant 0078130. 15 

 16 

References 17 

Bailey, D. W., J. E. Gross, E. A. Laca, L. R. Rittenhouse, M. B. Coughenour, D. M. 18 

Swift, and P. L. Sims. 1996. Mechanisms that result in large herbivore grazing 19 

distribution patterns. Journal of Range Management 49:386-400. 20 

Bell, W. J. 1991. Searching behavior: the behavioral ecology of finding resources. 21 

Chapman and Hall, London. 22 



Morales et al. 

 24

Brooks, S. P., and A. Gelman. 1998. General methods for monitoring convergence of 1 

iterative simulations. Journal of Computational and Graphical Statistics 7:434-2 

455. 3 

Carlin B.P., and Louis, T.A. 1996.  Bayes and empirical Bayes methods for data analysis. 4 

Vol. 69. Monographs on statistics and applied probability.  Chapman and Hall, 5 

London. 6 

Dennis, B. 1996. Discussion: should ecologists become Bayesians. Ecological 7 

Applications 6:1095-1103. 8 

Fauchald, P., and T. Tveraa. 2003. Using first-passage time in the analysis of area-9 

restricted search and habitat selection. Ecology 84:282-288. 10 

Firle, S., R. Bommarco, B. Ekbom, and M. Natielo. 1998. The influence of movement 11 

and resting behavior on the range of three carabid beetles. Ecology 79:2113-2122. 12 

Fisher, N. I. 1993. Statistical analysis of circular data. Cambridge University Press, 13 

Cambridge, New York, NY, USA. 14 

Grünbaum, D. 2000. Advection-diffusion equations for internal state-mediated random 15 

walks. SIAM Journal of Applied Mathematics 61:43-73. 16 

Johnson, C. J., K. L. Parker, D. Heard, C., and M. P. Gillingham. 2002. Movement 17 

parameters of ungulates and scale-specific responses to the environment. Journal 18 

of Animal Ecology 71:225-235. 19 

Jonsen, I. D., R. A. Myers, and J. M. Flemming. 2003. Meta-analysis of animal 20 

movement using state-space models. Ecology in press. 21 

Kareiva, P., and G. Odell. 1987. Swarms of predators exhibit "preytaxis" if individual 22 

predators use area-restricted search. American Naturalist 130:233-270. 23 



Morales et al. 

 25

Karlin, S., and H. M. Taylor. 1975. A first course in stochastic processes, 2d edition. 1 

Academic Press, New York. 2 

Morales, J. M. 2002. Behavior at habitat boundaries can produce leptokurtic movement 3 

distributions. American Naturalist 160:531-538. 4 

Morales, J. M., and S. P. Ellner. 2002. Scaling up movement in heterogeneous 5 

landscapes: the importance of behavior. Ecology 83:2240-2247. 6 

Okubo, A. 1980. Diffusion and ecological problems : mathematical models. Springer-7 

Verlag, Berlin ; New York. 8 

Okubo, A., and S. A. Levin. 2001. Diffusion and ecological problems: modern 9 

perspectives, second edition. Springer-Verlag. 10 

Rudd, N. T., and P. B. McEvoy. 1996. Local dispersal by the cinnabar moth Tyria 11 

jacobeae. Ecological Applications 6:285-297. 12 

Sibly, R. M., H. M. R. Nott, and D. J. Fletcher. 1990. Splitting behaviour into bouts. 13 

Animal Behaviour 39:63-69. 14 

Skalski, G. T., and J. F. Gilliam. 2003. A diffusion-based theory of organism dispersal in 15 

heterogeneous populations. American Naturalist 161:441-458. 16 

Skellam, J. G. 1973. The formulation and interpretation of mathematical models of 17 

diffusionary processes in population biology. Pages 63-85 in M. S. Barlett and R. 18 

W. Hiorns, editors. The mathematical theory of the dynamics of biological 19 

populations. Academic Press, London. 20 

Spectranalysis-Inc. 1999. Ontario Land Cover Data Base Revised User's Manual. 21 

Unpublished Report to Ontario Ministry of Natural Resources. 22 



Morales et al. 

 26

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde. 2002. Bayesian 1 

measures of model complexity and fit. Journal of the Royal Statistical Society B 2 

64:583-639. 3 

Spiegelhalter, D. J., A. Thomas, and N. G. Best. 1999.  WinBUGS Version 1.2 User 4 

Manual. MRC Biostatistics Unit. 5 

Turchin, P. 1998. Quantitative analysis of movement: measuring and modeling 6 

population redistribution in animals and plants. Sinauer Associates, Sunderland, 7 

Massachusetts. 8 

Viswanathan, G. M., V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A. Prince, and H. E. 9 

Stanley. 1996. Levy flight search patterns of wandering albatrosses. Nature 10 

381:413-415. 11 

Viswanathan, G. M., F. Bartumeus, S. V. Buldyrev, J. Catalan, U. L. Fulco, S. Havlin, M. 12 

G. E. da Luz, M. L. Lyra, E. P. Raposo, and H. E. Stanley. 2002. Levy flight 13 

random searches in biological phenomena. Physica a-Statistical Mechanics and Its 14 

Applications 314:208-213. 15 

Wiens, J. A. 1989. Spatial scaling in ecology. Functional Ecology 3:385-397. 16 

Zollner, P. A., and S. L. Lima. 1999. Search strategies for landscape-level interpatch 17 

movements. Ecology 80:1019-1030. 18 

19 



Morales et al. 

 27

Table 1. Prior distributions 1 

Parameter Prior Distribution Interpretation  

ai Gamma(0.01, 0.01) Scale parameter for Weibull distribution describing step 

length for the ith movement state. 

epsi Gamma(0.01, 0.01) Difference between ai and ai+1 when multiple walks 

fitted (ai+1 = ai+epsi). 

bi Gamma(0.01, 0.01) Shape parameter for Weibull distribution describing 

step length for the ith movement state. 

µI Uniform(-π, π) Mean direction for turning angles for the ith movement 

state.  

ρI Uniform(0, 1) Mean cosine for turning angles for the ith movement 

state 

η1,t Uniform(0, 1) Mixture coefficient for the tth observation –the 

probability that the tth observation is in movement state 

1 (η2,t = 1-η1,t). 

νh Normal(0, σ),    σ = 100 Coefficients in equation (4) relating state of individual 

to habitat in which it currently resides. 

β1 Normal(0, σ),    σ = 100 Intercept in equation (5) relating probability of 

switching to distance to open habitat. 

m Normal(0, σ),    σ = 100 Slope in equation (5) relating probability of switching to 

distance to open habitat.  

qij Uniform(0, 1) Transition probability from the ith to the jth movement 

state. 

2 
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Table 2. DIC values for the 7 models examined. 1 

 elk-115 elk-163 elk-287 elk-363 

Model DIC pD DIC pD DIC pD DIC pD 

         

Single 1083 4 804 4 902 4 1138 4 

Double 1054 91 738 65 807 59 1056 76 

Double with covariates NC NC 695 30 801 60 1040 32 

Double switch 991 10 688 6 699 18 1033 47 

Switch with covariates 1195 23 NC NC 724 16 1320 15 

Switch constrained 984 8 644 16 689 17 945 19 

Triple switch 896 19 641 23 626 16 960 54 

NC – MCMC failed to converge 2 

 3 



Morales et al. 

 29

Table 3. Modes for different movement states (km/day). 1 

  Single Double Double with 

covariates 

Switch Switch with 

covariates 

Switch constrained Triple 

switch 

state 1 elk-115 0.000 0.331 NC 0.293 0.000 0.000 0.000 

 elk-163 0.000 0.008 0.000 0.010 NC 0.000 0.019 

 elk-287 0.000 0.061 0.024 0.017 0.021 0.015 0.050 

 elk-363 0.000 0.082 0.088 0.073 0.000 0.006 0.000 

state 2 elk-115  0.000 NC 0.000 3.927 3.538 0.146 

 elk-163  0.000 0.000 0.000 NC 4.429 0.000 

 elk-287  0.000 1.910 0.940 0.000 1.783 0.190 

 elk-363  0.000 2.912 0.000 1.846 4.004 0.079 

state 3 elk-115       2.784 

 elk-163       0.590 

 elk-287       0.682 

 elk-363       0.000 

NC – MCMC failed to converge 2 
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Figure legends 1 

Figure 1.  Turning angle and step distributions for elk-287 in two behavioral states as 2 

inferred using the “switch constrained model”.  Turning angles (visualized using polar 3 

plots) have Wrapped Cauchy distributions with parameters µi and ρi corresponding to the 4 

mean of their posterior distributions.  Step lengths have Weibull distributions with 5 

parameters ai and bi corresponding to the mean of their posterior distributions. 6 

 7 

Figure 2.  Activity bar showing assignment of behavioral states through time for all 8 

multiple RW models fitted to elk-163.  A: “Double”, B: “Double with covariates”, C: 9 

“Double switch”, D: “Switch constrained”, E: “Triple switch”.  The dots above the 10 

activity bars indicate daily movement rate (on a log scale). 11 

 12 

Figure 3.  Autocorrelation functions (acfs) of daily movement rate for observed and 13 

modeled elk paths for lags 1-60 for all 4 individuals.  The left-hand column has acfs 14 

corresponding to the “double switch” model and the right hand column corresponds to 15 

acfs from the “switch constrained” model. Thick dotted lines are observed acfs. Thin 16 

lines are 95% credibility intervals for the acfs of modeled paths (5000 replicates). Dots 17 

are autocorrelation values for modeled paths.  18 

19 
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Figure 1. 1 
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Figure 2. 1 
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Figure 3. 1 
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Appendix 1. 1 
 2 
Mean and 95 credible intervals for the posterior distributions of model parameters 3 
 4 
A.1. Single model 5 

 elk-115 elk-163 elk-287 elk-363 
a 1.066 (0.919, 

1.225) 
1.233 (1.047, 
1.437) 

1.154 (0.978, 
1.350) 

1.256 (1.091, 
1.431) 

b 0.692 (0.620, 
0.767) 

0.499 (0.444, 
0.558) 

0.576 (0.512, 
0.641) 

0.627 (0.566, 
0.688) 

µ 3.198 (2.857, 
3.564) 

3.194 (2.798, 
3.591) 

2.115 (0.598, 
5.138) 

2.994 (2.104, 
3.952) 

ρ 0.261 (0.156, 
0.363) 

0.263 (0.147, 
0.375) 

0.089 (0.005, 
0.200) 

0.124 (0.019, 
0.229) 

 6 
A.2. Double model 7 

 elk-115 elk-163 elk-287 elk-363 
a1 1.462 (1.089, 

1.990) 
7.990 (4.558, 
13.530) 

5.255 (3.343, 
9.251) 

3.873 (2.560, 
5.711) 

a2 1.028 (0.821, 
1.245) 

0.672 (0.445, 
0.916) 

0.654 (0.431, 
0.895) 

0.913 (0.715, 
1.129) 

b1 1.430 (1.011, 
1.942) 

1.052 (0.838, 
1.303) 

1.215 (0.992, 
1.494) 

1.223 (0.972, 
1.501) 

b2 0.543 (0.452, 
0.640) 

0.590 (0.469, 
0.738) 

0.615 (0.489, 
0.767) 

0.578 (0.485, 
0.679) 

µ1 3.171 (-3.131, 
3.138) 

3.176 (-3.112, 
3.105) 

2.710 (-3.068, 
3.089) 

2.966 (2.701, 
3.129) 

µ2 0.638 (-2.926, 
2.947) 

3.141 (-3.127, 
3.129) 

0.277 (-0.519, 
1.284) 

6.055 (-1.264, 
0.751) 

ρ1 0.564 (0.391, 
0.705) 

0.179 (0.010, 
0.408) 

0.283 (0.092, 
0.442) 

0.477 (0.314, 
0.614) 

ρ2 0.077 (0.003, 
0.216) 

0.341 (0.074, 
0.550) 

0.300 (0.047, 
0.513) 

0.205 (0.027, 
0.369) 

 8 
A.3. Double with Covariates 9 
 elk-163 elk-287 elk3-63 
a1 4.802 (2.477, 8.434) 3.739 (2.893, 4.719) 2.141 (1.561, 2.788) 
a2 0.292 (0.018, 0.750) 0.106 (0.019, 0.350) 0.066 (0.004, 0.200) 
b1 0.892 (0.691, 1.110) 1.073 (0.924, 1.232) 0.844 (0.706, 0.980) 
b2 0.962 (0.532, 1.854) 1.338 (0.757, 1.931) 1.732 (1.134, 2.736) 
µ1 6.256 (-2.978, 2.986) -0.013 (-3.007, 

2.950) 
1.645 (-2.981, 2.986) 

µ2 2.511 (-2.987, 2.951) -0.022 (-2.992, 
2.952) 

6.142 (-2.966, 2.990) 

ρ1 0.018 (0.000, 0.066) 0.017 (0.000, 0.061) 0.013 (0.000, 0.047) 
ρ2 0.037 (0.001, 0.138) 0.606 (0.403, 0.761) 0.359 (0.068, 0.633) 
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ν1 0.122 (-19.360, 
19.990) 

-7.717 (-22.390, 
2.075) 

8.588 (-0.694, 
22.920) 

ν2 4.161 (1.402, 
12.610) 

5.825 (3.615, 8.969) 3.346 (1.568, 5.730) 

ν3 -7.595 (-23.270, 
2.222) 

-0.174 (-13.840, 
5.243) 

9.275 (1.318, 
23.140) 

ν4 -0.053 (-19.420, 
19.400) 

1.538 (-0.853, 4.206) -0.211 (-19.670, 
19.310) 

ν5 -5.975 (-21.040, 
3.268) 

0.088 (-5.404, 3.617) 1.337 (-4.349, 
14.250) 

ν6 -0.138 (-19.800, 
19.740) 

-0.053 (-19.930, 
19.580) 

0.230 (-19.510, 
20.000) 

ν7 1.194 (-0.395, 2.491) 2.136 (1.205, 3.094) 3.206 (2.130, 4.618) 
ν8 -0.923 (-13.130, 

2.392) 
0.160 (-2.650, 3.039) 2.358 (0.305, 4.641) 

ν9 -1.178 (-15.030, 
4.273) 

-0.530 (-3.285, 
2.088) 

8.758 (1.410, 
23.330) 

ν10 0.127 (-19.820, 
18.970) 

9.797 (1.766, 
23.560) 

2.607 (-1.013, 9.293) 

 1 
A.4. Switch model 2 

 elk-115 elk-163 elk-287 elk-363 
a1 1.262 (1.063, 

1.495) 
8.314 (4.433, 
14.990) 

3.606 (2.853, 
4.536) 

3.672 (1.998, 
6.522) 

a2 1.164 (0.973, 
1.364) 

0.689 (0.168, 
0.993) 

0.154 (0.031, 
0.413) 

0.881 (0.496, 
1.161) 

b1 0.442 (0.340, 
0.560) 

1.064 (0.844, 
1.321) 

1.051 (0.907, 
1.207) 

1.193 (0.838, 
1.592) 

b2 1.306 (1.081, 
1.717) 

0.602 (0.462, 
1.042) 

1.167 (0.692, 
1.729) 

0.588 (0.464, 
0.758) 

µ1 2.999 (-3.046, 
3.047) 

3.205 (-3.127, 
3.125) 

2.620 (2.059, 
3.196) 

2.971 (2.622, 
3.247) 

µ2 3.160 (-3.133, 
3.135) 

3.136 (-3.115, 
3.117) 

0.118 (0.005, 
0.370) 

5.962 (0.036, 
6.247) 

ρ1 0.089 (0.004, 
0.245) 

0.313 (0.119, 
0.482) 

0.226 (0.101, 
0.347) 

0.427 (0.231, 
0.619) 

ρ2 0.408 (0.267, 
0.589) 

0.183 (0.011, 
0.422) 

0.582 (0.383, 
0.741) 

0.217 (0.019, 
0.506) 

q1,2 0.086 (0.023, 
0.249) 

0.173 (0.036, 
0.575) 

0.349 (0.151, 
0.557) 

0.329 (0.148, 
0.554) 

q2,1 0.136 (0.036, 
0.288) 

0.142 (0.041, 
0.294) 

0.096 (0.045, 
0.158) 

0.295 (0.097, 
0.526) 

 3 
A.5. Switch with Covariates 4 

 elk-115 elk-287 elk-363 
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a1 1.544 (1.311, 
1.811) 

3.668 (2.846, 
4.679) 

2.151 (1.616, 
2.803) 

a2 0.038 (0.005, 
0.093) 

0.248 (0.049, 
0.674) 

0.129 (0.010, 
0.495) 

b1 0.887 (0.779, 
1.000) 

1.064 (0.911, 
1.245) 

0.842 (0.711, 
0.976) 

b2 1.786 (1.273, 
2.531) 

0.979 (0.544, 
1.545) 

1.466 (0.743, 
2.325) 

µ1 -1.462 (-3.129, 
3.130) 

2.312 (-3.030, 
3.056) 

2.378 (-3.092, 
3.121) 

µ2 0.942 (-1.873, 
2.583) 

0.036 (-0.263, 
0.389) 

-0.461 (-1.057, 
0.068) 

ρ1 0.311 (0.207, 
0.411) 

0.232 (0.106, 
0.354) 

0.226 (0.113, 
0.349) 

ρ2 0.291 (0.017, 
0.619) 

0.538 (0.299, 
0.730) 

0.459 (0.157, 
0.705) 

β1 3.070 (2.282, 
4.026) 

2.425 (1.690, 
3.409) 

2.292 (1.405, 
3.416) 

β2 -0.531 (-6.742, 
5.587) 

-2.977 (-8.109, 
2.076) 

-1.140 (-6.019, 
3.655) 

m2,1 -0.041 (-6.236, 
6.155) 

-0.121 (-6.096, 
6.056) 

-0.191 (-6.174, 
5.921) 

m2,2 -0.281 (-5.308, 
4.987) 

0.168 (-3.119, 
2.492) 

0.042 (-3.520, 
3.577) 

m2,3 0.764 (-5.338, 
6.792) 

-0.338 (-6.399, 
5.713) 

1.626 (-4.367, 
7.318) 

m2,4 -3.210 (-7.945, 
1.420) 

1.276 (-0.363, 
2.959) 

1.302 (-0.519, 
3.508) 

m2,5 4.025 (-0.927, 
9.281) 

2.139 (-1.506, 
5.685) 

3.151 (-0.383, 
6.941) 

m2,6 -0.015 (-6.209, 
6.230) 

0.054 (-6.171, 
6.190) 

-0.135 (-6.086, 
5.961) 

m2,7 2.705 (-0.651, 
6.312) 

0.283 (-4.908, 
5.502) 

5.062 (0.277, 
9.706) 

m2,8 -0.342 (-6.480, 
5.935) 

-1.060 (-7.121, 
4.852) 

-0.331 (-6.104, 
5.724) 

m2,9 0.654 (-5.753, 
6.709) 

-1.383 (-7.147, 
4.443) 

-0.235 (-5.995, 
5.706) 

m2,10 -0.712 (-4.079, 
2.544) 

-0.248 (-1.928, 
1.359) 

-0.950 (-3.217, 
1.268) 

 1 
A.6. Triple Switch 2 

 elk-115 elk-163 elk-287 elk-363 
a1 24.06 (12.52, 

37.09) 
12.43 (5.70, 25.44) 19.41 (9.72, 

31.22) 
11.05 (3.84, 
23.56) 
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a2 1.354 (1.124, 
1.632) 

3.292 (0.858, 
11.530) 

3.538 (2.589, 
4.667) 

3.582 (2.098, 
5.736) 

a3 0.073 (0.007, 
0.251) 

0.239 (0.012, 
0.827) 

0.165 (0.057, 
0.346) 

0.432 (0.071, 
0.793) 

b1 0.895 (0.851, 
1.000) 

1.150 (0.889, 
1.441) 

1.406 (1.131, 
1.670) 

0.519 (0.324, 
0.734) 

b2 1.167 (1.014, 
1.341) 

0.947 (0.529, 
2.386) 

1.458 (1.158, 
1.926) 

1.203 (0.968, 
1.475) 

b3 1.572 (0.923, 
2.407) 

1.150 (0.501, 
1.960) 

1.120 (0.772, 
1.515) 

0.933 (0.642, 
1.593) 

µ1 4.156 (-3.037, 
3.005) 

-0.750 (-3.125, 
3.123) 

2.148 (-3.011, 
3.006) 

1.126 (-2.806, 
2.850) 

µ2 3.117 (-3.114, 
3.138) 

0.101 (-3.089, 
3.093) 

2.753 (2.241, 
3.112) 

3.056 (-3.136, 
3.108) 

µ3 1.080 (-1.523, 
2.501) 

0.243 (-3.121, 
3.120) 

0.067 (-0.201, 
0.372) 

5.721 (-1.754, 
0.409) 

ρ1 0.148 (0.005, 
0.405) 

0.329 (0.111, 
0.511) 

0.129 (0.007, 
0.328) 

0.236 (0.011, 
0.564) 

ρ2 0.349 (0.228, 
0.464) 

0.180 (0.006, 
0.617) 

0.318 (0.152, 
0.478) 

0.330 (0.160, 
0.506) 

ρ3 0.316 (0.022, 
0.642) 

0.291 (0.018, 
0.653) 

0.561 (0.374, 
0.719) 

0.270 (0.035, 
0.536) 

q1,1 0.724 (0.480, 
0.815) 

0.839 (0.544, 
0.904) 

0.689 (0.543, 
0.739) 

0.870 (0.593, 
0.955) 

q1,2 0.041 (0.008, 
0.054) 

0.077 (0.001, 
0.084) 

0.044 (0.001, 
0.057) 

0.018 (0.001, 
0.022) 

q1,3 0.069 (0.002, 
0.097) 

0.241 (0.034, 
0.331) 

0.367 (0.190, 
0.429) 

0.042 (0.001, 
0.039) 

q2,1 0.094 (0.004, 
0.131) 

0.095 (0.009, 
0.122) 

0.053 (0.003, 
0.074) 

0.067 (0.000, 
0.094) 

q2,2 0.926 (0.847, 
0.951) 

0.603 (0.103, 
0.762) 

0.938 (0.801, 
0.972) 

0.769 (0.598, 
0.822) 

q2,3 0.328 (0.070, 
0.411) 

0.309 (0.015, 
0.424) 

0.044 (0.002, 
0.062) 

0.424 (0.063, 
0.517) 

q3,1 0.181 (0.024, 
0.247) 

0.066 (0.003, 
0.088) 

0.258 (0.132, 
0.305) 

0.064 (0.001, 
0.091) 

q3,2 0.034 (0.001, 
0.046) 

0.320 (0.061, 
0.417) 

0.018 (0.001, 
0.024) 

0.214 (0.057, 
0.264) 

q3,3 0.603 (0.360, 
0.685) 

0.449 (0.155, 
0.565) 

0.589 (0.410, 
0.654) 

0.534 (0.280, 
0.615) 

 1 
2 
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A.7. Switch Constrained 1 
 elk-115 elk-163 elk-287 elk-363 

a1 1.525 (1.272, 
1.790) 

3.630 (2.475, 
5.023) 

3.455 (2.824, 
4.509) 

2.262 (1.715, 
3.005) 

a2 0.046 (0.004, 
0.171) 

0.034 (0.009, 
0.049) 

0.019 (0.028, 
0.208) 

0.034 (0.009, 
0.049) 

b1 0.883 (0.769, 
0.996) 

0.829 (0.687, 
0.976) 

1.034 (0.896, 
1.195) 

1.012 (0.865, 
1.183) 

b2 1.771 (1.084, 
2.687) 

1.645 (1.391, 
2.105) 

1.903 (1.015, 
1.764) 

1.911 (1.609, 
2.429) 

µ1 3.190 (-3.116, 
3.138) 

-0.607 (-3.126, 
3.126) 

2.613 (-3.011, 
3.060) 

1.751 (-3.115, 
3.130) 

µ2 1.101 (-2.057, 
2.575) 

0.256 (-3.115, 
3.117) 

0.027 (-0.228, 
0.300) 

-0.455 (-1.123, 
0.134) 

ρ1 0.310 (0.207, 
0.414) 

0.248 (0.114, 
0.373) 

0.209 (0.106, 
0.339) 

0.234 (0.116, 
0.345) 

ρ2 0.292 (0.018, 
0.642) 

0.265 (0.017, 
0.545) 

0.616 (0.406, 
0.759) 

0.426 (0.126, 
0.673) 

q1,2 0.047 (0.019, 
0.093) 

0.157 (0.087, 
0.238) 

0.099 (0.051, 
0.161) 

0.115 (0.057, 
0.185) 

q2,1 0.421 (0.204, 
0.666) 

0.616 (0.427, 
0.790) 

0.372 (0.184, 
0.567) 

0.635 (0.422, 
0.820) 

 2 

3 
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Supplementary Material for “Extracting More out of Relocation Data: Building 1 
Movement Models as Mixtures of Correlated Random Walks” 2 
 3 

WinBUGS code for “single” model 4 
 5 
model{ 6 

for (t in 1:npts) { 7 
  # likelihood for steps 8 

l[t] ~ dweib(b[t], a[t])  # Weibull distriution for step length 9 
 10 
  a[t] <- nu   # scale parameter 11 
  b[t] <- lambda   # shape parameter 12 
 13 

# likelihood for turns.  We use the “ones” trick to sample from the 14 
# Wrapped Cauchy distribution (see WinBUGS manual) 15 
 16 

 ones[t] <- 1 17 
 ones[t] ~ dbern(wc[t]) 18 
 wc[t] <- (1/(2*Pi)*(1-rho[t]*rho[t])/(1+rho[t]*rho[t]-2*rho[t]*cos(theta[t]-19 

mu.t[t])))/ 300   # Density function for Wrapped Cauchy distribution 20 
 21 

 rho[t] <- lambda.t # mean cosine for the circular distribution 22 
  mu.t[t] <- nu.t  # mean direction for turns 23 

} 24 
 25 
####### priors on movement parameters 26 
 27 

 nu ~ dgamma(0.01, 0.01) # prior distribution for the scale parameter 28 
lambda ~ dgamma(0.01,0.01) # prior distribution for shape parameter 29 
 30 

 ######  priors for mean direction of turns 31 
 32 

nu.t ~ dunif(-3.14159265359, 3.14159265359) 33 
lambda.t ~ dunif(0,1)  # prior for mean cosine of circular distribution 34 
 35 
Pi <- 3.14159265359  # define π 36 

} 37 
 38 
 39 

WinBUGS code for “Double” model 40 
 41 
model{ 42 

for (t in 1:npts) { 43 
 44 
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  #### likelihood for steps 1 
l[t] ~ dweib(b[t], a[t])  # Weibull distriution for step length 2 

 3 
  a[t] <- nu[idx[t]]  # scale parameter 4 
  b[t] <- lambda[idx[t]]  # shape parameter 5 
 6 

#### likelihood for turns.   7 
#  8 
# We use the “ones” trick to sample from the Wrapped Cauchy 9 
# (see WinBUGS manual) 10 
 11 

 ones[t] <- 1 12 
 ones[t] ~ dbern(wc[t]) 13 
 wc[t] <- (1/(2*Pi)*(1-rho[t]*rho[t])/(1+rho[t]*rho[t]-2*rho[t]*cos(theta[t]-14 

mu.t[t])))/ 300   # Probability Density Function for Wrapped Cauchy distribution 15 
 16 

 rho[t] <- lambda.t[idx[t]] # mean cosine for the circular distribution 17 
  mu.t[t] <- nu.t[idx[t]]  # mean direction of turns 18 
 19 

# idx is the latent variable and the parameter index 20 
idx[t] ~ dcat(p[t,]) 21 
 22 
p[t,1] ~ dunif(0,1) # priors on  p[t,1], the probability that the t-th 23 

# observation corresponds to movement state 1. 24 
p[t,2] <- 1 - p[t,1] 25 

} 26 
 27 

###### priors on movement parameters 28 
 29 

 nu[2] ~ dgamma(0.01, 0.01) # prior distribution for the scale parameter in  30 
# “exploratory”movement state 31 

 32 
eps ~ dgamma(0.01, 0.01) # make a nonnegative variate 33 
nu[1] <- nu[2] + eps  # this is to make the scale parameter in one of the 34 

# distributions larger than the other. 35 
 36 

#######  prior distributions for shape parameters 37 
lambda[1] ~ dgamma(0.01,0.01) 38 
lambda[2] ~ dgamma(0.01,0.01) 39 
 40 

 ######  priors for mean direction of turns 41 
nu.t[1] ~ dunif(-3.14159265359, 3.14159265359) 42 
nu.t[2] ~ dunif(-3.14159265359, 3.14159265359) 43 
 44 
#####  priors for mean cosine of circular distribution 45 
lambda.t[1] ~ dunif(0,1) 46 
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lambda.t[2] ~ dunif(0,1) 1 
 2 
##### define π 3 
Pi <- 3.14159265359   4 

} 5 
 6 

WinBUGS code for “Double with covariates” model 7 
(only those sections that are different from “Double” are reported) 8 
 9 

idx[t] ~ dcat(p[t,]) 10 
 11 
# probability of being in movement type 1 12 
logit.q[t] ~ dnorm(mu.type[t], tau.q) 13 
mu.type[t] <- mu.phi[typ[t]] 14 
q[t] <- exp(logit.q[t])/(1 + exp(logit.q[t])) 15 
p[t,1] <- q[t] 16 
p[t,2] <- 1 - q[t] 17 

} 18 
 19 

# priors on movement parameters 20 
 21 

# phi[i] is the probability of being in movement type 1 when in habitat i 22 
for (i in 1:10) { 23 
mu.phi[i] ~ dnorm(0.0, 0.01) 24 
} 25 

} 26 
 27 
 28 

WinBUGS code for “Switch” model 29 
(only those sections that are different from “Double” are reported) 30 
 31 

idx[t] ~ dcat(p[t,])  #  idx is the latent variable and the parameter index 32 
 33 
p[t,1] <- q[idx[t-1]] # p[t,1] is the probability that the t-th observation  34 

# corresponds to movement state 1. 35 
p[t,2] <- 1-q[idx[t-1]] 36 
 37 

} 38 
 39 

####### priors on movement parameters 40 
####  priors for transition probabilities 41 
q[1] ~ dunif(0,1) 42 
q[2] ~ dunif(0,1) 43 
 44 
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#### prior for the state of the first observation 1 
idx[1] ~ dcat(phi[]) 2 

} 3 
 4 

WinBUGS code for “Switch with covariates”model 5 
(only those sections that are different from “Double” are reported) 6 
 7 

    # the probability of being in movement type 1 8 
idx[t] ~ dcat(p[t,]) 9 
p[t,1] <- q[t] 10 
p[t,2] <- 1 - q[t] 11 
q[t] <- logit.q[t]/(1 + logit.q[t]) 12 
 13 
logit.q[t] <-exp(a[idx[t-1]]+m[idx[t-1],1]*water[t]+m[idx[t-14 

1],2]*swamp[t]+m[idx[t-1],3]*otw[t]+m[idx[t-1],4]*openfor[t]+m[idx[t-15 
1],5]*ntw[t]+m[idx[t-1],6]*mixfor[t]+m[idx[t-1],7]*dev[t]+m[idx[t-16 
1],8]*ddf[t]+m[idx[t-1],9]*conif[t]+m[idx[t-1],10]*alvar[t]) 17 
 18 

} 19 
 20 
  # priors on movement parameters 21 
for(i in 1:10){ 22 
 for(j in 1:2){ 23 
  m[j,i] ~ dnorm(0,0.1) 24 
 } 25 
}  26 
 27 
for (i in 1:10){ 28 
 m[1,i] <- 0 29 
 } 30 
  31 
 32 
a[1]~dnorm(0,0.1) 33 
a[2]~dnorm(0,0.1) 34 
 35 
} 36 
 37 

WinBUGS code for “Triple switch”model 38 
(only those sections that are different from “Double” are reported) 39 
 40 

# the probability of being in movement type 1 41 
p[t,1] <- q[idx[t-1]] 42 
p[t,2] <- (1 -q [idx[t-1]] ) * qq[idx[t-1]]  43 
p[t,3] <- (1 -q [idx[t-1]] ) * (1-qq[idx[t-1]] ) 44 
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} 1 
 2 

# priors on movement parameters 3 
 4 

eps1 ~  dgamma(0.01, 0.01) 5 
eps2 ~ dgamma(0.01, 0.01) 6 

 7 
nu[3] ~ dgamma(0.01, 0.01)  8 
nu[2] <- nu[3] + eps1  9 
nu[1] <- nu[2] + eps2 10 
 11 
qq[1] ~ dunif(0,1) 12 
qq[2] ~ dunif(0,1) 13 
qq[3] ~ dunif(0,1) 14 

 15 
# priors for the pr of switching from anything to 1 16 
q[1] ~ dunif(0,1) 17 
q[2] ~ dunif(0,1) 18 
q[3] ~ dunif(0,1) 19 

 20 
} 21 
 22 

MATLAB code for calculation of DIC and posterior predictive 23 
check on step length autocorrelation 24 
 25 
% load output files from WinBUGS as saved for the CODA  26 
% S-Plus diagnostic package.  27 
% Each MCMC chain is in a separate file showing the 28 
% iteration number and value 29 
 30 
load out-1.txt; 31 
load out-2.txt; 32 
load out-3.txt; 33 
load out-4.txt; 34 
 35 
load indkey;  % this file contains a description of which  36 

% lines of the outup file correspond to  37 
% which variable - this is the CODA .ind 38 

file. 39 
 40 
load elkdata % an ascii file with observed steps and 41 
turning 42 

% angles 43 
 44 
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nreps = 5000;  % number of replicates for the posterior 1 
predictive 2 

% check 3 
elk = elkdata; 4 
n = length(elk); % size of movement path 5 
sim = []; % empty array to hold the values from the MCMC samples 6 
 7 
% read MCMC samples 8 
for k = 1:4 9 
   simi = []; 10 
   if k == 1 11 
      a = out-1; 12 
   elseif k==2 13 
      a = out-2; 14 
   elseif k==3 15 
      a = out-3; 16 
   else 17 
      a = out-4; 18 
   end 19 
          20 
   for i = 1:length(key) 21 
      simi = [simi a(key(i,1):key(i,2),2)]; 22 
   end 23 
      24 
   sim = [sim; simi]; 25 
end 26 
 27 
s = size(sim);  % size of the MCMC samples (all chains) 28 

% samples are in rows and variables in 29 
columns 30 

 31 
% create some variables to hold results 32 
sqd = ones(nreps,1).*NaN; 33 
L = sqd; 34 
LW = L; 35 
LWC = L; 36 
AC = []; 37 
X = []; 38 
Y = []; 39 
 40 
hh = waitbar(0,'Please wait...'); 41 
for j = 1:nreps 42 
    43 
   waitbar(j/nreps,hh) 44 
    45 
   i = ceil(rand*s(1)); % choose a MCMC chain at random 46 
    47 
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   camp = find(sim(i,1:n)==1);  % find observations 1 
classified as  2 

% "encamped" 3 
   expl = find(sim(i,1:n)==2);  % find observations 4 
classified as  5 

% "exploratory" 6 
    7 
   % set some values to zero 8 
   sqdev = 0; 9 
   sqdeve = 0; 10 
   lWc = 0; 11 
   lWe = 0; 12 
   lWCc = 0; 13 
   lWCe = 0; 14 
   simdatal = zeros(n,1); 15 
   simdatat = zeros(n,1); 16 
    17 
   if ~isempty(camp) 18 
       19 
      % likelihoods (wcauchylike and weiblike return 20 
negative log  21 

% likelihoods) 22 
      lWCc = 2 .* wcauchylike([sim(i,n+7) 23 
sim(i,n+3)],elk(camp,2)); 24 
      lWc = 2 .* WEIBLIKE([sim(i,n+5) 25 
sim(i,n+1)],elk(camp,1)); 26 
       27 
      % simulate values for step and turs using parameters 28 
from the  29 

% MCMC chain 30 
      lpred = 31 
weibrnd(sim(i,n+5),sim(i,n+1),length(camp),1); 32 
      tpred = 33 
wcauchy(sim(i,n+7),sim(i,n+3),length(camp),1); 34 
      % squared deviations 35 
      sqdev = (elk(camp,1)-lpred).^2+(elk(camp,2)-36 
tpred).^2; 37 
      simdatal(camp') = lpred; 38 
      simdatat(camp') = tpred; 39 
             40 
   end 41 
    42 
   % do the same for exploratory state 43 
   if ~isempty(expl) 44 
       45 
      lWCe = 2 .* wcauchylike([sim(i,n+8) 46 
sim(i,n+4)],elk(expl,2)); 47 
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      lWe = 2 .* WEIBLIKE([sim(i,n+6) 1 
sim(i,n+2)],elk(expl,1)); 2 
      lprede = 3 
weibrnd(sim(i,n+6),sim(i,n+2),length(expl),1); 4 
      tprede = 5 
wcauchy(sim(i,n+8),sim(i,n+4),length(expl),1); 6 
      sqdeve = (elk(expl,1)-lprede).^2+(elk(expl,2)-7 
tprede).^2; 8 
      simdatal(expl') = lprede; 9 
      simdatat(expl') = tprede; 10 
       11 
   end 12 
    13 
   % build simulated movement paths 14 
   x = zeros(n,1); 15 
   y = x; 16 
   dir = rand*2*pi; 17 
   x(2) = cos(dir).*simdatal(1); 18 
   y(2) = sin(dir).*simdatal(1); 19 
    20 
   for k = 2:n 21 
      x(k+1) = x(k) + cos(simdatat(k-1) + dir) .* 22 
simdatal(k); 23 
      y(k+1) = y(k) + sin(simdatat(k-1) + dir) .* 24 
simdatal(k); 25 
      dir = dir + simdatat(k-1); 26 
   end 27 
    28 
   % calculate and save the autocorrelation function 29 
   AC = [AC; acf(simdatal)]; 30 
   X = [X x]; 31 
   Y = [Y y]; 32 
    33 
   % total squared deviations and likelihoods 34 
   sqd(j) = sum(sum(sqdev)) + sum(sum(sqdeve)); 35 
   LWC(j) = sum(sum(lWCc)) + sum(sum(lWCe)); 36 
   LW(j) = sum(sum(lWc)) + sum(sum(lWe)); 37 
   L(j) = LW(j)+LWC(j); 38 
    39 
end 40 
close(hh) 41 
 42 
% calculate Deviance for tetha hat 43 
indi = median(sim(:,1:n)); 44 
 45 
camp = find(indi == 1); 46 
expl = find(indi == 2); 47 
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 1 
lWc = 2 .* WEIBLIKE([mean(sim(:,n+5)) 2 
mean(sim(:,n+1))],elk(camp,1)); 3 
lWe = 2 .* WEIBLIKE([mean(sim(:,n+6)) 4 
mean(sim(:,n+2))],elk(expl,1)); 5 
lWCc = 2 .* wcauchylike([meandirection(sim(:,n+7)) 6 
mean(sim(:,n+3))],elk(camp,2)); 7 
lWCe = 2 .* wcauchylike([meandirection(sim(:,n+8)) 8 
mean(sim(:,n+4))],elk(expl,2)); 9 
 10 
 11 
Dtetha = lWc + lWe + lWCc + lWCe; 12 
 13 
% calculate expected Deviance 14 
Dbar = mean(L); 15 
 16 
DIC = Dtetha + 2 * (Dbar - Dtetha); 17 
 18 
% display Deviance results 19 
[Dbar Dtetha Dbar-Dtetha DIC] 20 
 21 
% plot the acf  22 
figure 23 
 24 
x = 0:1:n-1; 25 
x = x'; 26 
aca = acf(elk(:,1)); 27 
aca(1) = NaN; 28 
ac = sort(AC); 29 
ha=plot(x,aca,'.-k'); 30 
set(ha,'MarkerSize',20,'LineWidth',2); 31 
 32 
hold on 33 
ac(:,1) = NaN; 34 
hacl = plot(x,ac(5000-125,:),'k'); set(hacl,'LineWidth',1) 35 
hacu = plot(x,ac(125,:),'k'); set(hacu,'LineWidth',1) 36 
 37 
AC(:,1) = NaN; 38 
h = plot(AC','.k'); set(h,'MarkerSize',3); 39 
AXIS([0 60 -.2 0.8]); 40 
 41 
percentilAC = [ac(125,:) ac(5000-125,:)]; 42 
 43 
% save results 44 
save DICelk L LWC LW lWc lWe lWCc lWCe DIC Dbar Dtetha 45 
percentilAC    46 
 47 
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 1 

MATLAB function to simulate pseudo random numbers with 2 
Wrapped Cauchy distruibution 3 
 4 
function [t] = wcauchy(mu,p,M,N) 5 
 6 
%  [t] = wcauchy(mu,p,M,N) 7 
%  pseudo-random number generation of the wrapped cauchy 8 
distribution with mean m and  9 
%  mean resultant lenght p.  10 
%  wcauchy(mu,p) returns a single value 11 
%  wcauchy(mu,p,M,N) returns a M by N array  12 
%  The circular dispersion is 13 
%  (1-p^2)/(2p^2) 14 
%  circular variance v = 1-p 15 
%  from Fisher(1993) Statistical analysis of circular data 16 
 17 
if nargin == 2 18 
   u = rand; 19 
   V = cos(2*pi*u); 20 
   c = 2*p/(1+p^2); 21 
    22 
   t = sign(rand - .5) * acos((V+c)/(1+c.*V))+ mu; 23 
   t = mod(t,2*pi); 24 
    25 
   elseif nargin == 4 26 
    27 
   u = rand(M,N); 28 
   V = cos(2.*pi.*u); 29 
   c = 2 .* p ./ (1 + p.^2); 30 
    31 
   t =  sign(rand(M,N) - 0.5) .* acos((V+c)./(1+c.*V))+ mu; 32 
   t = mod(t,2*pi); 33 
    34 
end 35 
 36 

MATLAB code for negative log likelihood of Wrapped Cauchy 37 
 38 
function logL = wcauchylike(params,data) 39 
%   logL = wcauchylike(params,data) 40 
%   log likelihood for wrapped Cauchy distribution 41 
 42 
if nargin < 2,  43 
    error('Requires at least two input arguments');  44 
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end 1 
 2 
[n, m] = size(data); 3 
 4 
if nargout == 2 & max(m,n) == 1 5 
    error('To compute the 2nd output, the 2nd input must 6 
have at least two elements.'); 7 
end 8 
 9 
if n == 1 10 
   data = data'; 11 
   n = m; 12 
end 13 
 14 
rho = params(2); 15 
mu = params(1); 16 
 17 
rho = rho(ones(n,1),:); 18 
 19 
mu = mu(ones(n,1),:); 20 
 21 
x = (1/(2*pi)) .* (1 - rho.^2)./(1+rho.^2 - 22 
2.*rho.*cos(data-mu)) + eps; 23 
 24 
logL = -sum(log(x)); 25 
 26 
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