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Abstract 

Logic programming systems which exploit and-parallelism among non-deterministic 

goals rely on notions of independence among those goals in order to ensure certain 

efficiency properties. "Non-strict" independence (NSI) is a more relaxed notion than 

the traditional notion of "strict" independence (SI) which still ensures the relevant ef-

ficiency properties and can allow considerable more parallelism than SI. However, all 

compilation technology developed to date has been based on SI, because of the intrinsic 

complexity of exploiting NSI. This is related to the fact that NSI cannot be determined 

"a priori" as SI. This paper filis this gap by developing a technique for compile-time 

detection and annotation of NSI. It also proposes algorithms for combined compile-

t ime/run-t ime detection, presenting novel run-time checks for this type of parallelism. 

Also, a transformation procedure to eliminate shared variables among parallel goals is 

presented, aimed at performing as much work as possible at compile-time. The ap-

proach is based on the knowledge of certain properties regarding the run-time instanti-

ations of program variables —sharing and freeness— for which compile-time technology 

is available, with new approaches being currently proposed. Thus, the paper does not 

deal with the analysis itself, but rather with how the analysis results can be used to 

parallelize programs. 
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1 Introduction 

Several types of parallel logic programming systems and models exploit and-parallel-

ism [5] among non-deterministic goals. Some examples are PEPsys [27], ROPM [21], 

AO-WAM [9], DDAS/Prometheus [23], systems based on the "Extended" Andorra 

Model [26] such as AKL [16], and &-Prolog [11] (please see their references for other 

related systems). All these systems rely on some notion of independence (or the related 

notion of "stability" [10]) among non-deterministic goals being run in and-parallel in 

order to ensure certain important efficiency properties. Two basic notions of indepen-

dence are strict and non-strict independence [12, 13]. 

Strict goal independence corresponds to the traditional notion of independence among 

goals [5, 7, 11]: Two goals g\ and gi are said to be strictly independent for a substitu-

tion 9 iff var(¿/i#) fl var(¿/2#) = 0; ra goals gi,... ,gn are said to be strictly independent 

for a substitution 9 if they are pairwise strictly independent for 9. Parallelization of 

strictly independent goals has the property of preserving the search space of the goals 

involved so that correctness and efficiency of the original program (using a left to right 

computation rule) are maintained and a no speed-down condition can be ensured [12]. 

A convenient characteristic of strict independence is that it is an "a-priori" condition, 

i.e. it can be tested at run-time ahead of the execution of the goals. Furthermore, 

tests for strict independence can be expressed directly in terms of groundness and 

independence of the variables involved. This allows relatively simple compile-time par-

allelization by introducing run-time tests in the program [7, 19]. These tests can then 

be partially eliminated at compile-time by direct application of groundness and sharing 

(independence) information obtained from global analysis [15, 18, 3]. 

Non-strict independence is a relaxation of strict independence traditionally defined 

as follows: given a collection of goals gi,.. .,gn and a substitution 9, let SU = {v \ 

3¿,J l<i<j<n,v G var((/¿#)nvar((/j#)}, let 9¡ be any answer substitution for g¡9, then 

<7i,... , gn are non-strictly independent for 9 iff Vu G SU, at most the rightmost g¡ such 

that v G var(<7¿#) binds v to a non-variable term, and if var(¿/¿#) contains more than 

one variable of SH, say x\,.. .,Xk, then x\0i,.. .,Xk0i are strictly independent [13]. 

Non-strict independence is clearly a more powerful notion than strict independence 

since strictly independent goals are always non-strictly independent. Furthermore, it 

still preserves the same properties as strict independence with respect to correctness 

and efficiency. In practice, it has wide application for example in the parallelization 

of programs which use difference lists, and incomplete structures in general. In fact, 



studies of amounts of ideal parallelism in logic programs suggest that there is a potential 

for large speedups from the exploitation of non-strict independence [23]. However, this 

potential remains untapped from the point of view of automatic parallelization. This 

is due to two factors. The first one is that non-strict independence is not an "a priori" 

condition, i.e. it cannot be expressed simply in terms of run-time tests (without running 

the goals). Thus, run-time detection by itself is ruled out. Unfortunately, compile-

time detection is complicated by the fact that non-strict independence is not directly 

expressed in the same terms as the properties which are usually determined from global 

analysis. 

Earlier studies [12] have suggested that coupling sharing and groundness analysis 

with freeness analysis could be instrumental in the task of non-strict independence 

detection. This has been one of the motivations behind the development of analyzers 

capable of inferring these three types of information [4, 6, 25, 20, 8]. However, there 

still remained a semantic gap between the availability of that information and actu-

ally being able to reason about the non-strict independence of a set of goals. This 

paper a t tempts to ful this gap. It aims to develop concrete techniques for determining 

non-strict independence at compile-time. For concreteness, it focuses on a concrete 

way of expressing sharing and freeness information, the sharing+freeness domain [20]. 

This allows a high degree of precisión in the conditions involved, which are given in 

such a way that the implementation is straightforward. However, we believe that the 

ideas presented can also be used for related domains, provided that these domains give 

information about variable sharing and freeness. 

One design decisión throughout our research was to concéntrate on the parallelization 

of two goals or two sets of goals (containing either sequential or parallel constructs). 

This is convenient from a practical point of view because many parallelization algo-

rithms work by repeatedly considering whether two goals or sequences are independent 

while, for example, building a dependency graph. The algorithms described in this 

paper are directly aimed at answering such questions for the case of non-strict inde-

pendence. The decisión of considering the parallelization of pairs of goals has also a 

sound theoretical foundation. Consider the following alternative definition of non-strict 

independence: Given two goals g\ and §2, where §2 is to the right of gi, and a substitu-

tion 9, consider the set of shared variables SU = var(¿/i#) n var(¿/2#)- Then, g\ and §2 

are non-strictly independent for 9 iff for any answer substitution 9\ of g\9 and for all 

v,w G SU, v9\ is a variable and v j^ w —• v9\ ^ w9\. Based on this definition, the 

definition involving n goals can be expressed as: gi,.. .,gn are non-strictly independent 

for a substitution 9 if they are pairwise non-strictly independent for 9. Clearly, this 

is equivalent to the standard definition, and thus considering only pairs of goals can 



always be done without loss of generality. 

The rest of the paper proceeds as follows: Section 2 explains the particular ab-

stract interpretation domain for which the conditions of parallelism are given, the 

sharing+freeness domain, and introduces a novel pictorial representation for the ab-

stract substitutions involved. Section 3 presents the sufficient conditions proposed for 

compile-time detection of NSI. Section 4 deals with the combination of compile-time 

analyses and run-time checks for detecting NSI, presenting novel run-time checks for 

this type of parallelism. It also connects this method with the previously proposed 

techniques for the detection of strict independence. Section 5 develops an efficient al-

gorithm for performing combined compile-time/run-time renaming of variables, which 

is needed for the parallel execution of non-strictly independent goals. Section 6 il-

lustrates the techniques proposed by using them to parallelize of a concrete program. 

Section 7 gives some experimental results showing the speedups obtained in several pro-

grams presenting non-strict independence but no strict independence. Section 8 treats 

the parallelization of goals when additional information about purity of predicates is 

available, and proposes new approaches related to compile-time analysis in order to 

improve the information required for the parallelization techniques. Finally, section 9 

gives the conclusions and suggests future work. 

2 Understanding Sharing+Freeness Abstract Substitutions 

The sharing+freeness abstract domain [20] (other related analyses for which our 

results may be valid include [4, 6, 25, 8]) was proposed with the objective of obtaining 

at compile-time accurate variable groundness, sharing, and freeness information for a 

program, i.e., respectively, information on when a program variable will be bound to 

a ground term, when a set of program variables will be bound to terms with variables 

in common, and when a program variable will be unbound or bound only to other 

variables instead of to a complex term. 

The abstract domain approximates this information by combining two components 

(in fact domains per se): the first component provides information on sharing (aliasing, 

independence) and groundness [15, 18]; the second one provides information on freeness. 

More precisely, Da C 1 U p(p(Pvar)) X p(Pvar), where Pvar is the set of all program 

variables in the current clause. It is an inclusión and not an equality because abstract 

substitutions in p(p(Pvar)) X p(Pvar) whose concretization would be empty are not 

considered (they are represented by _L —bot tom). 

We will denote a sharing+freeness abstract substitution as a pair (sharing, freeness) 



as in 9 = ( # S H 5 # F R ) - TO distinguish abstract substitutions from concrete substitutions 

abstract substitutions will be represented by greek letters with a hat , the same greek let-

ter without the hat representing a concrete substitution approximated by the abstract 

one. Sets will be denoted with square brackets in abstract substitutions (to distinguish 

them and because of the mnemonic connotations since they are to be represented in 

Prolog in the analyzer), and with braces in concrete substitutions (as usual). Following 

the standard notation, we will ñame the abstraction function a and the concretization 

function 7. 

Informally, an abstract substitution in the sharing domain is a set of sets of program 

variables (a set of sharing sets), where sharing sets represent all possible sharing patterns 

among the program variables. 

More formally, let us define a (concrete) substitution in a clause as a mapping from 

the set of program variables in that clause (Pvar) to terms that can be formed from 

the constants and the functors in the given program and in the query and an infinite 

set of variables Var such that PvarPí Var = 0. In this way we consider only idempotent 

substitutions. The set of all concrete substitutions will be denoted as Subst. 

The function Occ: Subst X Var —• p(Pvar) is defined such that 

Occ(0,V) = {X e dom(0) I V G var(X6>)} 

where t9 denotes the instantiation of a term / under a substitution 9, var(í#) denotes 

the set of all variables in t9 and dom(#) denotes the domain of a substitution 9. In 

other words, the function returns the set of all program variables X such that V occurs 

in the instantiation of X under 9. The abstraction of a substitution 9 in the sharing 

domain is defined as: 

aSu(9) = {Occ(9,V) I V E range(0)} 

The concretization of an abstract substitution in the sharing domain is defined as 

7 ( ^ S H ) = {0e Subst I a S H (0) C £ S H } 

For example, given the following concrete substitution 9, #SH is its abstraction in the 

sharing domain: 

9 = { X / f ( l , a ) , Y / A , Z / f ( A , C , t ( B ) ) , W / [ B , C ] , V / D } 

£SH = [[YZ] [ZW] [V]] 



On the other hand, given the following sharing abstract substitution #SH5 the 0¿ a r e 

concrete substitutions approximated by it. The last column in the following represents 

the sharing sets "active" in each concrete substitution -we say that a set L £ #SH5 where 

#SH is a sharing abstract substitution, is act ive in a concrete substitution 0 £ 7 ( 0 S H ) 

iff L is in the abstraction of 0: 

#SH = [[X] [YZ] [ZW]] 

0i = { X / A , Y / f ( B , l ) , Z / B , W / f o o } [[X][YZ]] 

92 = { X / [ ] , Y / A , Z / [ B | A ] , W / t ( B ) } [[YZ] [ZW]] 

93 = { X / t ( 0 , l ) , Y / a t o m , Z/A, W / A } [[ZW]] 

The component described above is essentially the abstract domain of Jacobs and 

Langen [15]. 

An abstract substitution in the freeness domain is a set of program variables (those 

that are known to be free). More formally, the abstraction and concretization functions 

in this domain are defined as follows: 

aFR(9) = {X e dom(0) | X9 £ Var} 

J(OFR) = {0 e Subst \ aFR(0) D 0FR} 

The concretization of a sharing+freeness abstract substitution can be defined as the 

intersection of the concretizations of its two components: 

7(0) = 7 ( 0 S H ) n 7 ( 0 F R ) 

The set inclusión relation in the concrete domain induces a partial order on the 

abstract substitutions, i.e. (f> Q ip iff j((f>) C 7(V>). The function lub computes the least 

upper bound of two abstract substitutions (f> and ip by taking the least upper bound of 

their sharing and freeness components: 

lub((j>, i>) = ((¡>SH U -0SH, <?FR 0 V?FR) 

It is important to point out that the approximations performed by the abstraction 

function and the lub function with respect to the sharing component imply that this 

component can actually represent in a compact way (rather than with an explicit 

disjunction) several combinations of sharing patterns. One of the main sources of 

information in being able to tell these combinations apart is the freeness information. 

In fact, sharing information is not independent of freeness information since known 



freeness of certain variables restricts the allowable combinations of sharing patterns. 

The possible combinations of sharing sets a sharing+freeness abstract substitution 9 

represents are the subsets of the sharing component (the S G P ( # S H ) ) that have one and 

only one sharing set including each variable in the freeness component (V v G #FR 3 L G 

s ve L). 

The point above regarding sharing+freeness abstract substitutions, which is of great 

practical importance, may still be difficult to understand in the terms given so far. It is 

hoped that with the aid of the pictorial representation to be presented in the following 

section these issues will be greatly clarified. 

2.1 Pictorial Representation of Substitutions 

We have chosen a pictorial representation of substitutions in order to make it easier 

to understand abstract substitutions in the sharing+freeness domain and to follow the 

discussions and examples throughout the text. The idea of the pictures is to make the 

large amount of information contained in these abstract substitutions more explicit. 

Figure 1 illustrates the different types of objects used in this representation. 

As mentioned before, an abstract sharing+freeness substitution is a compact rep-

resentation of a finite number of possible sharing+freeness situations in the concrete 

domain. To reflect this a given sharing+freeness abstract substitution can be repre-

sented with a finite number of figures, each figure having the same freeness information 

(which is definite) but representing the different alternative coverings of free variables 

by the sharing sets. 

Variables in the freeness component are represented with dots, the rest with circles. 

The sharing patterns are represented with connected lines going to each variable of the 

corresponding sharing set. The resulting pictures are hypergraphs, i.e. graphs where 

the edges connect an arbitrary number of vértices. 

Thus, the number of edges connected to a vértex is the number of sharing sets 

containing the corresponding variable, except for dot vértices (free variables) that can 

have múltiple edges, all corresponding to the same sharing pat tern, or none, meaning 

.X definitely free variable >—-v. 

0Y ordinary variable / ] goal 

(possible) sharing \^^^y 

Figure 1: Types of objects in our pictorial representation. 



Variables 

{X,Y,Z,W} 

{X,Y,Z} 

{X,Y,Z,W} 

{X,Y,Z,W} 

{X,Y,Z,W,V} 

Abs t rac t subs t i tu t ion 

([[Y][XZ]],[XY]) 

Q[XY][YZ]],[]) 

Q[XYZ][XW][Y][Z]],[XY]) 

([[XYZ][YZW][W]],[W]) 

([[X] [XY] [YZ] [W] [XYW] [V]], [YWV]) 

Represen ta t ion 

.Y 0W 

X_^z 

,x 

.Y 0Z 

fx 0w 

I - 4 Z 

lA t w 

o^LY.W 
i 

0z .v 

.Y ¿Z 

oX.Y.W 

¿ .v 
CX Y W 
1 

0z .v 

Figure 2: Examples of representation of abstract substitutions 

a sharing pat tern with only this variable (since free variables must be in one and only 

one sharing pat tern) . Sharing sets that have no free variables are optional: they may 

or may not be active in a concrete substitution. A ground variable appears like an 

isolated circle. 

A goal is represented like a set in a Venn Diagram, the variables in the set being the 

goal variables. When we represent two goals, the first one is to the left and the second 

one to the right, and the variables present in both goals are put in the intersection. 

Figure 2 shows several examples representing in one or more pictures abstract sub-

stitutions. The number of pictures corresponds to the number of alternative coverings 

of free variables by the sharing sets. 

3 Conditions for Non-Strict Independence with Respect to the Information from 

Sharing+Freeness Analysis 

Before stating the conditions it is important to understand in which form a predi-

cate can transform its abstract cali substitution into its abstract answer substitution. 

Regarding the freeness component, what it can do is eliminate variables (instantiating 



them). Regarding the sharing component, it can eliminate sharing sets (instantiating 

its variables to ground terms) or créate more by unión of the present sharing sets (uni-

fying variables from these sharing sets). Note also that when a sharing set contains one 

or more free variables, if it is active, there is a single shared run-time variable corre-

sponding to these program variables. Remember also that two sharing sets containing 

the same free variable cannot be active at the same time. 

As mentioned in the introduction we will consider the parallelization of pairs of 

goals. Let p and q be two goals or sequences of goals, where q is to the right of p. 

Also let (3 and ip be the abstract cali and answer substitutions for p. So the situation 

is {/3} p {ip} . . . q. We define the sets: 

S(p) = {L e f3SH I L n var(p) ± 0} 

SH = S(p) n S(q) = {L e /3SH I L n var(p) / Í A Í H var(q) ¿ 0} 

That is, S(p) is the set of all sharing sets of /3SH that contain a variable from p, and 

SH is the set of all sharing sets of /3SH that contain variables from p and from q (thus 

containing run-time shared variables if they are active). 

The following are our conditions for non-strict independence between p and q: 

ci y Le SH ¿n^FR^0 
C2 -, (3 Ai...A fc e S(p) 3 L e ^ S H L = U-= i Ni A NUN2 G SH 

A V i, j l<i<j<k NiPiNjCi /3FR = 0) 

Condition C l deals with preserving freeness of shared variables*. By checking that all 

sharing sets of SH have a free variable in the abstract answer substitution ip, it is ensured 

that no run-time shared variable is further instantiated. Note that if there is more than 

one free variable in a sharing set, and one of them remains free, the other necessarily 

remain also free, since all coincide at run-time when the set is active. Condition C2 is 

needed to preserve independence of shared variables: N\...Nk are sharing sets that p 

can unite (thus they come from S(p)) to derive the sharing set L of the abstract answer 

substitution, and at least two sharing sets contain shared variables (we can always 

ñame them Ai and A2). Furthermore, no two sharing sets A¿,Aj contain the same 

free variable, since otherwise they cannot be both active in one concrete substitution, 

making the unión impossible. This also ensures, given that the first condition is met, 

that Ai and A2 have different shared variables. Intuitively it can be seen that if C l 

and -iC2 holds, p can possibly bind the two independent shared variables. 

*We would like to thank M. Bruynooghe for suggesting improvements to our original C l . 



Three examples in which C l fails: run-time shared variables can be further 

instantiated 

p q P q P q 

V> 

Three examples in which C2 fails: run-time shared variables can aliase each other 

p q p q p q 

(i 

4, 

Figure 3: Situations where the conditions do not hold, and thus the goals are possibly 

not NSI 

Figure 3 shows some situations where either C l or C2 do not hold. The sharings 

drawn with thick lines are the faulty ones, i.e. for C l , the Ls that have no variables in 

ipFK, and for C2, JVi and N2 in (3 and L in ip. 

4 Run-Time Checks for Non-Strict Independence 

In the previous section we have proposed conditions to be checked at compile-time in 

order to decide whether to run two goals in parallel. However, even if these conditions 

do not hold, we may yet try to execute them in parallel, provided that some a priori 

run-time checks succeed. 

The purpose of the run-time checks is to ensure that goals will not be run in parallel 

when there is no non-strict independence, while allowing parallel execution in as many 

cases as possible when non-strict independence is present. This fact will be determined 

from the combination of compile-time analysis and the success of the run-time checks 



previous to the execution of the goals. Note that this is meaningful because the sharing 

component represents possible, not definite sharing sets. 

In the previous section we proposed two conditions which had to hold for paralleliza-

tion. Let us analyze what to do when each of the conditions is violated. 

4.1 Condition Cl Violated 

[3 L e SH i n ^ F R = 0] 

In this case we need run-time checks to ensure that the sharing sets L £ SH not obeying 

C l ("illegal sharing sets") are not active. But, if the rest of the sharing sets in /3SH 

cannot cover all the free variables of /3pR without overlaping, it is impossible for all the 

illegal sharing sets to be inactive, so the goals are definitely not NSI. Otherwise, we 

must try to genérate the least number of checks which covers every illegal sharing set 

without affecting the legal ones (to preserve parallelism in valid situations). 

There are several checks that can be used to prevent the illegal sharing sets from 

being active; they must be tried in this order: 

• If there exists a variable X such that it appears only in illegal sharing sets, then 

the check ground(X) ("X is bound to a ground term") covers those illegal sharing 

sets containing X. 

• Suppose that there exists a variable X and a list T of free variables from /3pR 

such tha t , for the sharing sets containing X, illegal ones do not contain variables 

of J
7
, and legal ones contain at least one. Then the check a l l v a r s ( X , . F ) ("every 

variable in X is in the list T
v
) covers all the illegal sharing sets containing X, 

and only those. In fact, the check ground(X) above is a special case of this when 

T=[]. 

Note that if X 6 var(p) n var(q) then we always are in this case, since all sharing 

sets containing X are in SH, so the ones that are legal contain free variables that 

remain free after executing p, and those that are illegal do not. 

• If there exist two variables X and Y such that all sharing sets containing both 

are illegal, then the check indep(X,Y) ("X and Y do not share variables") covers 

those illegal sharing sets. 

• For each of the remaining illegal sharing sets, we choose two variables X and 

Y which are members of it, such that X £ var(p) and Y £ var(q). Note that 



the sharing sets in SH have a variable in both var(p) and var(q) or have one 

variable in var(p) and another variable in var(q). And, since the illegal sharing 

sets are in SH, if they cannot be covered by the a l l v a r s / 2 check then they 

are in this case. Furthermore, the legal sharing sets that contain both X and 

Y are for this very reason also in SH, so they have free variables that remain 

free after executing p. Let T be the set of these free variables. Then the check 

sha redva r s (X ,Y , .F ) ("every variable shared by X and Y is in the list of variables 

J-") covers all the illegal sharing sets containing X and Y, and only those. Also, 

the check indep(X,Y) is a special case of this when T = []. 

4.2 Condition C2 Violated 

[3 N^.Nk e S(p) B Í G ^ S H L = U L N% 

A Nl7N2 e SH A v¿,j i<i<j<k NinNjnpFR = 0] 

Once the checks for C l have been computed, and taking into account only the sharing 

sets not rejected by these checks, the second condition is treated. 

Now, for each L in the above formula, we compute the different groups of N\...Nk 

that p can unite to give the sharing set L, without taking into account the number of 

sharing sets JV¿ that are in SH. The groups that have more than one sharing set in 

SH are the "illegal" groups. If there are no legal groups, and L is necessarily active 

in ip (this is so if L contains free variables that do not appear in other sharing sets 

of ipsn), then necessarily p binds shared variables, so the goals are definitely not NSI. 

Otherwise, we need checks as for the first condition, now ensuring that at least one 

sharing set of each illegal group is not active, without affecting if possible sharing sets 

of the legal groups. 

For example, suppose we are trying to parallelize the goal "p (X,Y,Z) , q(X,Y,W)" 

and the abstract cali and answer substitutions for "p(X,Y,Z)" are, respectively, (3 = 

([[X] [Y] [XY] [Z] [ZW]], [Y]) and ^ = ([[X] [XY] [Z] [ZW]], [Y]). We have SH = [[X] [Y] 

[XY] [ZW]], and the illegal sharing sets for the first condition are [X] and [ZW]. The 

check for [X] is a l l v a r s (X, [Y] ) , since X can contain occurences of Y, given that [XY] is 

legal. The check for [ZW] is ground(W), since there are no legal sharing sets containing 

W. 

Althought condition C2 did not hold with the initial sharing sets, once ensuring that 

[X] is no longer active the condition is fulfilled, so we are ready to parallelize the two 

goals, the result being (here we omit the substitution of variables, to be explained in 

the next section): 



( a l l v a r s ( X , [Y] ) , ground(W) -> p(X,Y,Z) & q(X,Y,W); p(X,Y,Z) , q(X,Y,W)) 

where "A -> B; C" is the prolog if-then-else construction and "&" is the (unconditional) 

parallel operator. 

4.3 Run-Time Checks and Strict Independence 

It is worth pointing out that if no information is obtained from the analysis (or 

no analysis is performed), and thus the abstract substitutions are T, the run-time 

checks computed by the method presented here exactly correspond to the conditions 

traditionally generated for strict independence (shared program variables ground, other 

program variables independent, see e.g. [12] for more information). This is correct, 

since in absence of analysis information only strict independence is possible, and shows 

that the method presented is a strict generalization of the techniques which have been 

previously proposed for the detection of strict independence. 

It can be easily shown how the tests reduce to those for strict independence: since 

there are no free variables in the abstract substitutions, every sharing set of SH is 

illegal with respect to the first condition. These sharing sets contain a shared program 

variable (and are covered by a ground/1 check on each) or program variables of both 

goals (covered by a indep/2 check on every pair). 

For example, if we have a goal "p(X,Y)&q(Y,Z)" with /3 = ([[X] [Y] [Z] [XY] [XZ] [YZ] 

[XYZ]], [ ]) (i.e. T, equivalent to no information), then we have SH = [[Y] [XY] [XZ] [YZ] 

[XYZ]]. The check ground (Y) covers all the illegal sharing sets except [XZ], which is 

covered in turn by the check indep(X,Z) . 

5 Renaming and Subst i tu t ing Variables 

When using non-strict independence, and in order to prevent partial answers of a 

branch that ultimately fail from pruning the search space of other goals, parallel goals 

are in principie run in independent environments (see [12, 13]). The standard solution 

for this problem is a run-time transformation of the goals to be executed in parallel. 

This transformation involves eliminating any shared variable among parallel goals by 

renaming or substituting its occurrences so that no two occurrences in different goals 

remain the same, and adding some unification goals after the parallel conjunction to 

reestablish the lost links. This operation can be encoded at compile-time by performing 

copy_term's of every goal and unifying the original goals and the copied versions after 



the parallel conjunction. We will now propose more efficient methods which are based 

on the knowledge gathered during the annotation process. Note that a mere renaming 

of variables at compile-time is not sufficient in general: we can have terms with shared 

variables inside. So we use the following predicate: 

subs t_va r s ( [ X 1 ? . . . , Xn] , [X ' l 7 . . . , XjJ ,Z,Z') : -

Z' is a ierra equal to Z but with variables X ^ , . . . , X^ 

in place of variables X i , . . . , X n , respectively. 

We are interested in the potential run-time shared variables, but with the conditions 

and/or the checks we ensure that these are the free variables (those of /3FR) that appear 

in the sharing sets of SH. So, the transformation procedure proceeds as follows: 

• Group in sets the free variables that appear in the sharing sets of SH, so that 

those that appear in the same sharing set are grouped together, and the rest form 

sets with an unique element. This is so because if two free variables appear in 

the same sharing set, they are possibly aliased at run-time, so they need to be 

processed together. 

• For each of those sets of free shared variables V: 

o compute R(V) = {w\3LeSH3veV veLAweLAw^ V}, i.e. 

the set of the variables that appear in the sharing sets of SH with variables 

from V, excluding those of V. So they possibly contain at run-time variables 

from V. 

o Then, for each goal g, the necessary renamings or substitutions regarding 

V are computed. Let V = var(g) n V and 1Z = var(g) n R(T^). We will 

represent a renaming of a variable v as "ren(u)" and a substitution of a 

variable v inside w as "sv(u,w)" . There are thre cases: 

* V = 0 , ^ = 0 ^ none. 

* V = 0,7?. 7= 0 ^ sv(u, w) for each w G 1Z, where v £ V. 

* V 7= 0 —• ren(u), sv(v,w) for each w G (1Z U V —{f}), where v G V. 

o Since for each V we need to transform all the goals minus one, the goal 

with the most expensive transformation is not considered. Substitutions are 

more expensive than renamings, substitutions in ordinary variables are more 

expensive than substitutions in free variables (which are in fact conditional 

unifications). 



• Once computed the transformations for all the sets of variables, then for each 

goal the substitutions in the same variable are joined in a subs t_va r s predicate. 

Unification ("back-binding") goals must be included after the parallel conjunction 

for all the free variables renamed or substituted. Note that one side of these 

unifications is allways a free variable, since the conditions ensure that the first 

goal do not instantiate shared variables. 

As an example, consider the parallel expresión p(T,V,W)&q(U,V,W,X,Y)&r(W,Z), 

with the abstract cali substitution fí = ([[T] [UV] [UVY] [VWX] [X] [XY] [Z]], [TUWY]). The 

sharing sets shared are SH = [[UV] [UVY] [VWX]]. We have two sets of free variables 

from SH: {U,Y} and {W}, with R({U,Y}) = {V} and R({W}) = {V,X}. The following 

table shows, for each of these sets, and for each goal, the valúes of V and 1Z and the 

transformation needed. 

{U,Y} 

M 

V 

0 
M 

r 
n 
M 
{v} 

> ( T , V , W ) 

transformation 

sv(U,V) 

ren(¥) ,sv(¥,V) 

V 

{U,Y} 

{¥} 

q(U,V,W,X,Y) 

n 
m 

{v,x} 

transformation 

ren(U),sv(U, Y),sv(U,V) 

ren(¥) ,sv(¥ ,V) ,sv(¥ ,X) 

V 

0 
{¥} 

r ( ¥ , Z ) 

n 
0 
0 

transf. 

0 
ren(¥) 

In either rows we discard the transformation for the goal q / 5 . The two substitutions 

for the goal p / 3 are on the same variable, so they must be joined. Therefore, the 

parallel expresión is transformed into: 

subs t_va r s ( [U ,W] , [U1 .W1] ,V ,V1) , 
p (T ,Vl ,Wl) & q(U,V,W,X,Y) & r (W2,Z) , 
U=U1, W=W1, W=W2 

Figure 4 illustrates in pictures the transformation done, the bidirectional arrows 

showing the bindings performed by the back-binding goals. There are two situations 

depending on the covering of the free variables by the sharing sets. 

6 Example Parallelization of a Program 

As an example in this section we will show how to apply the proposed methods to a 

concrete program (quicksort using difference lists) in order to exploit the non-strictly 

independent and-parallelism it contains. Although the program is small, we think that 



Figure 4: Representaron of the effect of variable substitution in a parallel expresión. 

it is of sufficient entity to show the potential of the proposal, and at the same time it 

is small enough to allow presenting the complete parallelization process. 

The quicksort program we will use follows, with the abstract substitutions obtained 

by the analyzer annotated at each point of the program: 

q s o r t ( I , 0 ) : -
q s o r t ( I , 0 , [ ] ) . 

qsor t ( [ ] ,L ,L ) . 
qsort([X|Xs],L,L2) : -

pa r t i t i on (Xs ,X ,Lef t ,R igh t ) , 
qsor t (Lef t ,L , [X|L1]), 
qsort(Right,Ll,L2). 

partition( [],_,[],[]). 

partition([EIR],C,[ElLeftl],Right) :• 

E=<C, 

i • > 

p a r t i t i o n ( R , C , L e f t i , R i g h t ) . 
p a r t i t i o n ( [ E | R ] , C , L e f t , [ E l R i g h t l ] ) :• 

E>C, 
p a r t i t i o n ( R , C , L e f t , R i g h t l ) . 

y. [ [o ] ] , [o ] 

• / . • , [ ] 

°/.[[L] , [L2] , [Left] , [Right] , [Ll]] , 
y„[L,Left,Right,Ll] 
y . [ [L] , [L2] , [L l ] ] , [L ,L l ] 
y . [ [L ,Ll ] , [L2]] , [Ll ] 
y„[[L,L2,Ll]] ,[] 

•/.[[Right] , [Leftl]] , [Right,Lefti] 

•/. [[Right] , [Leftl]] , [Right, Lef ti] 

'/.[],[] 

'/.[[Left] , [Right 1]] , [Left,Right 1] 

'/.[[Left] , [Right 1]] , [Left,Right 1] 

'/.[],[] 

We will concéntrate on the parallelization of the q s o r t / 3 predicate. Firstly, we 

will analyze whether it is possible to parallelize the first and second goal of the recur-

sive clause of q s o r t / 3 , so we have that p = p a r t i t i o n ( X s , X , L e f t , R i g h t ) and q = 

q s o r t ( L e f t ,L , [X|L1] ) , and the abstract substitutions involved are (3 = ([[L] [L2] [Left] 



[Right] [Lí\], [L Left Right Ll]) and $ = ([[L] [L2] [Ll]], [L Ll]). Then, we compute the 

set SH = [[Left]]. Condition C l is not met, since "Left" is not in Í/'FR, a n ( i furthermore 

this is a free variable that does not appear in another sharing set in /3SH5
 s o it is sure 

that the goals are not non-strictly independent. In a similar manner it can be shown 

that the first and third goal of the clause are not non-strictly independent either. 

Finally, let us try with the second and third goals in the same clause. Now p = 

q s o r t ( L e f t , L , [ X | L l ] ) , q = qsort (Right ,L1 ,L2) , ¡3 = ([[L] [L2] [Ll]], [L Ll]) and ^ = 

([[LL1] [L2]], [Ll]). The shared sharing sets are SH = [[Ll]]. But now the conditions 

hold: Ll G V'FR a n d n o sharing sets meet -iC2. Thus in this case we have non-strict 

independence, and no run-time checks are needed (note also that the goals are not 

strictly independent, since they share the free variable "L l " ) . 

The last step is to see whether we need to rename or substitute any variable in the 

goals. In both goals we only need to rename the variable "L l " , so the predicate q s o r t / 3 

would be left as: 

q s o r t ( [ ] , L , L ) . 
qsor t ( [X |Xs] ,L ,L2) : -

partition(Xs,X,Left,Right), 

qsort(Left,L,[X ILl]) & qsort(Right,Ll_prime,L2), 

Ll=Ll_prime. 

7 Some experimental results 

We have measured the speedups of five programs that have non-strict independence 

but have no strict independence, relative to the execution on one processor. These 

programs have been parallelized using the techniques presented so far. The results 

are given in table 1. The "Max" column shows the máximum speedup found and the 

number of processors needed (in fact, we stopped when the increment of speedup was 

less than 5%). We believe that the results obtained are quite encouraging. 

The array2list program is a subroutine of the SICStus prolog "arrays.pl" library. It 

translates an extendable array into a list of index-element pairs. The input array used 

to measure the speedups had 128 elements. The flatten program is a subroutine that 

flattens a list of lists of any complexity into a plain list. The speedups were measured 

with an input list of 89 elements with recursive "depth" of five. The hanoLdl program 

is the well-known benchmark that computes the solution of the towers of Hanoi problem, 

but programmed with difference lists. It was run for eight rings. The qsort program 

is the one shown in the previous section. The speedups were measured sorting a list 

http://arrays.pl


Bench 

array21ist 

flatten 

hanoi_dl 

qsort 

sparse 

# of processors 

2 

1.94 

1.98 

1.99 

1.83 

1.90 

3 

2.80 

2.90 

2.94 

2.40 

2.63 

4 

3.59 

3.77 

3.86 

2.75 

3.32 

5 

4.33 

4.54 

4.75 

3.02 

3.62 

6 

5.01 

5.27 

5.60 

3.18 

4.35 

7 

5.65 

5.94 

6.43 

3.32 

4.54 

8 

6.24 

6.57 

7.23 

3.42 

5.23 

9 

6.75 

7.14 

7.99 

3.49 

5.33 

10 

7.24 

7.67 

8.74 

3.54 

5.44 

Max 

12.27 (29) 

13.87 (32) 

24.30 (50) 

3.54 (10) 

6.34 (15) 

Table 1: Speedups of several programs with NSI 

of 300 elements. Finally, the sparse program is a subroutine that transforms a binary 

matrix (in the form of list of lists) into a list of coordinates of the positive elements, 

i.e. a sparse representation. It was run with an input matrix of 16 X 16 elements, with 

12 positive elements. 

8 Beyond Sharing+Freeness Analysis 

In the previous sections we have assumed that we only had the information from 

sharing+freeness analysis. In this section we briefly discuss what can be done when 

more information is available. 

8.1 Information about "Purity" of Predicates 

If we examine the conditions for parallelization stated in previous sections, we can 

see that only the behavior of the first goal p is considered. However, if q has certain 

properties, for example, if q is known to be "puré" in a certain sense (i.e. it has no 

extra-logical builtins which are sensitive to variable instantiation), the conditions can 

be further relaxed [14]. The resulting generalized definition of non-strict independence 

is: 

Consider a collection of goals gi,.. .,gn and a given substitution 9. Con-

sider also the set of shared variables SU = {v \ 3i, j , 1 < i < j < n, v £ 

(var(gi9) n var(gj9))} and the set of goals containing each shared variable 

G(v) = {g¡9 | v G var(gi9),v £ SH}. Let 9¡ be any answer substitution 

for g¡9. The given collection of goals is non-strictly independent for 9 if the 

following conditions are satisfied: 



• Va;, y G SH, 3 at most one g¡9 such that for any 9¡ we have that 

{x,y}0l ^ {x, y}; 

• yx,y G SU, if 3 g¡9 meeting the condition above, then \/gj9,j > i, 

such that {x,y}Pivar(gj9) ^ 0, g¿ is a puré goal, and {x,y}9j = {x, y} 

for all 9j which are partial answers during the execution oí gj9. 

Note that in the definition above the cases where x = y are not excluded. 

Intuitively, the first condition of the above definition requires that at most one goal 

modify a shared variable or alias a pair of variables. The second condition does not 

require that it be the rightmost goal containing the variables, but it does require that 

any goals to the right of the one modifying the variables be puré and do not "touch" 

such variables. This ensures that its search space could not have been pruned by any 

bindings made to those variables and therefore it is safe to run it in parallel, i.e. isolated 

from such bindings by the renaming transformation. 

In practice, determining whether goals are puré or not is quite easy, and can also 

be used for other purposes (for example, in the &-Prolog compiler such an analysis is 

performed anyway for side-effect sequencing). 

Let us now define our conditions for non-strict independence when q is puré. Let (3 

and \¡) be the abstract cali and answer substitutions for p, and let (f> be the least upper 

bound of the abstractions of the partial answers of q when called with (3 as the abstract 

cali substitution. The following are our conditions for non-strict independence between 

p and q in this case: 

C l ' V L G SH L n ^ F R + 0 V L n ^FR + 0 

C2' -, (3 ^...Nk G S(p) 3 L G ^ S H L = U-= i ^ A Nu N2 G SH 

A V i, j l<i<j<k NiPiNjCi /3FR = 0 A iVi n ^FR = 0 A N2 l~l <̂ FR = 0) 

Condition C l ' differs from C l in that it allows p to further instantiate a shared 

variable, provided that this variable is not touched by q (q does not further instantiate 

it under [i, so it does not mind whether the variable is free or not) . Condition C2' now 

says that the unión of N\ and N2 is legal if either of the shared variables in them is not 

touched by q (note that only if q further instantiates the two variables can it possibly 

be affected by these bindings). 

Related analyses, like purity of variables in predicates, would provide better infor-

mation for the parallelization, but the definition of this type of information needs to 



be clarified and is beyond the scope of this paper. 

8.2 Towards an Improved Analysis for Non-Strict Independence 

Although, in general, a more precise analysis is not always necessarily a better anal-

ysis (because more accurate information requires more time), it is certain that for 

different purposes we want different pieces of information and that the analysis used so 

far can be improved. 

In the case of our study, we think that the key idea is to have access to the greatest 

number of run-time free variables, in order to check their possible instantiations, having 

at the same time more accurate information regarding sharing. To achieve this goal, 

sharing and freeness could be combined with other analyses, like linearity [24], depth-k 

[22], or with a recursive type analysis, mainly for lists, to deal, for example, with lists 

of free variables (see [2, 17, 1]). All these alternatives will be taken into account in 

further work. However, note that the approach presented is still valid directly or with 

slight modifications for these more sophisticated types of analyses. For example, if 

a depth-k analysis is used in combination with sharing+freeness, the information in 

the sharing+freeness will refer to the variables in the depth-k terms, and the same 

parallelization conditions would apply. 

9 Conclusions 

Despite the advantage of "non-strict" independence (NSI) over "strict" independence 

(SI) in terms of generality and the amount of parallelism it can exploit, all compilation 

technology developed to date has been based on SI, due to the complexity of compile-

time detection of NSI. In an at tempt to ful this gap we have presented several techniques 

for achieving this compile-time detection. The proposed techniques are based on the 

availability of certain information about run-time instantiations of program variables 

—sharing and freeness— for which compile-time technology is available, and for the in-

ference of which new approaches are being currently proposed. We have also presented 

techniques for combined compile-time/run-time detection of NSI, proposing new kinds 

of run-time checks for this type of parallelism as well as the algorithms for implement-

ing such checks. We have presented an efficient algorithm for performing combined 

compile-time/run-time renaming of variables to ensure that non-strictly independent 

goals run in sepárate environments with respect to their shared variables. An example 

of the application of the proposed methods to a concrete program has also been given, 

along with some experimental results showing the speedups found in this and other 



programs presenting non-strict independence. Finally, we have also treated the case 

where additional information about purity of predicates is available, giving techniques 

for detection of NSI in the context of this information. 

We have implemented these algorithms and are currently interfacing them with the 

sharing+freeness analyzer implementation available to us with the objective of obtain-

ing a complete compile-time parallelizer capable of detecting NSI. We are also planning 

on looking, in the light of the techniques developed, at other types of analyses which 

may provide additional information useful for such parallelization. 
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