
INFORMATICA, 2007, Vol. 18, No. 4, 511–534 511
© 2007 Institute of Mathematics and Informatics, Vilnius

Extracting Personalised Ontology from
Data-Intensive Web Application: an HTML
Forms-Based Reverse Engineering Approach

Sidi Mohamed BENSLIMANE, Mimoun MALKI
Computer Science Department, University of Sidi Bel Abbes
B.P 89 Sidi Bel Abbes, 22000 Algeria
e-mail: benslimane@univ-sba.dz, malki@univ-sba.dz

Mustapha Kamal RAHMOUNI
University of Oran
BP 1524 El Mnaouer, 31000, ORAN, Algeria
e-mail: rahmouni@mail.univ-oran.dz

Djamal BENSLIMANE
LIRIS Laboratory, University of Claude Bernard Lyon
8 Bld Niels Bohr, 69622, Villeurbanne Cedex, France
e-mail: djamal.benslimane@liris.cnrs.fr

Received: August 2005

Abstract. The advance of the Web has significantly and rapidly changed the way of information
organization, sharing and distribution. The next generation of the web, the semantic web, seeks
to make information more usable by machines by introducing a more rigorous structure based on
ontologies. In this context we try to propose a novel and integrated approach for a semi-automated
extraction of ontology-based semantic web from data-intensive web application and thus, make
the web content machine-understandable. Our approach is based on the idea that semantics can
be extracted by applying a reverse engineering technique on the structures and the instances of
HTML-forms which are the most convenient interface to communicate with relational databases
on the current data-intensive web application. This semantics is exploited to produce over several
steps, a personalised ontology.

Key words: semantic web, reverse engineering, ontology, HTML-forms, data-intensive web
application.

1. Introduction

The actual web has been moving away from static, fixed web pages to dynamically-
generated at the time of user request. This kind of web site is called data-intensive web
site (Fraternali, 1999), and usually realized using relational databases (i.e., e-commerce
application). Data-intensive web pages are characterized by an automated update of the

512 S.M. Benslimane et al.

web content and a simplified maintenance of the web design (Stojanovic et al., 2002).
Nevertheless they suffer from two limitations. First, they form a hidden web since its
content is not easily accessible to any automatic web content processing tools including
the search engine indexing robots. Second the content of the database-driven web pages
presented by using HTML is not machine-understandable. The simplicity and prolifera-
tion of the World Wide Web has taken the availability of information to an unprecedented
level. The next generation of the web, the semantic web, seeks to make information more
usable by machines by introducing a more rigorous structure based on ontologies, and
thus resolve the second problem of data-intensive Web pages. Ontology is one of the most
important concepts in knowledge representation. It can be generally defined as shared
formal conceptualization of particular domain between members of a community of in-
terest, which help them exchange information (Gruber, 1995). Lately, ontologies have
become the focus for research in several other areas, including knowledge engineering
and management, information retrieval and integration, agent systems, the semantic web,
and e-commerce. The availability of formal ontologies is crucial for the success of the se-
mantic web. Nevertheless building ontologies is so costly that it hampers the progress of
the semantic web activity. Manual construction of ontologies (Erdmann et al., 2000; Volz
et al., 2004) is a difficult, time-consuming and error-prone task and easily causes a knowl-
edge acquisition bottleneck. Fully automated tools are still at the very early stage to be
implemented. Therefore, the use of a semi-automatic ontologies extraction is seen as
the practical short terms solution which allows knowledge extraction from data-intensive
web applications. Reverse engineering technique appears as an interesting solution to
reach this objective. It’s defined as a process of analyzing a “legacy” system to identify
all the system’s components and the relationships between them (Chiang et al., 1994).

However, because of the novelty of that area, there are few approaches that consider
ontologies as the target for reverse engineering. These approaches usually require more
input information than is possible to provide in practice, as the complete information
about a relational database is usually unavailable, and make unrealistic assumptions about
the input. E.g., the relational database is in third normal form (3NF). As an attempt to
overcome these limitations, we propose in this paper a novel approach to reverse engi-
neering data-intensive web application into ontology-based semantic web.

This paper is organized as follows: in Section 2, we discuss some of the related works
in reverse engineering relational databases into ontologies. Section 3 explains the overall
reverse-engineering architecture and Section 4 details our proposed approach. Section 5
presents a portal prototype implementation of the ontology construction approach. Fi-
nally, Section 6 contains concluding remarks and suggests some future works.

2. Related Works

Several researches have been done on relational databases reverse engineering, suggest-
ing methods and rules for extracting entity-relationship and object models from relational
databases (Chiang et al., 1994; Behm et al., 1997; Malki et al., 2002). Recently, some

Extracting Personalised Ontology 513

approaches that consider ontologies as the target for reverse engineering have been pro-
posed. These approaches fall roughly into one of the five categories:

– Approaches based on an analysis of user queries: e.g., Kashyap’s approach
(Kashyap, 1999) builds an ontology based on an analysis of relational schema;
the ontology is then refined by user queries. However, this approach does not cre-
ate axioms, which are part of the ontology. Moreover, the semantic characteristics
of the database schema are not always analyzed.

– Approaches based on an analysis of relational schema: e.g., Stojanovic et al.’s ap-
proach (Stojanovic et al., 2002) provides a set of rules for mapping constructs in
the relational database to semantically equivalent constructs in the ontology. These
rules are based on an analysis of relations, keys and inclusion dependencies. Rubin
et al.’s approach (Rubin et al., 2002) proposes the automation of the process of fill-
ing the instances and their attributes’ values of an ontology using the data extracted
from external relational sources. This method uses a declarative interface between
the ontology and the data source, modelled in the ontology and implemented in
XML schema. This approach needs several components: ontology, XML schema,
and XML translator.

– Approaches based on an analysis of tuples: e.g., Astrova’s approach (Astrova,
2004) builds an ontology based on an analysis of relational schema. Since the
relational schema often has little explicit semantics (Noy and Klein, 2004), this
approach also analyzes tuples in the relational database to discover additional “hid-
den” semantics (e.g., inheritance). However, this approach is very time consuming
with regard to the number of tuples in a relational database.

– Approaches based on an analysis of HTML-table: e.g., Tijerino’s approach (Ti-
jerino et al., 2005) based on conceptual modeling extraction technique attempts to
understand a table’s structure and conceptual content, discover the constraints that
hold between concepts extracted from the table, match the recognized concepts
with ones from a more general specification of related concepts, and merge the
resulting structure with other similar knowledge representations. However, this ap-
proach requires auxiliary informations including dictionaries and lexical data (i.e.,
WordNet, Natural language parsers, and data frames library).

– Approaches based on an analysis of HTML-forms: e.g., Astrova’s approach (As-
trova and Stantic, 2005) constructs an ontology based on an analysis of HTML-
forms by analyzing the HTML-forms to extract a form model schema, transform-
ing the form model schema into ontology and creating ontological instances from
data contained in the pages. The main drawback of this approach is that it does not
offer any way to identify inheritance relationship.

3. Our Approach

To overcome the drawbacks of the approaches described above, we propose a novel ap-
proach for reverse engineering data-intensive web sites into ontology-based semantic

514 S.M. Benslimane et al.

web. Our approach is based on the idea that semantics of the relational database can be
extracted by analyzing the related HTML pages. This semantics is augmented with those
captured in the relational schema to build ontology. Unlike (Benslimane et al., 2005)
that uses Frame Logic, as an ontology description language, this paper adopts the latest
standard recommended by W3C, namely OWL (Ontology Web Language).

3.1. Motivations

The following arguments motivate why we adopted HTML-forms to start with the process
of generating an ontology:

– HTML-forms are convenient interfaces to enter, change, and view data on Web
pages. Therefore, studying and analyzing HTML-forms can reveal important in-
formation such as mandatory data and range of data.

– HTML-forms are a structured collection of fields that are used to communicate
with a relational database. While data in a form are usually structured, a relational
database’s structure is often not available in advance (Choobineh et al., 1992).

– HTML-forms partially represent a logical structure of the relational database,
rather than its physical structure (i.e., a relational schema). Indeed, they often pro-
vide a user-friendly interface to the relational database. In the back-end of this
interface, a relational schema is probably not well-designed, not optimized, and
even not normalized (Muller, 1999).

– Field names in HTML-forms are usually more explicit and meaningful than the
corresponding relations’ and attributes’ names in a relational schema.

– HTML-forms are normally associated with instructions that provide additional in-
formation on how data are structured and managed.

3.2. Proposed Architecture

This section describes the ontology building framework. It gives a description of the
architecture components (see Fig. 1).

The Extraction Engine consists of tree sets of extraction rules. The first set of rules
analyses the HTML pages to identify constructs in the form model schema. The second
set of rules permits the extraction of a form XML schema from the constructs of the form
model schema, whereas the third set of rules derives the domain semantics by extracting
the relational sub-schemas of forms and their dependencies.

The Transformation Engine consists of two sets of transformation rules. The first set
of rules transforms the relational sub-schemas of forms into an UML class diagram. The
second set of rules translates the obtained diagram into OWL ontology.

The Migration Engine consists of a set of data migration rules responsible of the
creation of ontological instances from the relational tuples.

Extracting Personalised Ontology 515

Fig. 1. Ontology building framework.

4. Reverse Engineering Process

Our approach articulates around six steps performed by the six set of rules. We’ll use the
HTML pages in Fig. 2 to illustrate these steps. This displays a query result for booking
flight at British airlines company Web site1.

4.1. Analysis of HTML Pages Structure

The main goal of this phase is to understand the form meaning and explicit its structure
by analyzing HTML forms (both their structure and data they contain) to identify its
components and interrelationships and extract a form model schema.

4.1.1. The Form Model
A form model schema was originally proposed, suitable for databases reverse engineering
task (Malki et al., 1999). The model (see Fig. 3) allows abstracting any database form to
make explicit its components, fields, and their interrelationships. This model is similar but
not identical to the models presented in (Choobineh et al., 1992). Basically, this model
consists of:

1http://www.BritishAiways.com

516 S.M. Benslimane et al.

Fig. 2. HTML pages along with HTML-form and HTML-table.

Form type: is a structured collection of empty fields that are formatted in a way that
permits communication with the database. A particular representation of a form type is
called form template that suggests three basic components namely title, captions, and
entries.

Structural units (SUs): correspond to objects that closely group related fields in a
form.

Form instance: corresponds to an occurrence of a form type. This is the extensional
part that is obtained when a form template is filled in with data. Fig. 2 shows two instances
of Booking and flight itinerary forms type.

Form field: consists of a caption and its associated entry. Each entry is generally
linked to a table’s name as per the table names in the underling database. The values that a
form field displays/receives are provided by (or stored in) the linked-attribute. Some form
fields are computed; others can be simply not linked to the relational database. We distin-
guish three types of fields: filling fields (e.g., TEXT, CHECKBOX, RADIO, TEXTAREA
attributes); selection fields (e.g., SELECT attribute); and link fields (HREF attribute).

Underlying source: corresponds to the structure of the relational database (i.e., a re-
lational schema) in terms of relations and attributes along with their data types.

Relationship: is a connection between SUs. There are two kinds of relationship:
Membership (belongs to) and Reference (refers to). Membership is one-to-many or one-
to-one relationship between two SU types. One of the SUs (always the one-side) is called
the parent SU, the other (many-side or sometimes also one-side) is called the child SU.
An occurrence of a relationship consists of one SU occurrence of the parent and one or
several occurrences of the child SU. Reference is a many-to-many relationship between
SU types. A SU can refer to one (maybe itself) or to many other SUs.

Constraint: is a rule that defines which data validity for a given form field. For in-

Extracting Personalised Ontology 517

Fig. 3. Extended E/R schema of a form.

stance, a cardinality constraint specifies for an association relationship the number of
instances that a SU can participate in.

4.1.2. Form Schema Identification Rules
The following rules summarize the mechanisms that permit identifying a form model’s
constructs using a relational schema as input. These rules populate the structure detection
engine of Fig. 1.

Rule i1: Form instance identification. In order to differentiate the different contents in
an HTML document, Web pages are usually split into multiple areas. We refine these
contents by removing stop words and useless tags like and <i> and by preserving
the following sections:

– the section between open and closing <form> tags that are used to access and
update the relational database;

– the section between open and closing (<table>,<td>,<tr>,,) tags
that are returned following user query execution. This represents a particular view
of the relational database.

Rule i2: Linked attributes identification. Linked attributes are identified as follows:

– In an HTML-form, the value of attribute name in <Input>, <Select>, and
<Textarea> tags is associated with the text segment that is located immediately
ahead these tags. This attribute’s name will be used in the enrichment process.

– In an HTML-table, the value of the structural tags <thead> and <th> (Tijerino et
al., 2005).

If the linked attributes are not separated with the structural tags (merged data), we
use visual cues (Yang and Zhang, 2001; Wang and Lochovsky, 2003). This approach

518 S.M. Benslimane et al.

typically means that there will be some separators (e.g., blank areas) that help users split
the merged data.

Rule i3: Structural unit identification. To determine the logical structure of an HTML
page (i.e., meaning of the page as understood by users), we use visual cues (Yang and
Zhang, 2001). E.g., users might consider FirstName, LastName, and Age in Fig. 2 as
one entity (Passenger).

Rule i4: Relationship identification. Relationships can be established when two SUs
are included in the same HTML page. Since a relational database’s content does not
reside in a single HTML page, extra relationships could be identified using hyperlinks.
Hyperlinks are interpreted in many cases as semantic relations between SUs. By clicking
on a hyperlink in one structural unit (at some page), we can go to another structural unit
(possibly at another page).

Rule i5: Constraint identification. In addition to an HTML page’s constructs, data are
analyzed to identify additional constraints. A data analysis includes a strategy of learning
by example, borrowed from machine learning techniques.

For example, in Fig. 2 we could identify a constraint NotNull on the linked attributes
DepartureCity and ArrivalCity.

4.2. Form XML-Schema Generation

When the structure of the form type is extracted, the corresponding XML-schema can
then be generated based on a set of translation rules.

Rule g1. Each SU in the form type is translated into a complexType element in the
corresponding XML schema.

EXAMPLE. SU Passenger becomes as follows:
<xsd:complexType name="passenger">...</xsd:complexType>

Rule g1 is recursively applied to all complex SU components.

Rule g2. Each form field in an SU is translated into a sub-element of the corresponding
complexType element. The primitive type of the element adopts the field type.

EXAMPLE. Field FirstName is translated into a string type:
<xsd:element name="firstname" type="xsd:string"/>

Rule g3. If an SU contains simple filling fields (e.g., TEXT tag), the corresponding
ComplexType element takes (minOccurs = ”1”) and (maxOccurs = ”1”) as occur-
rence.

Rule g4. If an SU contains multiple filling fields (e.g., MULTIPLE attribute), the corre-
sponding ComplexType element takes (maxOccurs = ” ∗ ”) as maximum occurrence.

Extracting Personalised Ontology 519

Table 1

XML schema of Booking Form

<?xml version="1.0"?>

<xsd:schema=xmlns:xsd="http://www.w3.org/2001/XMLSchema>

<xsd:complexType name="BookingForm">

<xsd:attribute name="class" type="xsd:integer"/>

<xsd:complexType name="Passenger" type=

"xsd: "PassengerID" maxOccurs="1"/>

<xsd:complexType name="City" type=

"xsd: "CityID" maxOccurs="1"/>

<xsd:complexType name="Date" type=

"xsd: "DateID" maxOccurs="1"/>

<xsd:complexType name="PassengerID">

<xsd:element name="FirstName" type="xsd:string"/>

<xsd:element name="LastName" type="xsd:string"/>

<xsd:element name="Age" type="xsd:integer"/>

<xsd:complexType/>

<xsd:complexType name="CityID">

<xsd:element name="LeavingFrom" type="xsd:string"/>

<xsd:element name="GoingTo" type="xsd:string"/>

<xsd:complexType/>

...

<xsd:complexType/>

<xsd:complexType/>

<xsd:schema/>

Rules g3 and g4 are recursively applied to the form fields of each SU.

While applying g1, g2, g3 and g4 rules to Booking form type structure, the obtained
XML-schema is given in Table 1.

4.3. Extraction of the Domain Semantics

The goal of this phase of extraction is to derive the relational sub-schemas of forms from
their hierarchical structure and their instances according to the physical schema of the
underlying database. First, the relations and their primary keys are respectively identi-
fied with regard to both structural units (nodes) of form and underlying database, then
the functional and inclusion dependencies are extracted through both their hierarchical
structure and instances.

4.3.1. Form Relations Extraction
The forms either permit the updating of relations in underlying database or represent a
view that is a joint of relations. Therefore, each field entry is generally linked to an at-
tribute of one relation in the underlying database. However, the identification of form

520 S.M. Benslimane et al.

relations and their primary keys respectively, consists of determining the equivalence
and/or the similarity between structural units (nodes) of hierarchical structure and rela-
tions in the underlying database. This is a basis point from a reverse engineering point of
view (Malki et al., 2002). A node of a form hierarchical structure may be either:

– equivalent to a relation in the underlying database, i.e., node and relation have a
same set of attributes;

– similar to a relation, i.e., its set of attributes is a subset of the attributes of the
relation;

– a set of relations, i.e., its set of attributes gathers several relations in the underlying
database.

In addition, for dependent nodes (or form relation), primary keys are formed by con-
catenating the primary key of its parent with its local primary key.

This process of identification is semi-automated because it requires the interaction
with the analyst to identify objects that do not verify proprieties of equivalence and simi-
larity.

While applying this process on the hierarchical structure of Booking form and the
physical relational schema of underlying database, we extract the following relational
sub-schemas:

City(CityID, CityName)

Passenger(PassengerID, FirstName, LastName, Age)

DepartureCity(DepartureCityID)

ArrivalCity(ArrivalCityID)

Date(DepartureDate)

From the Flight itinerary form, the following relational sub-schema is extracted:
DepartureHour(HourID, type)

ArrivalHour(HourID, type)

Plane(PlaneID, capacity)

Flight(FlightID, DepartureCityID, ArrivalCityID,

DepartureHourID, ArrivalHourID, PlaneID)

From the relationships between the hierarchical structure of Booking and Flight
itinerary forms, the following relational sub-schema is identified:

Book(PassengerID, FlightID, DepartureDate, Class).

4.3.2. Functional Dependencies Extraction
The extraction of functional dependencies from the extension of database has received
a great deal of attention (Anderson, 1994; Mannila and Raiha, 1994; Petit et al., 1995).
In our approach we use the algorithm introduced by (Malki et al., 2002) to reduce the
time for exacting functional dependencies by replacing database instances with a more
compact representation that is, the form instances.

While applying this algorithm on the sub-schema of Flight itinerary forms and their
instances, one finds the FDs:

PlaneID→ FlightID.

Extracting Personalised Ontology 521

4.3.3. Inclusion Dependencies Extraction
In our approach, we formulate possible inclusion dependencies between relations’ key of
relational sub-schema of form. The time of this process is more optimized with regard
to the other approaches (Petit et al., 1995; Chiang et al., 1994) because the possible
inclusion dependencies are verified by analyzing the form extensions which are more
compact representation with regard to the database extension.

In this algorithm, attributes of dependencies are the primary keys and foreign keys.
Thus, the time complexity is reduced to the test of the inclusion dependency on the form
instances. The set of the inclusion dependencies extracted is:

DepartureCity.DepartureCityID ≺≺ City.CityID

ArrivalCity.ArrivalCityID ≺≺ City.CityID

4.4. Transforming the Relational Sub-Schema of Form into Object-Oriented
Sub-Schema

The task of conceptual modelling plays a crucial role in the process of information sys-
tems development. Conceptual models translate and specify the main data requirements
of the user requirements in an abstract representation of selected semantics about some
aspects of a real-world domain. Systems analysts seek to capture and represent all rele-
vant problem domain entities and their relationships. In addition, conceptual modelling
languages and notations were introduced to represent conceptual models using a collec-
tion of modelling elements.

4.4.1. The Transformation Process
The transformation is usually a collection of mapping rules that replace constructs in the
form relational schema with (semantically equivalent) conceptual entities in the UML
class diagram (see Fig. 4). Our rules are similar to those used in (Malki et al., 2002)
to perform a transformation into an object oriented model. Basically, the process uses
the constructs generated from the precedent step as the main input (i.e., form relational
schema, functional dependency and inclusion dependency). It goes through four steps:

Fig. 4. Key aspects of UML class diagram.

522 S.M. Benslimane et al.

(1) Identification of classes, (2) Identification of binary association, (3) identification of
n-ary association, (4) identification of inheritance relationships.

This process is based on the classification of relations. Relation can be classified into
one of the three categories.

Base relation: if a relation is independent of any other relation in a form relation
schema.

EXAMPLE. Passenger(PassengerID, FirstName, LastName, Age)

Dependent relation: if a primary key of a relation depends on another relation’s pri-
mary key.

EXAMPLE. Book(PassengerID, FlightID, DepartureDate, Class)

Composite relation: if it is neither base nor dependent.

EXAMPLE. Flight(FlightID, DepartureCityID, ArrivalCityID,

DepartureHourID, ArrivalHourID)

Rule id1: Identification of object class. The general assumption is that each base relation
is mapped into an object class. These object classes have the same attributes as those con-
tained in the relations. The relation Passenger(PassengerID, FirstName, Last-

Name, Age) is translated to class shown if the Fig. 5.

Rule id2: Identification of binary association. The foreign keys of class-relation and
the corresponding functional dependencies identify a binary association between class-
relations. Therefore, this referential link is translated in binary association in the UML
class diagram. The target will be, in general, a role attribute typed by the other class.

While applying this transformation rule on the two class-relations Flight and
DepartureCity and their functional dependencies:

FlightID→ DepartureCityID,
we generate the following object schema (see Fig. 6).

Rule id3: Identification of association class. For every n-airy class-relation whose pri-
mary key is entirely composed of foreign keys, we create an association class between all
the classes corresponding to the class-relation that foreign keys refer to.

Fig. 5. UML class.

Extracting Personalised Ontology 523

Fig. 6. Binary UML association.

Fig. 7. N-ary UML association.

Fig. 8. Inheritance relationship.

The relation Book(PassengerID, FlightID, DepartureDate, Class) is trans-
lated into Association-class as show in Fig. 7.

Rule id4: Identification of inheritance relationships. Extracting inheritance relation-
ship from a relational schema usually requires behavioural information. Every pair of
relations (R1, R2) that have the same primary key (noted X) and the corresponding in-
clusion dependencies (i.e., R1.X ≺≺ R2.X) may be involved in an inheritance relation-
ship, i.e., R1 is-a R2.

In Fig. 8, the Relations City, DepartureCity and ArrivalCity have the same pri-
mary key and the corresponding inclusion dependencies:

DepartureCity.DepartureCityID ≺≺ City.CityID

ArrivalCity.ArrivalCityID ≺≺ City.CityID

Therefore City is a superclass and DepartureCity and ArrivalCity are a subclass.

524 S.M. Benslimane et al.

4.4.2. Integration of Object-Oriented Sub-Schemas
In the precedent phase of reverse engineering using forms as machine-analyzable source,
relational sub-schemas were transformed into object oriented sub-schemas. These object
sub-schemas will be merging into a global object-oriented schema that represents the
whole underlying database. However, we apply the techniques of integration schema.
We assume, in agreement with (Batini et al., 1986) that the integration schema process
consists in two phases: comparison and merging of schemas.

The comparison phase performs a parities comparison of objects (of the sub-schemas)
and finds possible objects pairs, which may be semantically similar with respect to some
proprieties, such as synonyms (name of attribute and class) of equal primary key attribute
and equivalent of classes. The merging phase generates an integrated schema from two
component schemas that have been compared. The intermediate results are analyzed and
restructured in order to eliminate the symmetrical and transitive relationship between
objects. For more details see (Malki et al., 2002).

Fig. 9 presents the integrated schema as an UML class diagram.

4.5. UML into OWL Mapping Rules

UML conceptual models can be translated into other ontology languages like RDFS,
DAML, OWL or even in to object oriented database systems. Some proposals for defining
this transformation have been addressed. Cranefield in (Cranefield, 2001) has proposed
mappings to transform UML ontology models in to RDF and to generate Java classes

Fig. 9. UML class diagram.

Extracting Personalised Ontology 525

from UML using XSLT. Baklawski (Baclawski et al., 2001) has presented some map-
pings for translating in between DAML and UML concepts and from UML to DAML.
Various approaches concerned with conversion between UML and OWL exist. These are
summarised by Falkovych et al. (2003), which addresses the problem of reusing knowl-
edge previously specified as UML in a form that allows it to be ’on the Web’ and can be
reasoned with.

The rules below briefly summarise the transformation rules used in the mapping be-
tween UML and OWL constructs.

Rule mp1. Each form field in an SU is translated into a sub-element of the corresponding
complexType element. The primitive type of the element adopts the field type.

EXAMPLE. <owl: class rdf: ID="Passenger"/>

Rule mp2. Both OWL and UML are based on classes. So, in order to translate the UML
class of Fig. 5, an OWL class is declared by assigning a name to the relevant type.

EXAMPLE. <owl: class rdf: ID="Passenger"/>

Rule mp3. By default a property is a binary relation between thing and thing. It comes
from two different sources in the UML class diagram:

– First, an instance of class ownedAttribute Property would translate as properties
whose domain is Class and whose range is the type of Property. The UML owne-
dAttribut instance would translate to owl : ObjectProperty if the type of Property
were a UML class, and owl : DatatypeProperty otherwise.
Table 2 show the translation of classes in Fig. 6.

– Second an instance of a binary UML association translates directly to an owl :
ObjectProperty.
The translation of the binary association of the Fig. 6 is given in Table 3.

Table 2

Classes translation

UML
class

Owned
Property

Type of
Owned

Property

OWL
equivalent

LeavingFrom FlightID Integer <owl:DatatypeProperty rdf:ID="FlightID">

<rdfs:domain rdf:resource="#Flight"/>

<rdfs:range rdf:resource="http://.../XMLSchema# integer"/>

</owl:DatatypeProperty>

DepartureCity DepartureCityID Integer <owl:DatatypeProperty rdf:ID="DepartureCityID">

<rdfs:domain rdf:resource="#DepartureCity>

<rdfs:range rdf:resource="http://.../XMLSchema# integer"/>

</owl:DatatypeProperty>

526 S.M. Benslimane et al.

Table 3

Binary association translation

UML
Association

Member 1
Property

Type

Member 2
Property

Type

OWL
equivalent

Flight FlightID Integer <owl:objectProperty rdf:ID="LeavingFrom">

<rdfs:domain rdf:resource="#Flight"/>

<rdfs:range rdf:resource="#DepartureCity"/>

</owl:objectProperty>

Rule mp4. N-ary relation among types T1 . . . Tn is formally equivalent to a set R of
identifiers together with N projection functions P1, . . . , Pn, where Pi: R → Ti. Thereby
N-ary UML associations are translated to OWL classes with bundles of binary functional
properties. For an N-ary UML association, any multiplicity associated with one of its
UML properties will apply to the OWL property translating the corresponding projection.

The N-ary association in Fig. 7 would be translated as shown in Table 4.

Rule mp5. In UML, a class can exist as a generalisation for one or more other classes.
The generalisation element is synonymous with the OWL : subClassOf construct.
The inheritance relationship in the Fig. 8 is translated as shown in Table 5.

Rule mp6. In OWL, a property when applied to a class can be constrained by cardinal-
ity restrictions on the domain giving the minimum (minCardinality) and maximum
(maxCardinality) number of instances which can participate in the relation. In UML
an association can have minimum and maximum cardinalities (multiplicity) specified for
any of its ends. So if a binary UML association has a multiplicity on a navigable end, the
corresponding OWL property will have the same multiplicity. If a binary UML associa-
tion has a multiplicity on its both ends, then the corresponding OWL property will be an
inverse pair, each having one of the multiplicity declarations.

4.6. Data Migration

Once the ontology is created, the process of data migration can start. The objective of this
task is the creation of ontological instances (that form a knowledge base) based on the tu-
ples of the relational database. According to the metadata-level mapping rules (e.g., con-
cepts, properties, restrictions), the tuples of the relation can be transferred to the instances
for data exchanging. The data migration process has to be performed in two phases based
on the following rules:

Rule m1. First, the instances are created. To each instance is assigned a unique identifier.
This translates all attributes, except for foreign-key attributes, which are not needed in
the meta-data.

Extracting Personalised Ontology 527

Table 4

OWL classes

<owl:Class rdf:ID="book">

<owl:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=" bookPassenger"/>

<owl:minCardinality rdf:datatype="xsd:nonNegativeInteger">1

</owl:minCardinality>

</owl:Restriction>

</owl:subClassOf>

<owl:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=" bookFlight"/>

<owl:minCardinality rdf:datatype="xsd:nonNegativeInteger">1

</owl:minCardinality>

</owl:Restriction>

</owl:subClassOf>

<owl:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=" bookDate"/>

<owl:minCardinality rdf:datatype="xsd:nonNegativeInteger">1

</owl:minCardinality>

</owl:Restriction>

</owl:subClassOf>

...

</owl:Class>

Table 5

OWL inheritance

<owl:class rdf:about="DepartureCity">

<owl:subClassOf rdf:resource="#City" />

</owl:class>

<owl:class rdf:about="ArrivalsCity">

<owl:subClassOf rdf:resource="#City" />

</owl:class>

Rule m2. Second, relations between instances are established using the information con-
tained in the foreign keys in the database tuples. This is accomplished using a mapping
function that maps keys to ontological identifiers.

Table 7, illustrates an example result of the data migration process from the relational
database instances of Table 6.

528 S.M. Benslimane et al.

5. Implementation

In this section, we present some experiments we performed to assess the effectiveness of
the proposed approach to semi-automatically build an OWL ontology from a relational
database using the related HTML-forms. The main purpose of the experiments is to evalu-
ate the effectiveness of the ontology development rules presented in the previous sections,
and to verify that the proposed approach can contribute to help users build ontologies.

Table 6

Relational database instances

Plane Company

PlaneID CompanyID Capacity CompanyID CompanyName

A330 1 150 1 Air Algeria

B767 2 200 2 Air France

Table 7

Ontology instances

<?xml version="1.0"?>

<rdf:RDF

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="Company"/>

<owl:Class rdf:ID="Plane"/>

...

<Company rdf:ID="Company1">

<CompanyId rdf:datatype="http://.../XMLSchema# int">1</CompanyId>

<CompanyName rdf:datatype="http://.../XMLSchema# string">

Air Algerie</CompanyName>

</Company>

<Plane rdf:ID="Plane1">

<capacity rdf:datatype="http://.../XMLSchema# int">150</capacity>

<PlaneId rdf:datatype="http://.../XMLSchema# string">A330</PlaneId>

<Possede rdf:resource="#Company1"/>

</Plane>

<Company rdf:ID="Company2">

<CompanyName rdf:datatype="http://.../XMLSchema# string">

Air France</CompanyName>

<CompanyId rdf:datatype="http://.../XMLSchema# int">2</CompanyId>

</Company>

...

</Plane>

</rdf:RDF>

Extracting Personalised Ontology 529

5.1. Prototype

A prototype is developed using Java (j2sdk 1.4.2) and Jena 2.1, and the Java API for ontol-
ogy development and processing. The prototype has been implemented in order to exper-
iment and verify that the proposed approach is doable. Our tool has a user-friendly GUI
(Fig. 10) to perform the ontology development process, and to produce an ontology stored
in an OWL file. The Web site URL, the relational schema, and other parameters such as
information for the database connection (e.g., JDBC driver, database URL), base URI
and ontology URI of the output OWL ontology are given in an input configuration file.

First, the HTML pages are parsed to detect the form’s structure and instances. It is
up to the user to validate the result. Next all the semantic behind the forms structure and
instances are extracted and used to construct the global UML class diagram describing the
Web application. The ontology transformation engine (Fig. 1) processes the UML class
diagram and generates the corresponding OWL ontology based on the mapping rules
previously described. The output ontology can be formalized in the following standard
formats: OWL, RDF/XML, RDF/XML-ABBREV, N3 and N-Triples.

5.2. Experimental Evaluation

In order to evaluate our approach, we performed two experiments on tourism domain.

Fig. 10. Snapshot of the ontology development tool.

530 S.M. Benslimane et al.

Table 8

Results from the ontology development process using an airline company Web site

OWL Constructs in Constructs Constructs Recall Precision

Ontology the tutorial extracted extracted Ratio Ratio

constructs ontology (M) correctly (C) incorrectly (I) (C/M) C/(C + I)

Classes 30 15 1 0.50 0.94

Objects prop. 16 09 1 0.56 0.90

Datatype prop. 77 34 3 0.44 0.92

In the first experiment, we analyzed an airlines company Web site2. The constructs
of the obtained OWL ontology are presented in Table 8. The results are compared to the
tutorial ontology for a Semantic Web of tourism3. To evaluate the quality of the ontology
development process, we compare the OWL ontology’s constructs (correctly extracted:
C, and incorrectly extracted: I) returned by the automatic extraction process with man-
ually determined constructs (M) in the tutorial ontology for a Semantic Web of tourism.
Based on the cardinalities of these sets, the following quality measures are computed.

Precision = C/(C + I), is the faction of the automatic discovered constructs which
are correct.

Recall = (C/M), is the fraction of the correct constructs (the set M) which has been
discovered by the ontology development process.

The low recall ratio is not so much a consequence of bad ontology development ap-
proach, but much more due to the restricted domain knowledge covered by the Web site
itself.

In the second experiment, we conducted experiments on three Web site related re-
spectively to flights4, hotel5, and leisure6 tourism activities. The ontology development
process was rather successful, with average recall and precision ratios of 94% and 92%
respectively (see Table 9).

The results obtained with the use of the second experiment could be much better if
more Web sites covering a large part of the tourism activities were used as input.

6. Conclusions

In this paper we have presented a novel, integrated, and semi-automated approach for
extracting personalised ontology from data-intensive Web applications that can be applied
to a broad range of today’s business Web sites, especially those that are dynamically

2http://www.britishairways.com.
3http://protege.stanford.edu/plugins/owl/owl-library/travel.owl.
4http://www.britishairways.com.
5http://www.hm-usa.com.
6http://www.travelandleisure.com.

Extracting Personalised Ontology 531

Table 9

Results from the ontology development process using three Web site related respectively to flights, hotel and
leisure tourism activities

OWL Constructs in Constructs Constructs Recall Precision

Ontology the tutorial extracted extracted Ratio Ratio

constructs ontology (M) correctly (C) incorrectly (I) (C/M) C/(C + I)

Classes 30 28 2 0.93 0.93

Objects prop. 16 15 2 0.94 0.88

Datatype prop. 77 73 5 0.95 0.94

generated from a relational database. Instead of creating the ontology manually we have
proposed an approach to build the ontology as automatically as possible. The approach
starts with transforming the HTML-forms into a form model schema. This model, allows
the generation of an XML schema, witch permit the extraction of domain semantics and
the construction of an UML class diagram. A mapping process is done to translate the
UML class diagram into OWL ontology. Finally, ontological instances are created based
on the tuples of the relational database.

It can be seen that the proposed approach is practical and helpful to reduce the time
consuming task of ontology creation, and to make the relational database information that
is available on the Web machine-processable.

However, in the most circumstances, the obtained ontological structure is coarse. Be-
cause many constraints, relationships and other semantics in relational database are im-
plicit, or even lacking, the ontology extracted from relational database is not complete
in semantics, and need to be validated by experts, which depends on the domain knowl-
edge and experiences. So refining obtained ontological structure is necessary. Existing
repositories of lexical knowledge usually includes authoritative knowledge about some
domains, we suggest as future work refining obtained ontology according to them, espe-
cially machine-readable dictionaries and thesauri.

References

Anderson, M. (1994). Extracting an entity-relationship schema from a relational database through reverse engi-
neering. In Proceeding of the 13th International Conference on Entity-Relationship Approach. pp. 403–419.

Astrova, I. (2004). Reverse engineering of relational databases to ontologies. In Proceeding of the 1st European
Semantic Web Symposium (ESWS), Heraklion, Greece. LNCS, vol. 3053. pp. 327–341.

Astrova, I., and B. Stantic (2005). An HTML forms driven approach to reverse engineering of relational
databases to ontologies. In Proceeding of the 23rd IASTED International Conference on Databases and
Applications (DBA), Innsbruck, Austria. pp. 246–251.

Baclawski, K., M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski and M. Aronson (2001). Extend-
ing UML to support ontology engineering for the semantic web. In Proceeding of the Fourth International
Conference on UML, Toronto. pp. 342–360.

Batini, C., M. Lenzerini and S.B. Navathe (1986). A comparative analysis of methodologies for database schema
integration. ACM Computing Surveys, 18(4), 323–364.

532 S.M. Benslimane et al.

Behm, A., K. Geppert and K. Dittrich (1997). On the migration of relational schemas and data to object-oriented
database systems. In Proceeding of the 5th Int. Conference on Re-Technologies for Information Systems,
Klagenfurt. pp. 13–33.

Benslimane, S.M., M. Malki and D. Amar Bensaber (2005). Automated migration of data-intensive web pages
into ontology-based semantic web: a reverse engineering approach. In R. Meersman et al., (Eds.), ODBASE.
Springer Verlag, vol. 2. LNCS 3761. pp. 1640–1649.

Chiang, R.H.L., T.M. Barron and V.C. Story (1994). Reverse engineering of relational databases: extraction of
an EER model from a relational database. Data and Knowledge Engineering, 10(12), 107–142.

Choobineh, J., M.V. Mannino and V.P. Tseng (1992). A form-based approach for database analysis and design.
Communication of the ACM, 35(2), 108–120.

Cranefield, S. (2001). UML and the Semantic Web. In Proceeding of the International Semantic Web Working
Symposium, Palo Alto. pp. 18–29.

Embley, D. (2004). Toward semantic understanding – an approach based on information extraction. In Proceed-
ing of the 15th Australasian Database Conference (ADC), Dunedin, New Zealand. pp. 3–12.

Erdmann, M., A. Maedche, H. Schnurr and S. Staab (2000). From manual to semi-automatic semantic anno-
tation: about ontology-based text annotation tools. In P. Buitelaar and K. Hasida (Eds.), Proceedings of the
Workshop on Semantic Annotation and Intelligent Content (COLING), Luxembourg. pp. 233–230.

Falkovych, K., M. Sabou and H. Stuckenschmidt (2003). UML for the Semantic Web: Transformation-Based
Approaches. Knowledge Transformation for the Semantic Web, IOS Press, Amsterdam.

Fraternali, P. (1999). Tools and approaches for developing data-intensive web applications: a survey. ACM
Computing Surveys, 31(9), 227–263.

Gruber, T.R. (1995). Toward principles for the design of ontologies used for knowledge sharing. Human Com-
puter Studies, 43(5–6), 907–928.

Kashyap, V. (1999). Design and creation of ontologies for environmental information retrieval. In Proceeding of
the 12th Workshop on Knowledge Acquisition, Modelling and Management (KAW), Banff, Alberta, Canada.
pp. 3–21.

Malki, M., M. Ayache and M.K. Rahmouni (1999). Rétro-ingénierie des bases de données relationnelles :
approche basée sur l’analyse de formulaires. In Actes du XVIIème Congrès INFORSID, Toulon, France.
pp. 340–348.

Malki, M., A. Flory and M.K. Rahmouni (2002). Extraction of object-oriented schemas from existing relational
databases: a form-driven approach. Informatica, 13(1), 47–72.

Mannila, H., and K.J. Raiha (1994). The Design of Relational Databases. Addison-Wesley publishing. Boston,
MA, USA.

Muller, R.J. (1999). Database Design for Smarties: Using UML for Data Modeling. Morgan Kaufmann.
Noy, N., and M. Klein (2004). Ontology evolution: not the same as schema evolution. Knowledge and Informa-

tion Systems, 6(4), 428–440.
Petit, J.M., F. Toumani and J. Kouloumdjian (1995). Relational database reverse engineering: a method based

on query analysis. International Journal of Cooperative Information System, 4(2,3), 287–316.
Rubin, D.L., M. Hewett, D.E. Oliver, T.E Klein and R.B. Altman (2002). Automatic data acquisition into on-

tologies from pharmacogenetics relational data sources using declarative object definitions and XML. In
R.B. Lihue et al. (Eds.), Proceedings of the Pacific Symposium on Biology. pp. 22–34.

Stojanovic, L., N. Stojanovic and R. Volz (2002). Migrating data-intensive web sites into the semantic web. In
Proceeding of the 17th ACM Symposium on Applied Computing (SAC’2002), Madrid, Spain. pp. 1100–1107.

Tijerino, Y.A, D.W. Embly, D.W. Lonsdale, Y. Ding and G. Nagy (2005). Towards ontology generation from
tables. 8(3), 261–285.

Volz, R., S. Handschuh, S. Staab, L. Stojanovic and N. Stojanovic (2004). Unveiling the hidden bride: deep
annotation for mapping and migrating legacy data to the semantic Web. Journal of Web Semantics: Science,
Services and Agents on the Word Wide Web, 1(2), 187–206.

Wang, J., and F. Lochovsky (2003). Data extraction and label assignment for web databases. In Proceeding of
the 12th International Conference on World Wide Web, Budapest, Hungary. pp. 187–196.

Yang, Y., and H. Zhang (2001). HTML page analysis based on visual cues. In Proceeding of the 6th Interna-
tional Conference on Document Analysis and Recognition (ICDAR), Seattle, USA. pp. 859–864.

Extracting Personalised Ontology 533

S.M. Benslimane is PhD candidate in computer science Department at Sidi Bel Abbes
University from December 2002. He received the MS degree in computer science from
Sidi Bel Abbes University, Algeria, in 2001. Starting from 2001, he is lecter in the De-
partment of Computer Science, Sidi Bel Abbes University, Algeria. His research interests
include, semantic Web, Web engineering, ontology engineering, knowledge management,
information systems.

M. Malki is an assistant professor at the Department of Computer Science at Sidi Bel
Abbes University. He received the PhD degree in computer science from Sidi Bel Abbes
University, Algeria, in 2003. He heads the Evolutionary Engineering and Distributed In-
formation Systems Laboratory. His research interests include, knowledg management,
information retrieval, ontology engineering, semantic Web, Web services, and soft com-
puting systems.

M.K. Rahmouni is a professor at the Computer Science Department of the University
of Oran Es-Sénia, Algeria. He received the PhD degree in operational research from
Southampton University UK, in 1987. He heads the Information Systems Laboratory and
the local Doctoral School on STIC. His research interests include formal specifications,
information management and integration, process modelling, and knowledge manage-
ment

D. Benslimane is graduated with an “Ingenieur Informatique” degree in 1985 from the
university of Tizi-ouzou, Algeria. He received his PhD degree in computer science from
Blaise Pascal University in Clermont-Ferrand, France, in 1992. He was an assistant pro-
fessor at University of Burgundy, Dijon, France from 1992–2001. He is currently a pro-
fessor at Claude Bernard University, Lyon, France. His principals research interests in-
clude, databases, interoperability, ontology, context, web services, query processing.

534 S.M. Benslimane et al.

Personifikuotos ontologijos gavimas iš daug duomen ↪u
apdorojanči ↪u interneto program ↪u: atvirkštine HTML form ↪u
inžinerija grindžiamas metodas

Sidi Mohamed BENSLIMANE, Mimoun MALKI,
Mustapha Kamal RAHMOUNI, Djamal BENSLIMANE

Interneto vystymasis ženkliai pakeitė informacijos tvarkymo ir platinimo būdus. Naujoji inter-
neto karta, grindžiama semantinio tinklo idėjomis, leis taikyti griežtesn↪i, ontologijomis grindžiam ↪a
informacijos struktūr ↪a, taip pagerinant informacijos panaudojamum ↪a kompiuteriniame lygmenyje.
Būtent šiame kontekste svarbus autori ↪u siūlomas novatoriškas integruotas sprendimas, leidžiantis
pusiau automatiškai formuoti ontologija grindžiam ↪a semantin↪i tinkl ↪a iš intensyviai duomenis nau-
dojanči ↪u interneto program ↪u. Tokiu būdu tinklo turinys tapt ↪u „suprantamu“ kompiuteriams. Straip-
snyje pristatoma metodika grindžiama idėja, jog semantika gali būti išgaunama taikant atvirkštin↪i
HTML form ↪u inžinerij ↪a. Autoriai priima prielaid ↪a, jog ši ↪u form ↪u reinžinerija yra patogiausias šiuo-
laikinėse interneto programose naudojam ↪u reliacini ↪u duomen ↪u bazi ↪u analizės būdas. Straipsnyje
apibrėžti etapai, kuriais iš gautosios semantikos gali būti sudaroma personifikuota ontologija.

