
Extracting Patterns and Relations

from the World Wide Web

Sergey Brin

Computer Science Department

Stanford University

sergey@cs.stanford.edu

Abstract. The World Wide Web is a vast resource for information.

At the same time it is extremely distributed. A particular type of data

such as restaurant lists may be scattered across thousands of independent

information sources in many di�erent formats. In this paper, we consider

the problem of extracting a relation for such a data type from all of these

sources automatically. We present a technique which exploits the duality

between sets of patterns and relations to grow the target relation starting

from a small sample. To test our technique we use it to extract a relation

of (author,title) pairs from the World Wide Web.

1 Introduction

The World Wide Web provides a vast source of information of almost all types,
ranging from DNA databases to resumes to lists of favorite restaurants. However,
this information is often scattered among many web servers and hosts, using
many di�erent formats. If these chunks of information could be extracted from
the World Wide Web and integrated into a structured form, they would form an
unprecedented source of information. It would include the largest international
directory of people, the largest and most diverse databases of products, the
greatest bibliography of academic works, and many other useful resources.

There has been considerable work on integrating a number of information
sources using specially coded wrappers or �lters [Tsi,MOS97]. However, these
can be time-consuming to create and are usually used for tens, not thousands of
sources. In this paper, we address the problem of extracting a relation from the
thousands of sources that may hold pieces of the relation on the World Wide
Web. Our goal is to discover information sources and to extract the relevant in-
formation from them either entirely automatically, or with very minimal human
intervention.

In this paper, we consider the problem of extracting a relation of books {
(author,title) pairs from the Web. Intuitively, our solution works as follows. We
begin with a small seed set of (author, title) pairs (in tests we used a set of just
�ve books). Then we �nd all occurrences of those books on the Web. From these
occurrences we recognise patterns for the citations of books. Then we search the
Web for these patterns and �nd new books. We can then take these books and

�nd all their occurrences and from those generate more patterns. We can use
these new patterns to �nd more books, and so forth. Eventually, we will obtain
a large list of books and patterns for �nding them.

2 The Duality of Patterns and Relations

The method we propose is called DIPRE - Dual Iterative Pattern Relation Ex-
pansion. It relies on a duality between patterns and relations which we explain
below.

2.1 The Problem

Here we de�ne our problem more formally:

Let D be a large database of unstructured information such as the World
Wide Web. Let R = r1; :::; rn be the target relation. Every tuple, t, of R occurs
in one or more times in D. Every such occurrence consists of all the �elds of t,
represented as strings, occurring in close proximity to each other in D (in the
case of the Web, this means all the �elds are near each other, on the same Web
page).

In the test problem we examine in this paper, the target relation R is the
set of books { (author, title) pairs that occur on the Web. Clearly, this is not
well de�ned. However, given a potential author and title and where they are
mentioned on the Web, a human can generally tell whether this is a legitimate
book.

If we compute an approximation, R0 of R then the coverage is jR
0
\Rj

jRj
and the

error rate is
jR

0
�Rj

jR0j
. Our goal is to maximize coverage and minimize the error

rate. However, a low error rate is much more critical than high coverage. Given a
su�ciently large database, D, a recall of just 20% may be acceptable. However,
an error rate over 10% would likely be useless for many applications.

Typically, we cannot actually compute R. Therefore, we cannot not know the
precise values of coverage and error rate. However, we can sample the error rate
by having a user check random elements of R0. Coverage is much more di�cult
to estimate.

2.2 Patterns

Intuitively, a pattern matches one particular format of occurrences of tuples of
the target relation. Ideally the pattern is speci�c enough not to match any tuples
that should not be in the relation, however, in practice a few false positives may
occur. Patterns may have various representations. In our work we used a very
limited class of regular expressions. More formally:

Let p be a pattern. Then MD(p) is the set of tuples that match p in D and
jpjD is the number of elements in MD(p). Then the coverage of p,CD(p;R) =
jMD(p) \Rj=jRj and the error rate of p is ED(p;R) = jMD(p)�Rj=jMD(p)j.

For a set of patterns, P = p1; :::; pk, we de�ne MD(P) =
S
p2P

MD(p). We
extend CD(P;R) and ED(P;R) analogously. Alternative de�nitions of MD(P)
may require a tuple to match multiple patterns (see Section 6).

2.3 Pattern Relation Duality

An important observation is that given a set of patterns, P with high coverage
and low error rate, we can construct a very good approximation to R simply
by �nding all matches to all the patterns. Thus, given a good set of patterns,
we can build a good set of tuples. However, we also wish to have the converse
property - given a good set of tuples, we can build a good set of patterns. We can
do this by �nding all occurrences of the tuples in D and discovering similarities
in the occurrences. The combination of the ability to �nd tuples from patterns
and patterns from tuples gives us great power and is the basis for the technique
we propose in this paper.

3 Dual Iterative Pattern Relation Extraction

Dual Iterative Pattern Relation Extraction - DIPRE is a technique for extracting
relations which makes use of pattern-relation duality. It works as follows:

1. R0 Sample
Start with a small sample, R0 of the target relation. This sample is given by
the user and can be very small. In our tests, we used a list of �ve books with
authors.

2. O FindOccurrences(R0; D)
Then, �nd all occurrences of tuples of R0 inD. In our experiments, these were
nearby occurrences of the author and the title of a book in text. Along with
the tuple found, keep the context of every occurrence (url and surrounding
text).

3. P GenPatterns(O)
Generate patterns based on the set of occurrences. This is the tricky part
of the algorithm. Roughly speaking, this routine must generate patterns for
sets of occurrences with similar context. The patterns need to have a low
error rate, so it is important that they are not overly general. The higher
the coverage of the patterns the better. However, a low coverage can be
compensated for with a larger database.

4. R0 MD(P). Search the database for tuples matching any of the patterns.
5. If R0 is large enough, return. Else go to step 2.

3.1 Controlling Expansion

The above process is not necessarily very stable and may stray away from R. In
particular, several bogus tuples in MD(P) can lead to several bogus patterns in
P in the next iteration. This in turn can cause a whole slew of bogus tuples. For

this reason the GenPatterns routine must be careful to minimize the amount
of damage caused by a potential bogus tuple (or several small tuples). Another
measure of safety is to de�ne MD(P) more stringently so as to require tuples
to match multiple patterns in P . This second measure has not been necessary
in the tests we have performed but may be necessary in future tests. Finally,
various threshholds may need to
uctuate as the relation expands.

4 Finding Authors and Titles

For our experiments we chose to compute a relation of (Author,Title) pairs from
the World Wide Web. This problem lends itself particularly well to DIPRE
because there are a number of well-known books which are listed on many web
sites. Many of the web sites conform to a reasonably uniform format across the
site.

4.1 Patterns for Books

In order to use DIPRE to �nd books, it is necessary to de�ne what patterns
consist of. The de�nition of a pattern largely determines the success of DIPRE.
However, for our tests we used a very simple de�nition of a pattern. It requires
further investigation to determine whether more sophisticated de�nitions of pat-
terns work better.

We de�ned a pattern as a �ve-tuple: (order, urlpre�x, pre�x, middle, su�x)

where order is a boolean value and the other attributes are strings. If order is
true, an (author,title) pair matches the pattern if there is a document in the
collection (the WWW) with a URL which matches urlprefix* and which con-
tains text that matches the regular expression:
prefix, author, middle, title, suffix

The author is restricted to:
[A-Z][A-Za-z .,&]

5;30
[A-Za-z.]

The title is restricted to:
[A-Z0-9][A-Za-z0-9 .,:'#!?;&]

4;45
[A-Za-z0-9?!]

If order is false, then the title and author are switched.

4.2 Occurrences

We also have to de�ne how an occurrence is structured since it should have a
correspondance to the de�nition of a pattern. An occurrence of an (author,title)

pair consists of a seven-tuple:
(author, title, order, url, pre�x, middle, su�x)

The order corresponds to the order the title and the author occurred in the text.
The url is the URL of the document they occurred on. The pre�x consists of the
m characters (in tests m was 10) preceding the author (or title if the title was

�rst). The middle is the text between the author and title and the su�x consists
of the m characters following the title (or author).1

4.3 Generating Patterns for Books

An important component of the DIPRE procedure is the GenPatterns routine
which takes a set of occurrences of books and converts them into a list of patterns.
This is a nontrivial problem and there is the entire �eld of pattern recognition
devoted to solving the general version of this problem. For our purposes, however,
we use a simple set of heuristics for generating patterns from occurrences. As
long as there are few false positives (patterns that generate nonbooks) this is
su�cient. Each pattern need only have very small coverage since the web is
vast and there are many sources of information so the total coverage of all the
patterns can still be substantial.

Suppose we are given a set of occurrences and we wish to construct a speci�c
a pattern as possible that matches all of them. We can do this as follows:

1. Verify that the order and middle of all the occurrences is the same. If not, it
is not possible to generate a pattern to match them all. Set outpattern.order
and outpattern.middle to order and middle respectively.

2. Find the longest matching pre�x of all the urls. Set outpattern.urlpre�x to
that pre�x.

3. Set outpattern.pre�x to the longest matching su�x of the pre�x's of the
occurrences.

4. Set outpattern.su�x to the longest matching pre�x of the su�x's of the
occurrences.

We denote this routine GenOnePattern(O).

Pattern Speci�city A pattern generated like the above can be too general or
too speci�c. We are not concerned about it being too speci�c since there will be
many patterns generated and combined there will be many books. However, the

pattern may be too general and may produce many nonbooks.

To combat this problem we attempt to measure the speci�city of the pattern.
The speci�city of a pattern p roughly corresponds to�log(P (X 2MD(p))) where
X is some random variable distributed uniformly over the domain of tuples of
R.2 For quick computation, we used the following formula for the speci�city of
a pattern (jsj denotes the length of s):
speci�city(p) = jp:middlejjp:urlpre�xjjp:pre�xjjp:su�xj

1 The pre�x and su�x could actually be less than m characters if the line ends or

starts close to the occurrence but this is a restriction of the current implementation

and it is unclear whether it has a positive or negative e�ect.
2 If the domain is in�nite like the space of all strings, the uniform distribution may

not be sensible and a di�erent distribution should be used.

We reject any patterns with too low a speci�city so that overly general pat-
terns aren't generated. More speci�cally, we insist that speci�city(p)n > t where
n is the number of books with occurrences supporting the pattern p and t is a
threshhold. This ensures that all the strings of a pattern are nonempty (other-
wise the speci�city is zero). Also we require that n > 1 since basing a pattern
on one example is very error-prone.

Algorithm for Generating Patterns Here, we present the algorithm for Gen-
Patterns(O). It takes advantage of the algorithm GenOnePattern(O) introduced
in Section 4.3.

1. Group all occurrences o in O by order and middle. Let the resulting groups
be O1; :::Ok.

2. For each group Oi, p GenOnePattern(Oi). If p meets the speci�city re-
quirements then output p. Otherwise:
{ If all o in Oi have the same URL then reject Oi.
{ Else, separate the occurrences o in Oi into subgroups grouped by the
character in their urls which is one past p.urlpre�x. Repeat the procedure
in step 2 for these subgroups.

This routine uses a simple further subdivision based on the url when the
pattern generated is not su�ciently speci�c. One can also imagine using the
pre�x or the su�x.

We have described a simple technique for generating patterns from lists of

occurrences books. One can imagine far more sophisticated techniques and this is
the subject of further research. However, as is indicated by the results (Section 5)
even this simple scheme works well.

4.4 Performance Issues

There are two very demanding tasks DIPRE - �nding occurrences of books given
a long list of books and �nding pattern matches given a list of patterns. Both of
these operation must take place over a very large database of Web documents.

For the �rst task, �nding occurrences of books, we �rst pass the data through
two fgrep �lters. One only passes through lines that contained a valid author and
the other only passes through lines that contained a valid title. After this it is the
task of a program written in Python to actually check that there are matching
authors and titles in the line, identify them and produce occurrences as output.
Several alternative approaches involving large regular expressions in Flex and
in Python were attempted for this purpose but they quickly exceeded various
internal bounds.

For the second task, we use just a Python program. Every pattern is trans-
lated into a pair of regular expressions, one for the URL, and one for the actual
occurrence. Every URL is �rst tested to see which patterns apply to it. Then
the program tests every line for the relevant regular expressions. This approach
is quite slow and needs to be improved. Future versions are likely to use Flex or

the rex C library. This task can be made somewhat easier by targeting just the
URL's which match the patterns and we made some attempt to do this. How-
ever, the data is not structured to make that completely trivial and we wish the
techniques we develop to be general enough to be able to handle no restrictions
on URL's.

The generation of patterns from occurrences is not much of a performance
issue at this point in time because there are only thousands of occurrences gen-
erated. As larger tests are run this will become more important. Currently, the
occurrences are sorted using gsort by order and middle. Then a Python pro-
gram reads through the resulting list and generates patterns as described in
Section 4.3.

5 Experiments

While the experiments performed so far have been very limited, due to time
constraints they have produced very positive results. Many more experiments
are in progress.

5.1 Web Data Used in Experiments

For data we used a repository of 24 million web pages totalling 147 gigabytes.
This data is part of the Stanford WebBase and is used for the Google search
engine [BP] and other research projects. As a part of the search engine, we have
built an inverted index of the entire repository.

The repository spans many disks and several machines. It takes a considerable
amount of time to make just one pass over the data even without doing any
substantial processing. Therefore, in these we only made passes over subsets of
the repository on any given iteration.

An important note for this project is that the repository contains almost no
web pages from Amazon [Ama]. This is because their automatically generated
urls make crawling di�cult.

5.2 Pattern Relation Expansion

Isaac Asimov The Robots of Dawn

David Brin3 Startide Rising

James Gleick Chaos: Making a New Science

Charles Dickens Great Expectations

William Shakespeare The Comedy of Errors

Fig. 1. Initial sample of books.

URL Pattern Text Pattern

www.sff.net/locus/c.* title by author (

dns.city-net.com/~lmann/awards/hugos/1984.html <i>title</i> by author (

dolphin.upenn.edu/~dcummins/texts/sf-award.htm author || title || (

Fig. 2. Patterns found in �rst iteration.

We started the experiment with just 5 books (see Figure 1). These produced
199 occurrences and generated 3 patterns (see Figure 2). Interestingly, only the
�rst two of the �ve books produced the patterns because they were both sci-
ence �ction books. A run of these patterns over matching URL's produced 4047
unique (author,title) pairs. They were mostly science �ction but there were some
exceptions. (See Figure 3.

H. D. Everett The Death-Mask and Other Ghosts

H. G. Wells First Men in the Moon

H. G. Wells Science Fiction: Volume 2

H. G. Wells The First Men in the Moon

H. G. Wells The Invisible Man

H. G. Wells The Island of Dr. Moreau

H. G. Wells The Science Fiction Volume 1

H. G. Wells The Shape of Things to Come: The Ultimate Revolution

H. G. Wells The Time Machine

H. G. Wells The War of the Worlds

H. G. Wells When the Sleeper Wakes

H. M. Hoover Journey Through the Empty

H. P. Lovecraft & August Derleth The Lurker at the Threshold

H. P. Lovecraft At the Mountains of Madness and Other Tales of Terror

H. P. Lovecraft The Case of Charles Dexter Ward

H. P. Lovecraft The Doom That Came to Sarnath and Other Stories

Fig. 3. Sample of books found in �rst iteration.

A search through roughly 5 million web pages found 3972 occurrences of
these books. This number was something of a disappointment since it was not
a large blowup as had happened in the �rst iteration. However, it would have
taken at least a couple of days to run over the entire repository so we did not
attempt to generate more. These occurrences produced 105 patterns, 24 of which
had url pre�xes which were not complete urls. A pass over a couple million urls
produced 9369 unique (author, title) pairs. Unfortunately, there were some bogus
books among these. In particular, 242 of them were legitimate titles but had an
author of \Conclusion". We removed these from the list. This was the only
manual intervention through the whole process. In future experiments, it would

be interesting to see whether leaving these in would produce an extraordinary
amount of junk.

For the �nal iteration, we chose to use the subset of the repository which con-
tained the work books. This consisted of roughly 156,000 documents. Scanning
for the 9127 remaining books produced 9938 occurrences. These in turn gen-
erated 346 patterns. Scanning over the same set of documents produced 15257
unique books with very little bogus data. (See Figure 4)

This experiment is ongoing and hopefully, a larger list of books will be gen-
erated soon. The current one is available online [Bri].

5.3 Quality of Results

To analyse the quality of the results, we picked twenty random books out of
the list and attempted to verify that they were actual books by searching on
Amazon [Ama], the Visa Shopping Guide for books [Vis], the Stanford online
library catalog, and the Web.4 As a measure of the quality of the results, 19 of
the 20 were all bona�de books. The remaining book was actually an article -
\Why I Voted for a User Car", by Andrew Tobias.

The big surprise was that a number of the books were not found in some or
all of the sources except for the Web. Some of these books were online books;
some were obscure or out of print; some simply were not listed on some sites
for no apparent reason. In total, 5 of the 20 books were not on Amazon which
claims to have a catalog of 2.5 million books.

Other than the article mentioned above, there are a few visible problems
with the data. Some books are mentioned several times due to small di�erences
such as capitalization, spacing, how the author was listed (for example \E.R.
Burroughs" versus \Edgar Rice Burroughs"). Fortunately, however, authors are
quite particular about how their name is listed and these duplications are limited.
In several cases, some information was appended to the author's name such as
publication date.

6 Conclusions

Our general goal is to be able to extract structured data from the entire World
Wide Web by leveraging on its vastness. DIPRE has proven to be a remarkable
tool in the simple example of �nding lists of books. It started with a sample
set of 5 books and expanded it to a relatively high quality list of over 15,000
books with very minimal human intervention. The same tool may be applied
to a number of other domains such as movies, music, restaurants, and so forth.
A more sophisticated version of this tool is likely to be able to extract people
directories, product catalogs, and more.

4 Unfortunately, the Library of Congress search system was down at the time of these

tests.

Henry James The Europeans

Henry James The Golden Bowl

Henry James The Portrait of a Lady

Henry James The Turn of the Screw

Henry James Turn of the Screw

Henry John Coke Tracks of a Rolling Stone

Henry K. Rowe Landmarks in Christian History

Henry Kisor Zephyr

Henry Lawson In the Days When the World Was Wide

Henry Longfellow The Song of Hiawatha

Henry Miller Tropic of Cancer

Henry Petroski Invention On Design

Henry Petroski The Evolution of Useful Things

Henry Roth Call It Sleep

Henry Sumner Maine Ancient Law

Henry Tuckerman, Lindsay, Phila Characteristics of Literature

Henry Van Dyke The Blue Flower

Henry Van Dyke, Scrib Days O�

Henry Van Loon Life and Times of Pieter Stuyvesant

Henry Wadsworth Longfellow Paul Revere's Ride

Henry Wadsworth Longfellow Evangeline

Henry Wadsworth Longfellow The Song of Hiawatha

Herbert Donald Lincoln

Herbert M. Hart Old Forts of the Northwest

Herbert M. Mason, Jr The Lafayette Escadrille

Herbert R. Lottman Jules Verne: An Exploratory Biography

Herbert Spencer The Man Versus the State

Herman Daly For the Common Good

Herman Daly Valuing the Earth

Herman E. Kittredge Ingersoll: A Biographical Appreciation

Herman Haken Principles of Brain Functioning

Herman Hesse Demian

Herman Hesse Siddhartha

Herman Hesse Sidharta

Herman Melville Bartleby, the Scrivener

Herman Melville Billy Budd

Herman Melville Billy Budd

Herman Melville Moby Dick

Herman Melville The Con�dence Man

Herman Melville The Encantadas, or Enchanted Isles

Herman Melville Typee: A Peep at Polynesian Life

Herman Weiss Sunset Detectives

Herman Wouk War And Remembrance

Hermann Hesse Klingsor's Last Summer

Hermann Hesse Knulp

Hermann Hesse Rosshalde

Hermann Hesse Strange News From Another Star

Herodotus Histories

Herodotus The Histories

Herodotus The History of Herodotus

Herschel Hobbs Pastor's Manual

Hetschel First Stage: Moon

Hiaasen Stormy Weather

Hilaire Surivals and New Arrivals

Hilaire The Great Heresies

Hilary Bailey Cassandra: Princess of Troy

Hilary Norman The Key to Susanna

Hilbert Schenck Chronosequence

Hilbert Schenck The Battle of the Abaco Reefs

Hilda Conkling Poems by a Little Girl

Hilda Hughes Shudders

Hilda Hughes When Churchyards Yawn

Hillerman A Thief of Time

Hillerman Skinwalkers

Hillerman Talking God

Hiram Corson Introduction to Browning

Hjalmar Hjorth Boyesen Boyhood in Norway

Hjalmar Hjorth Boysen Tales From Two Hemispheres

Fig. 4. Sample of books in the �nal list.

6.1 Scalability and Steady State

There are several challenges to the scalability of this method. One is the per-
formance required to scan for large numbers of patterns and tuples over a huge
repository. Improvements in the underlying algorithms and implementation are
likely to solve this problem in the very near future.

A potentially more di�cult obstacle is whether DIPRE can be kept from
diverging from the target as it expands the relation. For example, since it really
used only the two science �ction books which were in the seed sample, why did
it not produce a large list of science �ction books. Clearly, it gravitated to a
compilation of all books and even a few scatterred articles managed to enter the
relation. Keeping this e�ect under control as the relation expands is nontrivial
but there are several possibilities.

Connection to Singular Value Decomposition One possibility is to rede-
�ne of MD(P) to require multiple patterns to match a tuple. A more extreme
version of this is to assign a weight to every tuple and pattern. A matching tuple
is assigned a weight based on the weights of the patterns it matches. A generated
pattern is assigned a weight based on the weights of the tuples which match it. If
this is done linearly, this technique breaks down to a singular value decomposi-
tion of the tuple-pattern matrix (multiplied by its transpose). This is analogous
to Latent Semantic Indexing [DDF+90] which is done on the document-word
matrix. In this case, the eventual steady state is the dominant eigenvector. Un-
fortunately, this is independent of the initial sample which is clearly not desirable.
Nonetheless, the relationship to LSI is compelling and bears further investiga-
tion.

The independence of the steady state from the initial state above may also be
a problem even without the use of weights. There are several possible solutions.
One is to run only through a limited number of iterations like we demonstrated
in this paper. Another solution is to make sure that the transformation of tuples
to patterns to tuples is nonlinear and has some local steady states which depend
on the initial state. This can be accomplished through the use of the initial

sample R0 in the computation of GenPatterns. In this case, the user may also
provide an �R0, a list of counterexamples.

6.2 Implications of Automatic Extraction

One of the most surprising results of this experiment was �nding books which
were not listed in major online sources such as the book \Disbanded" by Douglas
Clark [Cla] which is published online or \The Young Gardeners' Kalendar" by
Dollie Radford [Rad04] an obscure work published in 1904. If the book list can
be expanded and if almost all books listed in online sources can be extracted,
the resulting list may be more complete than any existing book database. The
generated list would be the product of thousands of small online sources as

opposed to current book databases which are the products of a few large infor-
mation sources. Such a change in information
ow can have important social
rami�cations.

References

[Ama] Amazon home page. http://www.amazon.com.

[BP] Sergey Brin and Larry Page. Google search engine. http://google.

stanford.edu.

[Bri] Sergey Brin. List of books. http://www-db.stanford.edu/~sergey/

booklist.html.

[Cla] Douglas Clark. Disbanded. Benjamin Press, 69 Hillcrest Drive, Bath Ba2

1HD, UK. http://www.bath.ac.uk/~exxdgdc/poetry/library/di1.html.

[DDF+90] Scott Deerwester, Susan Dumais, Goerge Furnas, Thomas Landauer, and

Richard Harshman. Indexing by latent semantic analysis. Journal of the

American Society for Information Science, 41(6):391{407, 1990.

[MOS97] Workshop on management of semistructured data. http://www.research.

att.com/~suciu/workshop-papers.html, May 1997.

[Rad04] Dollie Radford. The Young Gardeners' Kalendar. Alexander Mor-

ing, Ltd., London, 1904. http://www.indiana.edu/~letrs/vwwp/radford/

kalendar.html.

[Tsi] Tsimmis home page. http://www-db.stanford.edu/tsimmis/tsimmis.

html.

[Vis] Visa shopping guide for books. http://shopguide.yahoo.com/shopguide/

books.html.

