
facultad de informática

universidad politécnica de madrid

Extract ing Non-Strict Independent
And-Parallelism Using Sharing and

Freeness Information

Daniel Cabeza Gras

Manuel Hermenegildo

Extracting Non-Strict Independent
And-Parallelism Using Sharing and Freeness

Information

Authors

Danie l Cabeza Gras

dcabeza@dia.fi.upm.es

Manue l Hermeneg i ldo

herme@fi.upm.es

Departamento de Inteligencia Artificial

Facultad de Informática

Universidad Politécnica de Madrid (UPM)

28660-Boadilla del Monte, Madrid - SPAIN

Keywords

Parallel Execution of Logic Programs, Compilation Techniques, Generation of Annota-

tions for Parallelism, Abstract Interpretation, Non-strict Independent And-Parallelism.

mailto:dcabeza@dia.fi.upm.es
mailto:herme@fi.upm.es

Abstract

Logic programming systems which exploit and-parallelism among non-deterministic

goals rely on notions of independence among those goals in order to ensure certain

efficiency properties. "Non-strict" independence (NSI) is a more relaxed notion than

the traditional notion of "strict" independence (SI) which still ensures the relevant ef-

ficiency properties and can allow considerable more parallelism than SI. However, all

compilation technology developed to date has been based on SI, because of the intrinsic

complexity of exploiting NSI. This is related to the fact that NSI cannot be determined

"a priori" as SI. This paper filis this gap by developing a technique for compile-time

detection and annotation of NSI. It also proposes algorithms for combined compile-

t ime/run-t ime detection, presenting novel run-time checks for this type of parallelism.

Also, a transformation procedure to eliminate shared variables among parallel goals is

presented, aimed at performing as much work as possible at compile-time. The ap-

proach is based on the knowledge of certain properties regarding the run-time instanti-

ations of program variables —sharing and freeness— for which compile-time technology

is available, with new approaches being currently proposed. Thus, the paper does not

deal with the analysis itself, but rather with how the analysis results can be used to

parallelize programs.

Contents

1 Introduct ion 1

2 Understanding Sharing+Freeness Abstract Subst i tut ions 3

2.1 Pictorial Representation of Substitutions 6

3 Condit ions for Non-Str ict Independence wi th Respect to the Information f rom

Sharing+Freeness Analysis 7

4 Run-Time Checks for Non-Str ict Independence 9

4.1 Condition C l Violated 10

4.2 Condition C2 Violated 11

4.3 Run-Time Checks and Strict Independence 12

5 Renaming and Subst i tu t ing Variables 12

6 Example Parallelization of a Program 14

7 Some experimental results 16

8 Beyond Sharing+Freeness Analysis 17

8.1 Information about "Purity" of Predicates 17

8.2 Towards an Improved Analysis for Non-Strict Independence 19

9 Conclusions 19

Referenees 21

1 Introduction

Several types of parallel logic programming systems and models exploit and-parallel-

ism [5] among non-deterministic goals. Some examples are PEPsys [27], ROPM [21],

AO-WAM [9], DDAS/Prometheus [23], systems based on the "Extended" Andorra

Model [26] such as AKL [16], and &-Prolog [11] (please see their references for other

related systems). All these systems rely on some notion of independence (or the related

notion of "stability" [10]) among non-deterministic goals being run in and-parallel in

order to ensure certain important efficiency properties. Two basic notions of indepen-

dence are strict and non-strict independence [12, 13].

Strict goal independence corresponds to the traditional notion of independence among

goals [5, 7, 11]: Two goals g\ and gi are said to be strictly independent for a substitu-

tion 9 iff var(¿/i#) fl var(¿/2#) = 0; ra goals gi,... ,gn are said to be strictly independent

for a substitution 9 if they are pairwise strictly independent for 9. Parallelization of

strictly independent goals has the property of preserving the search space of the goals

involved so that correctness and efficiency of the original program (using a left to right

computation rule) are maintained and a no speed-down condition can be ensured [12].

A convenient characteristic of strict independence is that it is an "a-priori" condition,

i.e. it can be tested at run-time ahead of the execution of the goals. Furthermore,

tests for strict independence can be expressed directly in terms of groundness and

independence of the variables involved. This allows relatively simple compile-time par-

allelization by introducing run-time tests in the program [7, 19]. These tests can then

be partially eliminated at compile-time by direct application of groundness and sharing

(independence) information obtained from global analysis [15, 18, 3].

Non-strict independence is a relaxation of strict independence traditionally defined

as follows: given a collection of goals gi,.. .,gn and a substitution 9, let SU = {v \

3¿,J l<i<j<n,v G var((/¿#)nvar((/j#)}, let 9¡ be any answer substitution for g¡9, then

<7i,... , gn are non-strictly independent for 9 iff Vu G SU, at most the rightmost g¡ such

that v G var(<7¿#) binds v to a non-variable term, and if var(¿/¿#) contains more than

one variable of SH, say x\,.. .,Xk, then x\0i,.. .,Xk0i are strictly independent [13].

Non-strict independence is clearly a more powerful notion than strict independence

since strictly independent goals are always non-strictly independent. Furthermore, it

still preserves the same properties as strict independence with respect to correctness

and efficiency. In practice, it has wide application for example in the parallelization

of programs which use difference lists, and incomplete structures in general. In fact,

studies of amounts of ideal parallelism in logic programs suggest that there is a potential

for large speedups from the exploitation of non-strict independence [23]. However, this

potential remains untapped from the point of view of automatic parallelization. This

is due to two factors. The first one is that non-strict independence is not an "a priori"

condition, i.e. it cannot be expressed simply in terms of run-time tests (without running

the goals). Thus, run-time detection by itself is ruled out. Unfortunately, compile-

time detection is complicated by the fact that non-strict independence is not directly

expressed in the same terms as the properties which are usually determined from global

analysis.

Earlier studies [12] have suggested that coupling sharing and groundness analysis

with freeness analysis could be instrumental in the task of non-strict independence

detection. This has been one of the motivations behind the development of analyzers

capable of inferring these three types of information [4, 6, 25, 20, 8]. However, there

still remained a semantic gap between the availability of that information and actu-

ally being able to reason about the non-strict independence of a set of goals. This

paper a t tempts to ful this gap. It aims to develop concrete techniques for determining

non-strict independence at compile-time. For concreteness, it focuses on a concrete

way of expressing sharing and freeness information, the sharing+freeness domain [20].

This allows a high degree of precisión in the conditions involved, which are given in

such a way that the implementation is straightforward. However, we believe that the

ideas presented can also be used for related domains, provided that these domains give

information about variable sharing and freeness.

One design decisión throughout our research was to concéntrate on the parallelization

of two goals or two sets of goals (containing either sequential or parallel constructs).

This is convenient from a practical point of view because many parallelization algo-

rithms work by repeatedly considering whether two goals or sequences are independent

while, for example, building a dependency graph. The algorithms described in this

paper are directly aimed at answering such questions for the case of non-strict inde-

pendence. The decisión of considering the parallelization of pairs of goals has also a

sound theoretical foundation. Consider the following alternative definition of non-strict

independence: Given two goals g\ and §2, where §2 is to the right of gi, and a substitu-

tion 9, consider the set of shared variables SU = var(¿/i#) n var(¿/2#)- Then, g\ and §2

are non-strictly independent for 9 iff for any answer substitution 9\ of g\9 and for all

v,w G SU, v9\ is a variable and v j^ w —• v9\ ^ w9\. Based on this definition, the

definition involving n goals can be expressed as: gi,.. .,gn are non-strictly independent

for a substitution 9 if they are pairwise non-strictly independent for 9. Clearly, this

is equivalent to the standard definition, and thus considering only pairs of goals can

always be done without loss of generality.

The rest of the paper proceeds as follows: Section 2 explains the particular ab-

stract interpretation domain for which the conditions of parallelism are given, the

sharing+freeness domain, and introduces a novel pictorial representation for the ab-

stract substitutions involved. Section 3 presents the sufficient conditions proposed for

compile-time detection of NSI. Section 4 deals with the combination of compile-time

analyses and run-time checks for detecting NSI, presenting novel run-time checks for

this type of parallelism. It also connects this method with the previously proposed

techniques for the detection of strict independence. Section 5 develops an efficient al-

gorithm for performing combined compile-time/run-time renaming of variables, which

is needed for the parallel execution of non-strictly independent goals. Section 6 il-

lustrates the techniques proposed by using them to parallelize of a concrete program.

Section 7 gives some experimental results showing the speedups obtained in several pro-

grams presenting non-strict independence but no strict independence. Section 8 treats

the parallelization of goals when additional information about purity of predicates is

available, and proposes new approaches related to compile-time analysis in order to

improve the information required for the parallelization techniques. Finally, section 9

gives the conclusions and suggests future work.

2 Understanding Sharing+Freeness Abstract Substitutions

The sharing+freeness abstract domain [20] (other related analyses for which our

results may be valid include [4, 6, 25, 8]) was proposed with the objective of obtaining

at compile-time accurate variable groundness, sharing, and freeness information for a

program, i.e., respectively, information on when a program variable will be bound to

a ground term, when a set of program variables will be bound to terms with variables

in common, and when a program variable will be unbound or bound only to other

variables instead of to a complex term.

The abstract domain approximates this information by combining two components

(in fact domains per se): the first component provides information on sharing (aliasing,

independence) and groundness [15, 18]; the second one provides information on freeness.

More precisely, Da C 1 U p(p(Pvar)) X p(Pvar), where Pvar is the set of all program

variables in the current clause. It is an inclusión and not an equality because abstract

substitutions in p(p(Pvar)) X p(Pvar) whose concretization would be empty are not

considered (they are represented by _L —bot tom).

We will denote a sharing+freeness abstract substitution as a pair (sharing, freeness)

as in 9 = (# S H 5 # F R) - TO distinguish abstract substitutions from concrete substitutions

abstract substitutions will be represented by greek letters with a hat , the same greek let-

ter without the hat representing a concrete substitution approximated by the abstract

one. Sets will be denoted with square brackets in abstract substitutions (to distinguish

them and because of the mnemonic connotations since they are to be represented in

Prolog in the analyzer), and with braces in concrete substitutions (as usual). Following

the standard notation, we will ñame the abstraction function a and the concretization

function 7.

Informally, an abstract substitution in the sharing domain is a set of sets of program

variables (a set of sharing sets), where sharing sets represent all possible sharing patterns

among the program variables.

More formally, let us define a (concrete) substitution in a clause as a mapping from

the set of program variables in that clause (Pvar) to terms that can be formed from

the constants and the functors in the given program and in the query and an infinite

set of variables Var such that PvarPí Var = 0. In this way we consider only idempotent

substitutions. The set of all concrete substitutions will be denoted as Subst.

The function Occ: Subst X Var —• p(Pvar) is defined such that

Occ(0,V) = {X e dom(0) I V G var(X6>)}

where t9 denotes the instantiation of a term / under a substitution 9, var(í#) denotes

the set of all variables in t9 and dom(#) denotes the domain of a substitution 9. In

other words, the function returns the set of all program variables X such that V occurs

in the instantiation of X under 9. The abstraction of a substitution 9 in the sharing

domain is defined as:

aSu(9) = {Occ(9,V) I V E range(0)}

The concretization of an abstract substitution in the sharing domain is defined as

7 (^ S H) = {0e Subst I a S H (0) C £ S H }

For example, given the following concrete substitution 9, #SH is its abstraction in the

sharing domain:

9 = { X / f (l , a) , Y / A , Z / f (A , C , t (B)) , W / [B , C] , V / D }

£SH = [[YZ] [ZW] [V]]

On the other hand, given the following sharing abstract substitution #SH5 the 0¿ a r e

concrete substitutions approximated by it. The last column in the following represents

the sharing sets "active" in each concrete substitution -we say that a set L £ #SH5 where

#SH is a sharing abstract substitution, is act ive in a concrete substitution 0 £ 7 (0 S H)

iff L is in the abstraction of 0:

#SH = [[X] [YZ] [ZW]]

0i = { X / A , Y / f (B , l) , Z / B , W / f o o } [[X][YZ]]

92 = { X / [] , Y / A , Z / [B | A] , W / t (B) } [[YZ] [ZW]]

93 = { X / t (0 , l) , Y / a t o m , Z/A, W / A } [[ZW]]

The component described above is essentially the abstract domain of Jacobs and

Langen [15].

An abstract substitution in the freeness domain is a set of program variables (those

that are known to be free). More formally, the abstraction and concretization functions

in this domain are defined as follows:

aFR(9) = {X e dom(0) | X9 £ Var}

J(OFR) = {0 e Subst \ aFR(0) D 0FR}

The concretization of a sharing+freeness abstract substitution can be defined as the

intersection of the concretizations of its two components:

7(0) = 7 (0 S H) n 7 (0 F R)

The set inclusión relation in the concrete domain induces a partial order on the

abstract substitutions, i.e. (f> Q ip iff j((f>) C 7(V>). The function lub computes the least

upper bound of two abstract substitutions (f> and ip by taking the least upper bound of

their sharing and freeness components:

lub((j>, i>) = ((¡>SH U -0SH, <?FR 0 V?FR)

It is important to point out that the approximations performed by the abstraction

function and the lub function with respect to the sharing component imply that this

component can actually represent in a compact way (rather than with an explicit

disjunction) several combinations of sharing patterns. One of the main sources of

information in being able to tell these combinations apart is the freeness information.

In fact, sharing information is not independent of freeness information since known

freeness of certain variables restricts the allowable combinations of sharing patterns.

The possible combinations of sharing sets a sharing+freeness abstract substitution 9

represents are the subsets of the sharing component (the S G P (# S H)) that have one and

only one sharing set including each variable in the freeness component (V v G #FR 3 L G

s ve L).

The point above regarding sharing+freeness abstract substitutions, which is of great

practical importance, may still be difficult to understand in the terms given so far. It is

hoped that with the aid of the pictorial representation to be presented in the following

section these issues will be greatly clarified.

2.1 Pictorial Representation of Substitutions

We have chosen a pictorial representation of substitutions in order to make it easier

to understand abstract substitutions in the sharing+freeness domain and to follow the

discussions and examples throughout the text. The idea of the pictures is to make the

large amount of information contained in these abstract substitutions more explicit.

Figure 1 illustrates the different types of objects used in this representation.

As mentioned before, an abstract sharing+freeness substitution is a compact rep-

resentation of a finite number of possible sharing+freeness situations in the concrete

domain. To reflect this a given sharing+freeness abstract substitution can be repre-

sented with a finite number of figures, each figure having the same freeness information

(which is definite) but representing the different alternative coverings of free variables

by the sharing sets.

Variables in the freeness component are represented with dots, the rest with circles.

The sharing patterns are represented with connected lines going to each variable of the

corresponding sharing set. The resulting pictures are hypergraphs, i.e. graphs where

the edges connect an arbitrary number of vértices.

Thus, the number of edges connected to a vértex is the number of sharing sets

containing the corresponding variable, except for dot vértices (free variables) that can

have múltiple edges, all corresponding to the same sharing pat tern, or none, meaning

.X definitely free variable >—-v.

0Y ordinary variable /] goal

(possible) sharing \^^^y

Figure 1: Types of objects in our pictorial representation.

Variables

{X,Y,Z,W}

{X,Y,Z}

{X,Y,Z,W}

{X,Y,Z,W}

{X,Y,Z,W,V}

Abs t rac t subs t i tu t ion

([[Y][XZ]],[XY])

Q[XY][YZ]],[])

Q[XYZ][XW][Y][Z]],[XY])

([[XYZ][YZW][W]],[W])

([[X] [XY] [YZ] [W] [XYW] [V]], [YWV])

Represen ta t ion

.Y 0W

X_^z

,x

.Y 0Z

fx 0w

I - 4 Z

lA t w

o^LY.W
i

0z .v

.Y ¿Z

oX.Y.W

¿ .v
CX Y W
1

0z .v

Figure 2: Examples of representation of abstract substitutions

a sharing pat tern with only this variable (since free variables must be in one and only

one sharing pat tern) . Sharing sets that have no free variables are optional: they may

or may not be active in a concrete substitution. A ground variable appears like an

isolated circle.

A goal is represented like a set in a Venn Diagram, the variables in the set being the

goal variables. When we represent two goals, the first one is to the left and the second

one to the right, and the variables present in both goals are put in the intersection.

Figure 2 shows several examples representing in one or more pictures abstract sub-

stitutions. The number of pictures corresponds to the number of alternative coverings

of free variables by the sharing sets.

3 Conditions for Non-Strict Independence with Respect to the Information from

Sharing+Freeness Analysis

Before stating the conditions it is important to understand in which form a predi-

cate can transform its abstract cali substitution into its abstract answer substitution.

Regarding the freeness component, what it can do is eliminate variables (instantiating

them). Regarding the sharing component, it can eliminate sharing sets (instantiating

its variables to ground terms) or créate more by unión of the present sharing sets (uni-

fying variables from these sharing sets). Note also that when a sharing set contains one

or more free variables, if it is active, there is a single shared run-time variable corre-

sponding to these program variables. Remember also that two sharing sets containing

the same free variable cannot be active at the same time.

As mentioned in the introduction we will consider the parallelization of pairs of

goals. Let p and q be two goals or sequences of goals, where q is to the right of p.

Also let (3 and ip be the abstract cali and answer substitutions for p. So the situation

is {/3} p {ip} . . . q. We define the sets:

S(p) = {L e f3SH I L n var(p) ± 0}

SH = S(p) n S(q) = {L e /3SH I L n var(p) / Í A Í H var(q) ¿ 0}

That is, S(p) is the set of all sharing sets of /3SH that contain a variable from p, and

SH is the set of all sharing sets of /3SH that contain variables from p and from q (thus

containing run-time shared variables if they are active).

The following are our conditions for non-strict independence between p and q:

ci y Le SH ¿n^FR^0
C2 -, (3 Ai...A fc e S(p) 3 L e ^ S H L = U-= i Ni A NUN2 G SH

A V i, j l<i<j<k NiPiNjCi /3FR = 0)

Condition C l deals with preserving freeness of shared variables*. By checking that all

sharing sets of SH have a free variable in the abstract answer substitution ip, it is ensured

that no run-time shared variable is further instantiated. Note that if there is more than

one free variable in a sharing set, and one of them remains free, the other necessarily

remain also free, since all coincide at run-time when the set is active. Condition C2 is

needed to preserve independence of shared variables: N\...Nk are sharing sets that p

can unite (thus they come from S(p)) to derive the sharing set L of the abstract answer

substitution, and at least two sharing sets contain shared variables (we can always

ñame them Ai and A2). Furthermore, no two sharing sets A¿,Aj contain the same

free variable, since otherwise they cannot be both active in one concrete substitution,

making the unión impossible. This also ensures, given that the first condition is met,

that Ai and A2 have different shared variables. Intuitively it can be seen that if C l

and -iC2 holds, p can possibly bind the two independent shared variables.

*We would like to thank M. Bruynooghe for suggesting improvements to our original C l .

Three examples in which C l fails: run-time shared variables can be further

instantiated

p q P q P q

V>

Three examples in which C2 fails: run-time shared variables can aliase each other

p q p q p q

(i

4,

Figure 3: Situations where the conditions do not hold, and thus the goals are possibly

not NSI

Figure 3 shows some situations where either C l or C2 do not hold. The sharings

drawn with thick lines are the faulty ones, i.e. for C l , the Ls that have no variables in

ipFK, and for C2, JVi and N2 in (3 and L in ip.

4 Run-Time Checks for Non-Strict Independence

In the previous section we have proposed conditions to be checked at compile-time in

order to decide whether to run two goals in parallel. However, even if these conditions

do not hold, we may yet try to execute them in parallel, provided that some a priori

run-time checks succeed.

The purpose of the run-time checks is to ensure that goals will not be run in parallel

when there is no non-strict independence, while allowing parallel execution in as many

cases as possible when non-strict independence is present. This fact will be determined

from the combination of compile-time analysis and the success of the run-time checks

previous to the execution of the goals. Note that this is meaningful because the sharing

component represents possible, not definite sharing sets.

In the previous section we proposed two conditions which had to hold for paralleliza-

tion. Let us analyze what to do when each of the conditions is violated.

4.1 Condition Cl Violated

[3 L e SH i n ^ F R = 0]

In this case we need run-time checks to ensure that the sharing sets L £ SH not obeying

C l ("illegal sharing sets") are not active. But, if the rest of the sharing sets in /3SH

cannot cover all the free variables of /3pR without overlaping, it is impossible for all the

illegal sharing sets to be inactive, so the goals are definitely not NSI. Otherwise, we

must try to genérate the least number of checks which covers every illegal sharing set

without affecting the legal ones (to preserve parallelism in valid situations).

There are several checks that can be used to prevent the illegal sharing sets from

being active; they must be tried in this order:

• If there exists a variable X such that it appears only in illegal sharing sets, then

the check ground(X) ("X is bound to a ground term") covers those illegal sharing

sets containing X.

• Suppose that there exists a variable X and a list T of free variables from /3pR

such tha t , for the sharing sets containing X, illegal ones do not contain variables

of J
7
, and legal ones contain at least one. Then the check a l l v a r s (X , . F) ("every

variable in X is in the list T
v
) covers all the illegal sharing sets containing X,

and only those. In fact, the check ground(X) above is a special case of this when

T=[].

Note that if X 6 var(p) n var(q) then we always are in this case, since all sharing

sets containing X are in SH, so the ones that are legal contain free variables that

remain free after executing p, and those that are illegal do not.

• If there exist two variables X and Y such that all sharing sets containing both

are illegal, then the check indep(X,Y) ("X and Y do not share variables") covers

those illegal sharing sets.

• For each of the remaining illegal sharing sets, we choose two variables X and

Y which are members of it, such that X £ var(p) and Y £ var(q). Note that

the sharing sets in SH have a variable in both var(p) and var(q) or have one

variable in var(p) and another variable in var(q). And, since the illegal sharing

sets are in SH, if they cannot be covered by the a l l v a r s / 2 check then they

are in this case. Furthermore, the legal sharing sets that contain both X and

Y are for this very reason also in SH, so they have free variables that remain

free after executing p. Let T be the set of these free variables. Then the check

sha redva r s (X ,Y , .F) ("every variable shared by X and Y is in the list of variables

J-") covers all the illegal sharing sets containing X and Y, and only those. Also,

the check indep(X,Y) is a special case of this when T = [].

4.2 Condition C2 Violated

[3 N^.Nk e S(p) B Í G ^ S H L = U L N%

A Nl7N2 e SH A v¿,j i<i<j<k NinNjnpFR = 0]

Once the checks for C l have been computed, and taking into account only the sharing

sets not rejected by these checks, the second condition is treated.

Now, for each L in the above formula, we compute the different groups of N\...Nk

that p can unite to give the sharing set L, without taking into account the number of

sharing sets JV¿ that are in SH. The groups that have more than one sharing set in

SH are the "illegal" groups. If there are no legal groups, and L is necessarily active

in ip (this is so if L contains free variables that do not appear in other sharing sets

of ipsn), then necessarily p binds shared variables, so the goals are definitely not NSI.

Otherwise, we need checks as for the first condition, now ensuring that at least one

sharing set of each illegal group is not active, without affecting if possible sharing sets

of the legal groups.

For example, suppose we are trying to parallelize the goal "p (X,Y,Z) , q(X,Y,W)"

and the abstract cali and answer substitutions for "p(X,Y,Z)" are, respectively, (3 =

([[X] [Y] [XY] [Z] [ZW]], [Y]) and ^ = ([[X] [XY] [Z] [ZW]], [Y]). We have SH = [[X] [Y]

[XY] [ZW]], and the illegal sharing sets for the first condition are [X] and [ZW]. The

check for [X] is a l l v a r s (X, [Y]) , since X can contain occurences of Y, given that [XY] is

legal. The check for [ZW] is ground(W), since there are no legal sharing sets containing

W.

Althought condition C2 did not hold with the initial sharing sets, once ensuring that

[X] is no longer active the condition is fulfilled, so we are ready to parallelize the two

goals, the result being (here we omit the substitution of variables, to be explained in

the next section):

(a l l v a r s (X , [Y]) , ground(W) -> p(X,Y,Z) & q(X,Y,W); p(X,Y,Z) , q(X,Y,W))

where "A -> B; C" is the prolog if-then-else construction and "&" is the (unconditional)

parallel operator.

4.3 Run-Time Checks and Strict Independence

It is worth pointing out that if no information is obtained from the analysis (or

no analysis is performed), and thus the abstract substitutions are T, the run-time

checks computed by the method presented here exactly correspond to the conditions

traditionally generated for strict independence (shared program variables ground, other

program variables independent, see e.g. [12] for more information). This is correct,

since in absence of analysis information only strict independence is possible, and shows

that the method presented is a strict generalization of the techniques which have been

previously proposed for the detection of strict independence.

It can be easily shown how the tests reduce to those for strict independence: since

there are no free variables in the abstract substitutions, every sharing set of SH is

illegal with respect to the first condition. These sharing sets contain a shared program

variable (and are covered by a ground/1 check on each) or program variables of both

goals (covered by a indep/2 check on every pair).

For example, if we have a goal "p(X,Y)&q(Y,Z)" with /3 = ([[X] [Y] [Z] [XY] [XZ] [YZ]

[XYZ]], []) (i.e. T, equivalent to no information), then we have SH = [[Y] [XY] [XZ] [YZ]

[XYZ]]. The check ground (Y) covers all the illegal sharing sets except [XZ], which is

covered in turn by the check indep(X,Z) .

5 Renaming and Subst i tu t ing Variables

When using non-strict independence, and in order to prevent partial answers of a

branch that ultimately fail from pruning the search space of other goals, parallel goals

are in principie run in independent environments (see [12, 13]). The standard solution

for this problem is a run-time transformation of the goals to be executed in parallel.

This transformation involves eliminating any shared variable among parallel goals by

renaming or substituting its occurrences so that no two occurrences in different goals

remain the same, and adding some unification goals after the parallel conjunction to

reestablish the lost links. This operation can be encoded at compile-time by performing

copy_term's of every goal and unifying the original goals and the copied versions after

the parallel conjunction. We will now propose more efficient methods which are based

on the knowledge gathered during the annotation process. Note that a mere renaming

of variables at compile-time is not sufficient in general: we can have terms with shared

variables inside. So we use the following predicate:

subs t_va r s ([X 1 ? . . . , Xn] , [X ' l 7 . . . , XjJ ,Z,Z') : -

Z' is a ierra equal to Z but with variables X ^ , . . . , X^

in place of variables X i , . . . , X n , respectively.

We are interested in the potential run-time shared variables, but with the conditions

and/or the checks we ensure that these are the free variables (those of /3FR) that appear

in the sharing sets of SH. So, the transformation procedure proceeds as follows:

• Group in sets the free variables that appear in the sharing sets of SH, so that

those that appear in the same sharing set are grouped together, and the rest form

sets with an unique element. This is so because if two free variables appear in

the same sharing set, they are possibly aliased at run-time, so they need to be

processed together.

• For each of those sets of free shared variables V:

o compute R(V) = {w\3LeSH3veV veLAweLAw^ V}, i.e.

the set of the variables that appear in the sharing sets of SH with variables

from V, excluding those of V. So they possibly contain at run-time variables

from V.

o Then, for each goal g, the necessary renamings or substitutions regarding

V are computed. Let V = var(g) n V and 1Z = var(g) n R(T^). We will

represent a renaming of a variable v as "ren(u)" and a substitution of a

variable v inside w as "sv(u,w)" . There are thre cases:

* V = 0 , ^ = 0 ^ none.

* V = 0,7?. 7= 0 ^ sv(u, w) for each w G 1Z, where v £ V.

* V 7= 0 —• ren(u), sv(v,w) for each w G (1Z U V —{f}), where v G V.

o Since for each V we need to transform all the goals minus one, the goal

with the most expensive transformation is not considered. Substitutions are

more expensive than renamings, substitutions in ordinary variables are more

expensive than substitutions in free variables (which are in fact conditional

unifications).

• Once computed the transformations for all the sets of variables, then for each

goal the substitutions in the same variable are joined in a subs t_va r s predicate.

Unification ("back-binding") goals must be included after the parallel conjunction

for all the free variables renamed or substituted. Note that one side of these

unifications is allways a free variable, since the conditions ensure that the first

goal do not instantiate shared variables.

As an example, consider the parallel expresión p(T,V,W)&q(U,V,W,X,Y)&r(W,Z),

with the abstract cali substitution fí = ([[T] [UV] [UVY] [VWX] [X] [XY] [Z]], [TUWY]). The

sharing sets shared are SH = [[UV] [UVY] [VWX]]. We have two sets of free variables

from SH: {U,Y} and {W}, with R({U,Y}) = {V} and R({W}) = {V,X}. The following

table shows, for each of these sets, and for each goal, the valúes of V and 1Z and the

transformation needed.

{U,Y}

M

V

0
M

r
n
M
{v}

> (T , V , W)

transformation

sv(U,V)

ren(¥) ,sv(¥,V)

V

{U,Y}

{¥}

q(U,V,W,X,Y)

n
m

{v,x}

transformation

ren(U),sv(U, Y),sv(U,V)

ren(¥) ,sv(¥ ,V) ,sv(¥ ,X)

V

0
{¥}

r (¥ , Z)

n
0
0

transf.

0
ren(¥)

In either rows we discard the transformation for the goal q / 5 . The two substitutions

for the goal p / 3 are on the same variable, so they must be joined. Therefore, the

parallel expresión is transformed into:

subs t_va r s ([U ,W] , [U1 .W1] ,V ,V1) ,
p (T ,Vl ,Wl) & q(U,V,W,X,Y) & r (W2,Z) ,
U=U1, W=W1, W=W2

Figure 4 illustrates in pictures the transformation done, the bidirectional arrows

showing the bindings performed by the back-binding goals. There are two situations

depending on the covering of the free variables by the sharing sets.

6 Example Parallelization of a Program

As an example in this section we will show how to apply the proposed methods to a

concrete program (quicksort using difference lists) in order to exploit the non-strictly

independent and-parallelism it contains. Although the program is small, we think that

Figure 4: Representaron of the effect of variable substitution in a parallel expresión.

it is of sufficient entity to show the potential of the proposal, and at the same time it

is small enough to allow presenting the complete parallelization process.

The quicksort program we will use follows, with the abstract substitutions obtained

by the analyzer annotated at each point of the program:

q s o r t (I , 0) : -
q s o r t (I , 0 , []) .

qsor t ([] ,L ,L) .
qsort([X|Xs],L,L2) : -

pa r t i t i on (Xs ,X ,Lef t ,R igh t) ,
qsor t (Lef t ,L , [X|L1]),
qsort(Right,Ll,L2).

partition([],_,[],[]).

partition([EIR],C,[ElLeftl],Right) :•

E=<C,

i • >

p a r t i t i o n (R , C , L e f t i , R i g h t) .
p a r t i t i o n ([E | R] , C , L e f t , [E l R i g h t l]) :•

E>C,
p a r t i t i o n (R , C , L e f t , R i g h t l) .

y. [[o]] , [o]

• / . • , []

°/.[[L] , [L2] , [Left] , [Right] , [Ll]] ,
y„[L,Left,Right,Ll]
y . [[L] , [L2] , [L l]] , [L ,L l]
y . [[L ,Ll] , [L2]] , [Ll]
y„[[L,L2,Ll]] ,[]

•/.[[Right] , [Leftl]] , [Right,Lefti]

•/. [[Right] , [Leftl]] , [Right, Lef ti]

'/.[],[]

'/.[[Left] , [Right 1]] , [Left,Right 1]

'/.[[Left] , [Right 1]] , [Left,Right 1]

'/.[],[]

We will concéntrate on the parallelization of the q s o r t / 3 predicate. Firstly, we

will analyze whether it is possible to parallelize the first and second goal of the recur-

sive clause of q s o r t / 3 , so we have that p = p a r t i t i o n (X s , X , L e f t , R i g h t) and q =

q s o r t (L e f t ,L , [X|L1]) , and the abstract substitutions involved are (3 = ([[L] [L2] [Left]

[Right] [Lí\], [L Left Right Ll]) and $ = ([[L] [L2] [Ll]], [L Ll]). Then, we compute the

set SH = [[Left]]. Condition C l is not met, since "Left" is not in Í/'FR, a n (i furthermore

this is a free variable that does not appear in another sharing set in /3SH5
 s o it is sure

that the goals are not non-strictly independent. In a similar manner it can be shown

that the first and third goal of the clause are not non-strictly independent either.

Finally, let us try with the second and third goals in the same clause. Now p =

q s o r t (L e f t , L , [X | L l]) , q = qsort (Right ,L1 ,L2) , ¡3 = ([[L] [L2] [Ll]], [L Ll]) and ^ =

([[LL1] [L2]], [Ll]). The shared sharing sets are SH = [[Ll]]. But now the conditions

hold: Ll G V'FR a n d n o sharing sets meet -iC2. Thus in this case we have non-strict

independence, and no run-time checks are needed (note also that the goals are not

strictly independent, since they share the free variable "L l ") .

The last step is to see whether we need to rename or substitute any variable in the

goals. In both goals we only need to rename the variable "L l " , so the predicate q s o r t / 3

would be left as:

q s o r t ([] , L , L) .
qsor t ([X |Xs] ,L ,L2) : -

partition(Xs,X,Left,Right),

qsort(Left,L,[X ILl]) & qsort(Right,Ll_prime,L2),

Ll=Ll_prime.

7 Some experimental results

We have measured the speedups of five programs that have non-strict independence

but have no strict independence, relative to the execution on one processor. These

programs have been parallelized using the techniques presented so far. The results

are given in table 1. The "Max" column shows the máximum speedup found and the

number of processors needed (in fact, we stopped when the increment of speedup was

less than 5%). We believe that the results obtained are quite encouraging.

The array2list program is a subroutine of the SICStus prolog "arrays.pl" library. It

translates an extendable array into a list of index-element pairs. The input array used

to measure the speedups had 128 elements. The flatten program is a subroutine that

flattens a list of lists of any complexity into a plain list. The speedups were measured

with an input list of 89 elements with recursive "depth" of five. The hanoLdl program

is the well-known benchmark that computes the solution of the towers of Hanoi problem,

but programmed with difference lists. It was run for eight rings. The qsort program

is the one shown in the previous section. The speedups were measured sorting a list

http://arrays.pl

Bench

array21ist

flatten

hanoi_dl

qsort

sparse

of processors

2

1.94

1.98

1.99

1.83

1.90

3

2.80

2.90

2.94

2.40

2.63

4

3.59

3.77

3.86

2.75

3.32

5

4.33

4.54

4.75

3.02

3.62

6

5.01

5.27

5.60

3.18

4.35

7

5.65

5.94

6.43

3.32

4.54

8

6.24

6.57

7.23

3.42

5.23

9

6.75

7.14

7.99

3.49

5.33

10

7.24

7.67

8.74

3.54

5.44

Max

12.27 (29)

13.87 (32)

24.30 (50)

3.54 (10)

6.34 (15)

Table 1: Speedups of several programs with NSI

of 300 elements. Finally, the sparse program is a subroutine that transforms a binary

matrix (in the form of list of lists) into a list of coordinates of the positive elements,

i.e. a sparse representation. It was run with an input matrix of 16 X 16 elements, with

12 positive elements.

8 Beyond Sharing+Freeness Analysis

In the previous sections we have assumed that we only had the information from

sharing+freeness analysis. In this section we briefly discuss what can be done when

more information is available.

8.1 Information about "Purity" of Predicates

If we examine the conditions for parallelization stated in previous sections, we can

see that only the behavior of the first goal p is considered. However, if q has certain

properties, for example, if q is known to be "puré" in a certain sense (i.e. it has no

extra-logical builtins which are sensitive to variable instantiation), the conditions can

be further relaxed [14]. The resulting generalized definition of non-strict independence

is:

Consider a collection of goals gi,.. .,gn and a given substitution 9. Con-

sider also the set of shared variables SU = {v \ 3i, j , 1 < i < j < n, v £

(var(gi9) n var(gj9))} and the set of goals containing each shared variable

G(v) = {g¡9 | v G var(gi9),v £ SH}. Let 9¡ be any answer substitution

for g¡9. The given collection of goals is non-strictly independent for 9 if the

following conditions are satisfied:

• Va;, y G SH, 3 at most one g¡9 such that for any 9¡ we have that

{x,y}0l ^ {x, y};

• yx,y G SU, if 3 g¡9 meeting the condition above, then \/gj9,j > i,

such that {x,y}Pivar(gj9) ^ 0, g¿ is a puré goal, and {x,y}9j = {x, y}

for all 9j which are partial answers during the execution oí gj9.

Note that in the definition above the cases where x = y are not excluded.

Intuitively, the first condition of the above definition requires that at most one goal

modify a shared variable or alias a pair of variables. The second condition does not

require that it be the rightmost goal containing the variables, but it does require that

any goals to the right of the one modifying the variables be puré and do not "touch"

such variables. This ensures that its search space could not have been pruned by any

bindings made to those variables and therefore it is safe to run it in parallel, i.e. isolated

from such bindings by the renaming transformation.

In practice, determining whether goals are puré or not is quite easy, and can also

be used for other purposes (for example, in the &-Prolog compiler such an analysis is

performed anyway for side-effect sequencing).

Let us now define our conditions for non-strict independence when q is puré. Let (3

and \¡) be the abstract cali and answer substitutions for p, and let (f> be the least upper

bound of the abstractions of the partial answers of q when called with (3 as the abstract

cali substitution. The following are our conditions for non-strict independence between

p and q in this case:

C l ' V L G SH L n ^ F R + 0 V L n ^FR + 0

C2' -, (3 ^...Nk G S(p) 3 L G ^ S H L = U-= i ^ A Nu N2 G SH

A V i, j l<i<j<k NiPiNjCi /3FR = 0 A iVi n ^FR = 0 A N2 l~l <̂ FR = 0)

Condition C l ' differs from C l in that it allows p to further instantiate a shared

variable, provided that this variable is not touched by q (q does not further instantiate

it under [i, so it does not mind whether the variable is free or not) . Condition C2' now

says that the unión of N\ and N2 is legal if either of the shared variables in them is not

touched by q (note that only if q further instantiates the two variables can it possibly

be affected by these bindings).

Related analyses, like purity of variables in predicates, would provide better infor-

mation for the parallelization, but the definition of this type of information needs to

be clarified and is beyond the scope of this paper.

8.2 Towards an Improved Analysis for Non-Strict Independence

Although, in general, a more precise analysis is not always necessarily a better anal-

ysis (because more accurate information requires more time), it is certain that for

different purposes we want different pieces of information and that the analysis used so

far can be improved.

In the case of our study, we think that the key idea is to have access to the greatest

number of run-time free variables, in order to check their possible instantiations, having

at the same time more accurate information regarding sharing. To achieve this goal,

sharing and freeness could be combined with other analyses, like linearity [24], depth-k

[22], or with a recursive type analysis, mainly for lists, to deal, for example, with lists

of free variables (see [2, 17, 1]). All these alternatives will be taken into account in

further work. However, note that the approach presented is still valid directly or with

slight modifications for these more sophisticated types of analyses. For example, if

a depth-k analysis is used in combination with sharing+freeness, the information in

the sharing+freeness will refer to the variables in the depth-k terms, and the same

parallelization conditions would apply.

9 Conclusions

Despite the advantage of "non-strict" independence (NSI) over "strict" independence

(SI) in terms of generality and the amount of parallelism it can exploit, all compilation

technology developed to date has been based on SI, due to the complexity of compile-

time detection of NSI. In an at tempt to ful this gap we have presented several techniques

for achieving this compile-time detection. The proposed techniques are based on the

availability of certain information about run-time instantiations of program variables

—sharing and freeness— for which compile-time technology is available, and for the in-

ference of which new approaches are being currently proposed. We have also presented

techniques for combined compile-time/run-time detection of NSI, proposing new kinds

of run-time checks for this type of parallelism as well as the algorithms for implement-

ing such checks. We have presented an efficient algorithm for performing combined

compile-time/run-time renaming of variables to ensure that non-strictly independent

goals run in sepárate environments with respect to their shared variables. An example

of the application of the proposed methods to a concrete program has also been given,

along with some experimental results showing the speedups found in this and other

programs presenting non-strict independence. Finally, we have also treated the case

where additional information about purity of predicates is available, giving techniques

for detection of NSI in the context of this information.

We have implemented these algorithms and are currently interfacing them with the

sharing+freeness analyzer implementation available to us with the objective of obtain-

ing a complete compile-time parallelizer capable of detecting NSI. We are also planning

on looking, in the light of the techniques developed, at other types of analyses which

may provide additional information useful for such parallelization.

Referenees

1. A. Bansal and L. Sterling. An Abstract Interpretation Scheme for Identifying

Inherent Parallelism in Logic Programs. New Generation Computing, (7):273-324,

1990.

2. M. Bruynooghe and G. Janssens. An Instance of Abstract Interpretation Integrat-

ing Type and Mode Inference. In Fifth International Conference and Symposium

on Logic Programming, pages 669-683, Seattle, Washington, August 1988. MIT

Press.

3. F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of Global

Analysis in Strict Independence-Based Automatic Program Parallelization. Techni-

cal Report TR Number CLIP7/93.0, T.U. of Madrid (UPM), Facultad Informática

UPM, 28660-Boadilla del Monte, Madrid-Spain, October 1993.

4. Michael Codish, Dennis Dams, Gilberto File, and Maurice Bruynooghe. Freeness

Analysis for Logic Programs - And Correctness? In Proc. Int'l. Conf. on Logic

Programming. MIT Press, 1993. To appear.

5. J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Pro-

grams. PhD thesis, The University of California At Irvine, 1983. Technical Report

204.

6. A. Cortesi and G. File. Abstract Interpretation of Logic Programs: an Abstract

Domain for Groundness, Sharing, Freeness and Compoundness Analysis. In ACM

Symposium on Partial Evaluation and Semantic Based Program Manipulation,

pages 52-61, New York, 1991.

7. D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth

Generation Computer Systems, pages 471-478. Tokyo, November 1984.

8. V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish. Freeness Analysis

in the Presence of Numerical Constraints. In Tenth International Conference on

Logic Programming, pages 100-115. MIT Press, June 1993.

9. G. Gupta and B. Jayaraman. Compiled And-Or Parallelism on Shared Memory

Multiprocessors. In 1989 North American Conference on Logic Programming, pages

332-349. MIT Press, October 1989.

10. S. Haridi and S. Janson. Kernel Andorra Prolog and its Computation Model. In

Proceedings of the Seventh International Conference on Logic Programming, pages

31-46. MIT Press, June 1990.

11. M. Hermenegildo and K. Greene. The &-prolog System: Exploiting Independent

And-Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

12. M. Hermenegildo and F. Rossi. On the Correctness and Eínciency of Independent

And-Parallelism in Logic Programs. In 1989 North American Conference on Logic

Programming, pages 369-390. MIT Press, October 1989.

13. M. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism. In 1990

International Conference on Logic Programming, pages 237-252. MIT Press, June

1990.

14. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism

in Logic Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal

of Logic Programming, 1993. To appear.

15. D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable Alias-

ing in Logic Programs. In 1989 North American Conference on Logic Programming.

MIT Press, October 1989.

16. S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.

In 1991 International Logic Programming Symposium, pages 167-183. MIT Press,

1991.

17. G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Valúes of Pro-

gram Variables by means of Abstract Interpretation. Journal of Logic Program-

ming, 13(2 and 3):205-258, July 1992.

18. K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence

Information at Compile-Time Through Abstract Interpretation. In 1989 North

American Conference on Logic Programming, pages 166-189. MIT Press, October

1989.

19. K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods for

Automatic Compile-time Parallelization of Logic Programs for Independent And-

parallelism. In 1990 International Conference on Logic Programming, pages 2 2 1 -

237. MIT Press, June 1990.

20. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and

Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna-

tional Conference on Logic Programming, pages 49-63. MIT Press, June 1991.

21. B. Ramkumar and L. V. Kale. Compiled Execution of the Reduce-OR Process

Model on Multiprocessors. In 1989 North American Conference on Logic Program-

ming, pages 313-331. MIT Press, October 1989.

22. T. Sato and H. Tamaki. Enumeration of Success Pat terns in Logic Programs.

Theoretical Computer Science, 34:227-240, 1984.

23. K. Shen. Studies in And/Or Parallelism in Prolog. PhD thesis, U. of Cambridge,

1992.

24. H. Sondergaard. An application of abstract interpretation of logic programs: occur

check reduction. In European Symposium on Programming, LNCS 123, pages 327-

338. Springer-Verlag, 1986.

25. R. Sundarajan. An Abstract Interpretation Scheme for Groundness, Freeness, and

Sharing Analysis of Logic Programs. Technical Report CIS-TR-91-06, U. of Oregon,

Eugene, Oregon 97403, October 1991.

26. D.H.D. Warren. The Extended Andorra Model with Implicit Control. In Sverker

Jansson, editor, Parallel Logic Programming Workshop, Box 1263, S-163 13 Spanga,

SWEDEN, June 1990. SICS.

27. H. Westphal and P. Robert. The PEPSys Model: Combining Backtracking, AND-

and OR- Parallelism. In Symp. of Logic Prog., pages 436-448, August 1987.

