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Extracting quantum coherence via 
steering
Xueyuan Hu1 & Heng Fan2

As the precious resource for quantum information processing, quantum coherence can be created 
remotely if the involved two sites are quantum correlated. It can be expected that the amount of 
coherence created should depend on the quantity of the shared quantum correlation, which is also a 
resource. Here, we establish an operational connection between coherence induced by steering and 
the quantum correlation. We find that the steering-induced coherence quantified by such as relative 
entropy of coherence and trace-norm of coherence is bounded from above by a known quantum 
correlation measure defined as the one-side measurement-induced disturbance. The condition that 
the upper bound saturated by the induced coherence varies for different measures of coherence. 
The tripartite scenario is also studied and similar conclusion can be obtained. Our results provide the 
operational connections between local and non-local resources in quantum information processing.

Quantum coherence, being at the heart of quantum mechanics, plays a key role in quantum information pro-
cessing such as quantum algorithms1 and quantum key distribution2. Inspired by the recently proposed resource 
theory of quantum coherence3,4, researches are focused on the quantification5,6 and evolution7,8 of quantum 
coherence, as well as its operational meaning5,9 and role in quantum information tasks10–12. When multipartite 
systems are considered, coherence is closely related to the well-established quantum information resources, such 
as entanglement13 and discord-type quantum correlations14. It is shown that the coherence of an open system is 
frozen under the identical dynamical condition where discord-type quantum correlation is shown to freeze15. 
Further, discord-type quantum correlation can be interpreted as the minimum coherence of a multipartite system 
on tensor-product basis16. An operational connection between local coherence and non-local quantum resources 
(including entanglement17 and discord18) is presented. It is shown that entanglement or discord between a coher-
ent system and an incoherent ancilla can be built by using incoherent operations, and the generated entanglement 
or discord is bounded from above by the initial coherence. The converse procedure is of equal importance: to 
extract coherence locally from a spatially separated but quantum correlated bipartite state. The extraction of 
coherence with the assistance of a remote party has been studied in the asymptotical limit19. In this paper, we ask 
how we extract coherence locally from a single copy of a bipartite state.

The quantum steering has long been noted as a distinct nonlocal quantum effect20 and has attracted recent 
research interest both theoretically and experimentally21–31. It demonstrates that Alice can remotely change Bob’s 
state by her local selective measurement if they are correlated, and is hence a natural candidate to accomplish the 
task of remote coherence extraction.

In this paper, we present the study of coherence extraction induced by quantum steering and the involved 
quantum correlation. Precisely, we introduce the quantity of steering-induced coherence (SIC) for bipartite quan-
tum states. Here Bob is initially in an incoherent state but quantum correlated to Alice. Alice’s local projective 
measurement can thus steer Bob to a new state which might be coherent. The SIC  is then defined as the maximal 
average coherent of Bob’s steered states that can be created by Alice’s selective projective measurement. When 
there is no obvious incoherent basis for Bob, (for example, Bob’s system is a polarized photon), the definition can 
be generalized to arbitrary bipartite system where Bob’s incoherent basis is chosen as the eigenbasis of his reduced 
state. In this case, the SIC can be considered as a basis-free measure of Bob’s coherence. The main result of this 
paper is building an operational connection between the SIC and the shared quantum correlation between Alice 
and Bob. We prove that the SIC can not surpass the initially shared B-side quantum correlation, which is a known 
quantum correlation measure named as measurement-induced disturbance (MID) B

32. States whose relative 
entropy SIC r  can reach its upper bound B

r  are identified as maximally correlated states. For two-qubit states, 
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while the trace-norm SIC t can always reach the corresponding B
t , we find an example of two-qubit state whose 

r  is strictly less than B
r . This indicates that the condition for  to reach the upper bound strongly depends on the 

measure of coherence. We further generalize the results to a tripartite scenario, where Alice can induce entangle-
ment between Bob and Charlie in a controlled way. Since coherence of a single party is generally robust than 
quantum correlations involving two parties, our work provides a way to “store” quantum correlation as coherence. 
Besides, the coherent state induced by steering can be widely used for quantum information processing. Our 
results establish the intrinsic connection between coherence and quantum correlation by steering.

Results
Coherence and measurement-induced disturbance. A state is said to be incoherent on the reference 
basis ξΞ = | 〉{ }i , if it can be written as3

∑σ ξ ξ= .Ξ p
(1)i

i i i

Let Ξ be the set of incoherent state on basis Ξ . The incoherent completely positive trace-preserving (ICPTP) 
channel is defined as

∑Λ = ⋅⋅
†K K( ) ,

(2)n
n nICPTP( )

where the Kraus operators Kn satisfy ⊂Ξ Ξ
†K Kn n  . According to ref. 3, a proper coherence measure ρ ΞC ( , ) of 

a quantum state ρ on a fixed reference basis Ξ  should satisfy the following three conditions. (C1) C(ρ, Ξ ) =  0 iff 
ρ ∈ Ξ. (C2) Monotonicity under selective measurements on average: ρ ρΞ ≥ ∑ Ξ ∀C p C K( , ) ( , ), { }n n n n  satis-

fying  ⊂Ξ Ξ
†K Kn n  and ∑ =†K K In n n , where ρ ρ= †K K p/n n n n, occurring with probability ρ= †p K Ktr[ ]n n n , is 

the state corresponding to outcome n. (C3) Convexity: ρ ρ∑ Ξ ≥ ∑ Ξp C C p( , ) ( , )n n n n n n .
A candidate of coherence measure is the minimum distance between ρ and the set of incoherent states

ρ ρ σΞ =
σ∈ Ξ

C D( , ) min ( , ),
(3)

where ⋅ ⋅D( , ) is a distance measure on quantum states and satisfies the following five conditions. (D1) D(ρ, σ) =  0 
iff ρ =  σ. (D2) Monotonicity under selective measurements on average: ρ σ ρ σ≥ ∑ ∀D p D K( , ) ( , ), { }n n n n . (D3) 
Convexity: ρ σ ρ σ∑ ≥ ∑p D D p( , ) ( , )n n n n n n . (D4) ρ ρ ρ ρΛ ≥ ΛΞ Ξ†D U U D( , ( )) ( , ( )), ∀ Ξ U, , where U is a uni-
tary operation, and ΛΞ denotes the projective measurement on basis Ξ : ξ ξ ξ ξΛ ⋅ ≡ ∑ ⋅Ξ ( ) ( )i i i i i . (D5) 
ρ σ ρ ρ σ ρ= ⊗ ⊗D D( , ) ( , )a a . Conditions (D1-D3) make sure that (C1-C3) is satisfied by the coherence meas-

ure defined in Eq. (3). When (D4) is satisfied, the coherence of ρ on the reference basis Ξ  can be written as

ρ ρ ρΞ = Λ .ΞC D( , ) ( , ( )) (4)

As proved in ref. 3, the relative entropy ρ σ ρ σ ρ ρ ρ σ= ≡ −D S( , ) ( ) Tr( log log )r
2 2  and the l1 matrix norm 

ρ σ ρ σ ρ σ= − ≡ ∑ | − |D ( , )l
l ij ij ij

1
1

 satisfies all the conditions (D1-D4), which makes the corresponding 
coherence measures ρ ρ ρΞ = ΛΞC D( , ) ( , ( ))r r  and ρ ρ ρΞ = ΛΞC D( , ) ( , ( ))l l1 1  satisfy the conditions (C1-C3). 
As discovered recently33, the trace-norm distance ρ σ ρ σ ρ σ≡ − −†D ( , ) tr ( ) ( )t

B B B B  does not satisfy (D2).
Introduced in ref. 32, MID characterizes the quantumness of correlations. MID of a bipartite system ρ is 

defined as the minimum disturbance caused by local projective measurements that do not change the reduced 
states ρ ρ≡ Tr ( )A B  and ρ ρ≡ Tr ( )B A

 
 ρ ρ ρ= Λ ⊗ ΛD( ) inf ( , ( )),

(5)A B,A B

A B

where the infimum is taken over projective measurements which satisfy  ρ ρΛ =( )A A A
A  and  ρ ρΛ =( )B B B

B , and 
⋅ ⋅D( , ) is a distance on quantum states, which satisfies conditions (D1-D5) and further (D6) 
ρ σ ρ σ=† †D U U U U D( , ) ( , ). It can be checked that (D6) can be satisfied by relative entropy but not satisfied by 

l1-norm. Comparing Eq. (5) with Eq. (4), we find MID is just the coherence of the bipartite state ρ on the local 
eigenbasis  ⊗A B.

For later convenience, we introduce B-side MID as







ρ ρ ρ= ⊗ Λ .
ρ ρΛ =

D I( ) inf ( , ( ))
(6)

B A B
: ( )B B

B
B B

B

B goes to zero for B-side classical states, which can be written as ρ ρ= ∑ ⊗− e eB cla i i
A

i
B

i
B , while  is 

strictly positive for ρ −B cla if ρ ρ∃ ≠i, [ , ] 0A i
A . Notice that for B  one do not have a coherence interpretation.

Definition of steering-induced coherence. As shown in Fig. 1, Alice and Bob initially share a quantum 
correlated state ρ, and Bob’s reduced state ρB is incoherent on his own basis. Now Alice implements a local projec-
tive measurement on basis Ξ A. When she obtains the result i (which happens with probability ξp i), Bob is “steered” 
to a coherent state ρ ξB i. We introduce the concept of SIC for characterizing Alice’s ability to create Bob’s coherence 
on average using her local selective measurement.
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Definition (Steering-induced coherence, SIC). For a bipartite quantum state ρ, Alice implements projec-
tive measurement on basis ξΞ = { }A i

A  ( = −i d0, , 1A ). With probability ρ ξ= ⊗ξp Itr[ ( )]i
Ai , she obtains the 

result ξ ξ ξ=i
A

i
A

i
A , which steers Bob’s state to ρ ξ ρ ξ=ξ ξp/B i

A
i
Ai i. Let  = | 〉e{ }B j

B  ( = −j d0, , 1B ) be the 
eigenbasis of reduced states ρB. The steering-induced coherence is defined as the maximum average coherence of Bob’s 
steered states on the reference basis B

 


∑ρ ρ= .ξ ξ

Ξ
p C( ) inf [max ( , )]

(7)i
B B

B A

i i

where the maximization is taken over all of Alice’s projective measurement basis Ξ A, and the infimum over B is 
taken when ρB is degenerate and hence B is not unique.

Since Bob’s initial state ρB is incoherent on its own basis B, the SIC  ρ( ) describes the maximum ability of 
Alice’s local selective measurement to create Bob’s coherence on average. We verify the following properties for 
 ρ( ).

(E1) ρ ≥( ) 0 , and ρ =( ) 0  iff ρ is a B-side classical state.
(E2) Non-increasing under Alice’s local completely-positive trace-preserving channel: ρ ρΛ ⊗ ≤I( ( )) ( )A  .
(E3) Monotonicity under Bob’s local selective measurements on average: ρ ρ≥ ∑ ∀p K( ) ( ), { }n n n n

B   satisfy-
ing  ⊂†K Kn

B
n
B

B B
  , where ρ ρ= ⊗ ⊗ †I K I K p( ) /n A n

B
A n

B
n and ρ= ⊗ ⊗ †p I K I Ktr[ ( ) ]n A n

B
A n

B .
(E4) Convexity: ρ ρ∑ ≥ ∑p p( ) ( )n n n n n n  .

Proof. Condition (E1) can be proved using the method in ref. 31, where it is proved that  ρ ρ≡ ξ
ξC( ) max ( , )i B Bi

A i  
vanishes iff ρ is a B-side classical state. (E2) is verified by noticing that the local channel ΛA can not increase the 
set of Bob’s steered states, and hence the optimal steered states ρ ξ{ }B

i  may not be steered to after the action of chan-
nel ΛA. The conditions (E3) and (E4) are directly derived from conditions (C2) and (C3) for coherence.                 ☐

Relation between SIC and MID. Intuitively, Alice’s ability to extract coherence on Bob’s side should 
depend on the quantum correlation between them. The following theorem gives a quantitative relation between 
the SIC ρ( )  and quantum correlation measured by B-side MID ρ( )B .

Theorem 1. When the distance measure in the definition of MID and coherence satisfies conditions (D1-D6), the SIC 
is bounded from above by the B-side MID, i.e., 

C Qρ ρ≤ .( ) ( ) (8)B

Proof. We start with the situation that ρB is non-degenerate and hence one do not need to take the infimum in 
Eqs (5) and (7). By definition, we have

ρ ρ ρ= D( ) ( , ), (9)B
B

where  ρ ρ= ⊗ ΛI ( )B B .
After Alice implements a selective measurement on basis Ξ A, the average coherence of Bob’s state becomes





∑

∑

ρ ρ ρ

ξ ρξ ξ ρ ξ

= Λ

=











.

ξ ξ ξ

ξ
ξ ξ

Ξ

† †

p D

p D
p p

( ) ( , ( ))

,
(10)

i
B B

i

i
A

i
A

i
A

i
A

A
i i B i

i

i

B

i



Figure 1. Scheme for creating Bob’s coherence by Alice’s local measurement and classical communication. 
When Alice implements local projective measurement on basis ξΞ = | 〉{ }A i

A , she gets result i with probability 
ξp i and meanwhile steer Bob’s state to ρ ξB i which can be coherent on Bob’s initial eigenstate B. SIC is defined as 

the maximal average coherence of states ρ ξB i that can be created by Alice’s local selective measurement.
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The second equality holds because  ρ ρ ξ ρ ξ ρΛ = ⊗ ⊗ Λ ⊗ξ ξ ξ ξD D I( , ( )) ( , ( ))B B i
A

B A i
A

B
i B i i B i  (condition (D5)) 

and ξ ρ⊗ =ξ
ξ ρξ

ξ

†

i
A

B p
i i

A
i
A

i
. Since selective measurement does not increase the state distance (condition (D2)), we 

have C Qρ ρ≤ ∀ ΞΞ ( ) ( ),B AA
, and hence Eq. (8) holds.

The generalization to degenerate state is straightforward. We choose B
o  to reach the infimum of B , which may 

not be the optimal eigen-basis for . Hence we have ρ ρ ρ ρ ρ= ⊗ Λ ≥ ∑ ≥ξ ξ
ΞD I p C( ) ( , ( )) max ( , ) ( )B A B i B B

oB
o

A
i iQ C .

According to ref. 17, the coherence of a quantum system B can in turn be transferred to the  
entanglement between the system and an ancilla C by incoherent operations. The established entanglement,  
measured by the minimum distance between the state ρBC and a separable state σ ρ ρ= ∑ ⊗p:BC

k k k
B

k
C as 

ρ ρ σ= σ ∈E D( ) min ( , )BC
BC BC

BC  , is bounded from above by the initial coherence of B. Here  is the set of separable 
states and the state distance D  is required not to increase under trace-preserving channels 

ρ σ ρ σΛ Λ ≤D D( ( ), ( )) ( , ), which is automatically satisfied when we combine conditions (D2) and (D3).
This leads to the three-party protocol as shown in Fig. 2, where Alice’s local selective measurement can create 

entanglement between Bob and Charlie. In this protocol, Bob and Charlie try to build entanglement between 
them from a product state ρ ⊗ e eAB C C

0 0 , but are limited to use incoherent operations. Since ρB is incoherent on 
his eigenbasis B, Bob and Charlie can build only classically correlated state without Alice’s help. Now Alice 
implement projective measurement ξ ξ| |{ }i

A
i
A  and on the outcome i, the state shared between Bob and Charlie 

is steered to ρ ξBC
i  which can be entangled. The following corollary of theorem 1 gives the upper bound of the 

steering-induced entanglement.

Corollary 1 Alice, Bob and Charlie share a tripartite state ρ, which is prepared from the product state ρ ⊗ e eAB C C
0 0  

using an ICPTP channel on BC: ρ ρ= ⊗ Λ ⊗I e e( )A ICPTP
BC AB C C

0 0 . Here  ⊗ = | 〉 ⊗ | 〉e e{ }B C i
B

j
C  is the refer-

ence basis of coherence. Alice’s local selective measurement ξ ξ| |{ }i
A

i
A  can establish entanglement between Bob and 

Charlie, and the established entanglement on average is bounded from above by the initial B-side MID between Alice 
and Bob 

∑ ρ ρ≤ .ξ ξp E ( ) ( )
(11)i

BC B
ABi i

Proof. Before Alice implement the measurement, the state shared between Bob and Charlie is incoherent on basis 
 ⊗B C and hence can be written as ρ = ∑ | 〉〈 | ⊗ | 〉〈 |q e e e eBC

ij ij i
B

i
B

j
C

j
C . Apparently,  ρ =( ) 0BC , so Bob and 

Charlie is classically correlated.
On the measurement outcome i, the entanglement between Bob and Charlie becomes ρ ξE ( )BC

i  which  
satisf ies   ρ ρ ρ≤ ≤ ⊗ξ ξ ξE C( ) ( ) ( , )BC BC BC B Ci i i .  Notice that ρ ρ= Λ ⊗ξ ξ e e( )BC ICPTP

BC
B

C C
0 0i i  and hence 

    ρ ρ ρ⊗ ≤ ⊗ ⊗ =ξ ξ ξC C e e C( , ) ( , ) ( , )BC B C B
C C

B C B B0 0i i i .  Eq.  (11) is arrived by noticing that 
ρ ρ∑ ≤ξ ξp C ( , ) ( )i B B B

ABi i  from theorem 1.
Now we consider a general tripartite state ρ. If the reduced state ρ ρ= trBC

A  is non-degenerate, one can follow 
the same steps and prove that

∑ ρ ρ≤ξ ξp E ( ) ( ),
(12)i

BC BC{ }i i 

whenever ρBC is incoherent on basis  ⊗B C. Here BC{ }  is the {BC}-side MID between Alice and the  
combination of Bob and Charlie. However, when ρBC is degenerate, the condition that the tripartite state ρ is  
prepared from ρ ⊗ e eAB C C

0 0  by an ICPTP channel on BC is stringent. For example, the state 
ρ = ⊗ Ψ Ψ + ⊗ Ψ Ψ+ + − −0 0 1 1X A BC A BC1

2
1
2

 where Ψ = ±± ( 00 11 )1
2

, with ρBC incoherent 
on basis =ij i j{ }, ( , 0, 1)BC , violates Eq. (12), since ρ =( ) 0BC{ }  but the left-hand-side reaches unity for Alice’s 

Figure 2. Scheme for creating entanglement between Bob and Charlie by Alice’s local selective 
measurement. When Alice implements local projective measurement on basis ξΞ = { }A i

A , she gets result i 
with probability ξp i and meanwhile steer the state shared between Bob and Charlie to ρ ξBC

i  which can be 
entangled.
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measurement basis Ξ = { 0 , 1 }A . It indicate that the state ρX can not be prepared from a product state in the 
form ρ ⊗ e eAB C C

0 0  using only incoherent operations.

States to reach the upper bound. According to theorem 1, Bob’s maximal coherence that can be extracted 
by Alice’s local selective measurement is bounded from above by the initial quantum correlation between them. 
Since the relative entropy is the only distance measure found to date which satisfies all the conditions (D1-D6), 
we employ relative entropy as the distance in the definition of coherence and MID, and discuss the states which 
can reach the upper bound of theorem 1.

Theorem 2. The SIC can reach B-side MID 

ρ ρ ρ ρ= = − .S S( ) ( ) ( ) ( ) (13)
r

B
r

BC Q

for maximally correlated states ρ ρ= ∑ ii jjmc
ij ij .

Proof. Any maximally correlated state can be written in a pure state decomposition form ρ = ∑ Ψ Ψqi i i i  with 
λΨ = ∑ jji j ij  and δΨ Ψ =′ ′i i ii . Here ρ λ= ∑ ∑ | |q j j( )B j i i ij

2  has eigenbasis  = i{ }B . In order to calcu-
late the B-side MID, we consider Bob’s projective measurement ΛB

B, which takes the bipartite state to 
ρ λ= ∑ ∑ q jj jj( )j i i ij

2
B . Apparently, ρ ρ=S S( ) ( )B

B . By definition, we have

  ρ ρ ρ ρ ρ ρ ρ= = − = − .S S S S S( ) ( ) ( ) ( ) ( ) ( ) (14)B
r

B
B B

In order to extract the maximum average coherence on Bob’s side, Alice measures her quantum system on 
basis ΞA, where ξ = ∑ =

− − π
e jk

A
d j

d i1
0

1A
kj

dA
2

, = −k d0, , 1A  and dA is the dimension of A. On the measurement 

result k, Bob’s state is steered to ρ φ φ= ∑ξ ξ ξqB i i i ik k k  where φ λ= ∑ξ π
e ji j

i
ij

k
kj

dA
2

, which happens with probabil-
ity =ξp

d
1k . Apparently, φ φ δ=ξ ξ

′ ′i i ii
k k  and hence ρ ρ= = −∑ξS S q q( ) ( ) logB i i i2

k . Meanwhile, we have 
 ρ λ ρΛ = ∑ ∑ | | =ξ q j j( ) ( )B B j i i ij B

2B k . The coherence of steered state ρ ξB k is then

 ρ ρ ρ ρ ρ= Λ − = −ξ ξ ξC S S S S( , ) ( ( )) ( ) ( ) ( ), (15)
r

B B B B B B
k B k k

for any outcome k. Therefore we arrive at Eq. (13).
Any pure bipartite state can be written in a Schmidt decomposition form λΨ = ∑ jjj j , and hence belongs 

to the set of maximally correlated states. As introduced in ref. 17, a maximally correlated states ρmc is prepared 
from an product states ρ ⊗ 0 0B C

 using an incoherent unitary operator, and its entanglement E(ρmc) can reach 
the initial coherence of ρB. Further, for maximally correlated states, one can check the equality, ρ ρ=E ( ) ( )mc

B
mc . 

Therefore, ρmc can be used in a scenario where coherence is precious and entanglement is not as robust as 
single-party coherence. Precisely, consider the situation where Alice and Bob share a maximally correlated state 
ρAB

mc but they are not use it in a hurry. To store the resource for latter use, she can transfer the entanglement 
between them into Bob’s coherence using her local selective measurement. Bob stores his coherent state as well as 
Alice’s measurement results. When required, Bob can perfectly retrieve the entanglement by preparing a maxi-
mally correlated state using only incoherent operations.

Two-qubit case, relation between l1-norm of SIC and trace-norm distance of B-side MID. One 
cannot define MID based on the l1-norm distance, since it does not satisfy (D6) in general. However, it can be 
checked that for single-qubit states ρB and σB, ρ σ ρ σ− = = −ρ σr rD ( , )B B l

t
B B

1

34, where rρ and rσ are Bloch 
vectors of ρB and σB respectively. Hence the l1-norm of coherence for a single-qubit state ρB can be written as

ρ ρ ρΞ = Λ .ΞC D( , ) ( , ( )) (16)
l

B
t

B B
1

Besides, Dt, which satisfies condition (D6), is proper to be used as a distance measure for MID. Therefore, 
when the Bob’s particle is a qubit, it is meaningful to study the relation between l1-norm of SIC and trace-norm 
distance of B-side MID. Now we consider a two-qubit state ρ, and employ Cl1 in the definition of ρ( )  as in Eq. (7) 
and prove the following theorem.

Theorem 3. For a two-qubit state ρ, we have 

C Qρ ρ= .( ) ( ) (17)
l

B
t1

Proof. The state of a two-qubit state can be written as ρ σ σ= ∑ Θ ⊗=i j ij i
A

j
B1

4 , 0
3 , where the coefficient matrix 

ρσ σΘ = ⊗tr( )ij i
A

j
B  can be written in the block form Θ =









b
a T
1 T .

For non-degenerate case b ≠  0, we choose the eigenbasis of ρB for the basis of density matrix and hence  
b =  (0, 0, b3). Further, a proper basis of qubit A is chosen such that the matrix T is in a triangle form with 
= = =T T T 011 12 21 . We calculated the explicit form of ρ( )B

t  and ρ( )l1  and obtain
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ρ ρ= =





+ +

+
+ + − + 






.

T T T T T T T T T
( ) ( )

2
( ) 2 ( )

2 (18)
B
t l 22

2
31
2

32
2

32
2

22
2 2

31
2

32
2

22
2

31
4

1
2

1Q C

For degenerate case with b =  0, we can always chose proper local basis such that T is diagonal. Here we impose 
T11 ≥  T22 ≥  T33 without loss of generality. Direct calculations lead to

ρ ρ= = .T( ) ( ) (19)B
t l

22
1Q C

We check that, for the state ρ = Φ Φ ++ + 01 011
2

1
2

, we have C Qρ ρ<( ) ( )r
B
r , but according to theorem 

3, C Qρ ρ=( ) ( )t
B
t . It means that relative entropy of coherence and l1-norm of coherence are truly different meas-

ures of coherence.

Discussion
In this paper, we have introduced the notion of SIC which characterizes the power of Alice’s selective measure-
ment to remotely create quantum coherence on Bob’s site. Quantitative connection has been built between SIC 
and the initially shared quantum correlation measured by B-side MID. We show that SIC is always less than or 
equal to B-side MID. Our results are also generalized to a tripartite scenario where Alice can build the entangle-
ment between Bob and Charlie in a controlled way.

Next, we discuss a potential application of SIC in secrete sharing. Suppose Alice and Bob share a two-qubit 
state Φ = +( 00 11 )1

2
, whose SIC reaches unity. When Alice measures her state on different basis, Bob’s 

state is steered to, e.g.,  = { 0 , 1 }B
z  or  = |+〉 |−〉{ , }B

x  with |±〉 = | 〉 ± | 〉( 0 1 )1
2

. The coherence of states in 
B

z  reach unity on basis B
x and vise visa. Consequently, when we measure the states in the set B

z  on basis B
x, the 

outcome is completely random. It is essential to quantum secret sharing using Φ . In this sense, the SIC is poten-
tially related to the ability for Alice to share secret with Bob.

Coherence and various quantum correlations, such as entanglement and discord-like correlations, are gener-
ally considered as resources in the framework of resource theories9,35. By coining the concept of SIC, we present 
an operational interpretation between measures of those two resources, SIC and MID, and open the avenue to 
study their (ir)reversibility. The applications of various coherence quantities like SIC in many-body systems, as in 
the case of entanglement36–38, can be expected.
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