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1, Gaël Varoquaux1

1 Inria, CEA, Univ. Paris Saclay, Palaiseau, France, 2Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK,
Grenoble, France

* arthur.mensch@m4x.org

Abstract

Cognitive brain imaging is accumulating datasets about the neural substrate of many differ-

ent mental processes. Yet, most studies are based on few subjects and have low statistical

power. Analyzing data across studies could bring more statistical power; yet the current

brain-imaging analytic framework cannot be used at scale as it requires casting all cognitive

tasks in a unified theoretical framework. We introduce a newmethodology to analyze brain

responses across tasks without a joint model of the psychological processes. The method

boosts statistical power in small studies with specific cognitive focus by analyzing them

jointly with large studies that probe less focal mental processes. Our approach improves

decoding performance for 80% of 35 widely-different functional-imaging studies. It finds

commonalities across tasks in a data-driven way, via common brain representations that

predict mental processes. These are brain networks tuned to psychological manipulations.

They outline interpretable and plausible brain structures. The extracted networks have been

made available; they can be readily reused in new neuro-imaging studies. We provide a

multi-study decoding tool to adapt to new data.

Author summary

Brain-imaging findings in cognitive neuroscience often have low statistical power, despite

the availability of functional imaging data across hundreds of studies. Yet, with current

analytic frameworks, combining data across studies that map responses to different tasks

discards the nuances of the cognitive questions they ask. In this paper, we propose a new

approach for fMRI analysis, where a predictive model is used to extract the shared infor-

mation from many studies together, while respecting their original paradigms. Our

method extracts cognitive representations that associate a wide variety of functions to spe-

cific brain structures. This provides quantitative improvements and cognitive insights

when analyzing together 35 task-fMRI studies; the breadth of the functional data we con-

sider is much higher than in previous work. Reusing the representations learned by our

approach also improves statistical power in studies outside the training corpus.
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Introduction

Cognitive neuroscience uses functional brain imaging to probe the brain structures underlying

mental processes. The field is accumulating neural activity responses to specific psychological

manipulations. The diversity of studies that probe different mental processes gives a big picture

on cognition [1]. However, as brain mapping has progressed in exploring finer aspects of men-

tal processes, the statistical power of studies has stagnated or even decreased [2]—although

sample size is increasing over years, it has not kept pace with the reduction of effect size. As a

result, many, if not most individual studies often have low statistical power [3]. Large-scale

efforts address this issue by collecting data from many subjects [4, 5]. For practical reasons,

these efforts however focus on a small number of cognitive tasks. In contrast, establishing a

complete view of the links between brain structures and the mental processes that they imple-

ment requires varied cognitive tasks [6], each crafted to recruit different mental processes. In

this paper, we develop an analysis methodology that pools data across many task-fMRI studies

to increase both statistical power and cognitive coverage. Standard meta analyses can only

address commonalities across studies, as they require casting mental manipulations in a consis-

tent overarching cognitive theory. They can bring statistical power at the cost of coverage and

specificity in the cognitive processes. On the opposite, our approach uses the specific psycho-

logical manipulations of each study and extracts shared information from the brain responses

across paradigms. As a result, it improves markedly the statistical power of mapping brain

structures to mental processes. We demonstrate these benefits on 35 functional-imaging stud-

ies, all analyzed accordingly to their individual experimental paradigm.

Interpreting overlapping brain responses calls for multivariate analyses such as brain

decoding [7]. Brain decoding uses machine learning to predict mental processes from the

observed brain activity. It is a crucial tool to associate functions to given brain structures. Such

inference endeavor calls for decoding across cognitive paradigms [8]. Indeed, a single study

does not provide enough psychological manipulations to characterize well the functions of the

brain structures that it activates [6], while covering a broader set of cognitive paradigms gives

more precise functional descriptions. Moreover, the statistical power of functional data is lim-

ited by the sample size [3]. A single study seldom provides more than few hundreds of observa-

tions, which is well below machine-learning standards. Open repositories of brain functional

images [9, 10] bring the hope of large-scale decoding with much larger sample sizes.

Yet, shoehorning such a diversity of studies into a decoding problem requires daunting

manual annotation to build explicit correspondences across cognitive paradigms. We propose

a different approach: we treat the decoding of each study as a single task in a multi-task linear

decoding model [11, 12]. The parameters of this model are partially shared across studies to

enable discovering potential commonalities. Model fitting—the training step of machine

learning—is performed jointly, using non-convex training and regularization techniques [13,

14]. We thus learn to perform simultaneous decoding in many studies, to leverage the brain

structures that they implicitly share. The extracted structures provide universal priors of func-

tional mapping that improve decoding on new studies and can readily be reused in subsequent

analyzes.

Models that generalize in measurable ways to new cognitive paradigms would ground

broader pictures of cognition [15]. However, they face the fundamental roadblock that each

cognitive study frames a particular question and resorts to specific task oppositions without

clear counterpart in other studies [16]. In particular, a cognitive fMRI study results in contrast

brain maps, each of which corresponds to an elementary psychological manipulation, often

unique to a given protocol. Analyzing contrast maps across studies requires to model the rela-

tionships between protocols, which is a challenging problem. It has been tackled by labeling
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common aspects of psychological manipulations across studies, to build decoders that describe

aspects of unseen paradigms [17, 18]. This annotation strategy is however difficult to scale up

to a large set of studies as it requires expert knowledge on each study. The lack of complete

cognitive ontologies to decompose psychological manipulations into mental processes [19]

makes it even harder.

To overcome these obstacles, our multi-study decoding approach relies on the original

labels of each study. Instead of relabeling data into a common ontology, the method extracts

data-driven common cognitive dimensions. Our guiding hypothesis is that activation maps

may be accurately decomposed into latent components that form the neural building blocks

underlying cognitive processes [20]. This modelling overcomes the limitations of single-study

cognitive subtraction models [19]. In particular, we show that it improves statistical power in

individual studies: it gives better decoding performance for a vast majority of studies, and the

improvement is particularly pronounced for studies with a small number of subjects. Our

implicit modelling of functional information has the further advantage of providing explain-

able predictions. It decomposes the common aspects of psychological manipulations across

studies onto latent factors, supported by spatial brain networks that are interpretable for neuro-

science. These form by themselves a valuable resource for brain mapping: a functional atlas

tuned to jointly decoding the cognitive information conveyed by various protocols. The

trained model is a deep linearmodel. Building a linear model is important to bridge with clas-

sic decoding techniques in neuroimaging and ensures interpretability of intermediary

representations.

Materials andmethods

We first give an informal overview of the contributed methods for multi-study decoding. We

review the mathematical foundations of the methods in a second part—a complete description

is provided in S1 Appendix. Finally, we describe how we validate the performance and usabil-

ity of the approach. A preliminary version of our method was described in [21], with impor-

tant differences and a less involved validation (discussed in details in S1 Appendix).

Method overview

The approach has three main components, summarized in Fig 1: aggregating many fMRI stud-

ies, training a deep linear model, and reducing this model to extract interpretable intermediate

representations. These representations are readily reusable to apply the methodology to new

data. Building upon the increasing availability of public task-fMRI data, we gathered statistical

maps from many task studies, along with rest-fMRI data from large repositories, to serve as

training data for our predictive model (Fig 1A). Statistical maps are obtained by standard

analysis, computing z-statistics maps for either base conditions, or for contrasts of interest

when available. We use 40,000 subject-level contrast maps from 35 different studies

(detailed in Table 1), with 545 different contrasts; a few are acquired in cohorts of hundreds

of subjects (e.g., HCP, CamCan, LA5C), but most of them feature more common sample

sizes of 10 to 20 subjects. These studies use different experimental paradigms, though most

recruit related aspects of cognition (e.g., motor, attention, judgement tasks, object

recognition).

We use machine-learning classification techniques for inter-subject decoding. Namely, we

associate each brain activity contrast map with a predicted contrast class, chosen among the

contrasts of the map’s study. For this, we propose a linear classification model featuring three

layers of transformation (Fig 1B). This architecture reflects our working hypothesis: cognition

can be represented on basic functions distributed spatially in the brain. The first layer projects
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contrast maps onto k = 465 functional units learned from resting-state data. This first dimen-

sion reduction should be interpreted as a projection of the brain signal onto small, smooth and

connected brain regions, tuned to capture the resting-state brain signal with a fine grain. The

second layer performs dimension reduction and outputs an embedding of the brain activity

into l = 128 features that are common across studies. The embedded data from each study are

then classified into their respective contrast class using a study-specific classification output

from the third layer, in a setting akin to multi-task learning (see [55] for a review).

The second layer and the third layer are jointly extracted from the task-fMRI data using reg-

ularized stochastic optimization. Namely, the shared brain representation is optimized simul-

taneously with the third layer that performs decoding for every study. In particular, we use

dropout regularization [56] in the layered model and stochastic optimization [13] to obtain

good out-of-sample performance.

Study-specific decoding is thus performed on a shared low-dimensional brain representa-

tion. This representation is supported on 128 different combinations of the first 465 functional

units identified with resting-state data. These combinations form diffuse networks of brain

regions, that we callmulti-study task-optimized networks (MSTONs). MSTONs differ from the

notion of brain networks in the neuroscience literature—the later are typically obtained using

a low-rank factorization of resting-state data, with a much lower number of components (k�

20) than what we use to extract the functional units of the first layer.

As we will show, projecting data onto MSTONs improves across-subject predictive accu-

racy, removing confounds while preserving the cognitive signal. Interpretability is guaranteed

by the linearity of the model and a post-training identification of stable directions in the space

of latent representations. These networks capture a general multi-study representation of the

cognitive signal contained in statistical maps.

Fig 1. General description of our multi-study decoding approach.We perform inter-subject decoding using a
shared three-layer model trained on multiple studies. An initial layer projects the input images from all studies onto
functional networks learned on resting-state data. Then, a second layer combines the functional networks loadings
into commonmeaningful cognitive subspaces that are used to perform decoding for each study in a third layer. The
second and third layers are trained jointly, fostering transfer learning across studies.

https://doi.org/10.1371/journal.pcbi.1008795.g001
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Mathematical modelling

Following this informal description, we now review the mathematical foundations of our

decoding approach. The complete descriptions of the predictive models and of the training

algorithms are provided in S1 Appendix.

Table 1. Training and experiment set of fMRI studies.Note that even though some tasks are similar, they may feature
different contrasts. Task correspondence is not encoded explicitly in our model. Table C in S1 Appendix lists each con-
trast used in each study.

Study and task description # contrasts # subjects

[22] High level math & Localizer 31 30

[23] The ARCHI project 30 78

[24] Brainomics 19 94

[25] CamCAN 5 605

[26, 27] Music structure & Sentence structure 19 35

[28] Sentence/music complexity 25 20

[29] Balloon Analog Risk-taking 12 16

[30] Baseline trials & Classication learning 7 17

[31] Rhyme judgment 3 13

[32] Mixed-gambles 4 16

[33] Plain or mirror-reversed text 9 14

[34] Stop-signal 6 20

[35] Conditional stop-signal & Stop-signal 12 13

[36] Balloon analog risk task & Emotion regulation & Stop-signal & Temporal discounting
task

23 24

[37] Classification probe without feedback & Dual-task weather classification & Single-task
weather classification & Tone-counting

14 14

[38] Classification learning & Stop-signal 11 8

[38] Classification learning & Stop-signal 11 8

[39] Cross-language repetition priming 17 13

[40] Classification learning 3 13

[41] Simon task 8 7

[7] Visual object recognition 13 6

[42] Word & object processing 6 49

[43] Emotion regulation 26 34

[44] False belief 7 36

[45] Incidental encoding 26 18

[46] Covert verb generation & Line bisection & Motor & Overt verb generation & Overt
word repetition

11 10

[47] Auditory oddball & Visual oddball 8 17

[48] Continuous house vs face & Discontinuous house (800ms) vs face & Discoutinuous
house (400ms) vs face & House vs face

30 11

[48] Continuous house vs face & House vs face 23 13

[49] The Human Connectome Project 23 786

[50] Face recognition 5 16

[51] Arithmetic & Saccades 26 19

[52] UCLA LA5C consortium 24 189

[53] Foreign language & Localizer & Saccade 34 65

[54] Auditory compression & Visual compression 14 16

Total 545 2343

https://doi.org/10.1371/journal.pcbi.1008795.t001
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We consider N task-fMRI studies, that we use for functional decoding. In this setting, each

study j features nj subjects, for which we compute cj different contrasts maps, using the General

Linear Model [57]. Masking them using a grey-mask filter in the MNI space, we obtain a set of

z-maps ðxijÞj2½1;cjnj �, inR
p, that summarizes the effect on brain activations of the psychological

conditions ðyjiÞi2½1;cjnj�. The goal of functional decoding is to learn a predictor from z-maps to

psychological conditions, namely a function f j : Rp ! ½1; cj�. This predictor will be evaluated

on unseen subjects for validation.

Linear decoding with shared parameters. In our setting, we couple the predictors (fj)j2

[N] by forcing them to share parameters. Each study corresponds to a classification task, and

we cast the problem as multi-task learning (as first considered in [11]). For this, we consider a

given z-map x
j
i in study j. We compute the predicted psychological condition using a factorized

linear model:

ŷ
j
i ¼ f jðxjiÞ ¼ argmax

k2½1;cj�

ðU j
LDx

j
i þ b

jÞk:

The matrix D 2 Rk�p and L 2 Rl�k contain the basis for performing two successive projection

of the z-map xij onto low-dimension spaces. Those parameters are shared over all studies j 2

[N] and form the first and second layer of our model. The matrix U j 2 Rl�cj and the bias vector

b
j 2 Rcj are the parameters of a multi-class linear classification model that labels the projected

map LDx
j
i with a psychological condition within the study j. Those parameters are specific to

each study j, and form the third layer of our model.

First layer training from resting-state data. The first dimension reduction, contained in

the matrix D 2 Rk�p, is learned using external resting-state data, from the HCP project [4].

Voxel time-series are stacked in a data matrix X 2 Rn�p (with 4 millions brain-images), that is

factorized so that X� DA, withD non-negative and sparse (i.e. with mostly null coefficients).

This forces the elements ofD to delineate localized functional units. We use a sparse non-nega-

tive matrix factorization objective [58] and a recent scalable matrix factorization algorithm

[59] to learn D, as detailed in S1 Appendix. The non-negativity constraint allows to interpret

functional units as a soft parcellation of the brain. We do not use additional spatial constraints,

as non-negative sparse matrix factorization with k = 465 components readily finds smooth

connected regions.

Joint training of the second and third layer. The matrix L and the multiple matrices

(Uj)j2[n] and intercepts (b
j)j are trained jointly to minimize the objective

min
L;fU j;j2½N�g

XN

j¼1

1

nj

Xcjnj

i¼1

‘jðU
j
LDx

j
i þ b

j
; y

j
iÞ;

where ℓj is the standard ℓ2-regularized multinomial loss function for training a linear model

with cj classes (see S1 Appendix for details). This objective is trained using Adam [13]; at each

step, we select a batch of examples from one study. To prevent specialization of the rows of

matrix L to specific studies, we add a dropout noise [14] to the activationsDx
j
i and LDx

j
i during

training.

Model consensus. Although the atoms ofD are naturally interpretable, the fact that the

product Uj
L can always be rewritten as Uj

M
−1

ML for an invertible matrixM prevents us

from directly identifying meaningful directions in the low-dimensional space spanned by LD.

On the other hand, we found this space to be remarkably stable across training runs. We there-

fore propose an ensemble technique to extract a non-negative matrix �L 2 Rl�k such that �LD
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captures meaningful directions (as above-mentioned non-negativity enables us to interpret

MSTONs as soft brain parcellations).

For this, we train R decoding models with different sampling order and initialization, to

obtain (Lr)r2[R]. We stack these matrices into a tall matrix ~L 2 Rl R�k, that we factorize as

~L ¼ K�L, with �L 2 Rl�k non-negative and sparse. This is in turn (see S1 Appendix) yields a

consensus model ðD; �L; ð �U j; �b jÞj2½N�Þ, where �LD 2 Rl�p is sparse and non-negative. It therefore

holds interpretable brain networks, learned in a supervised manner from many studies—those

form the MSTONs.

Layer widths. We chose k = 465 and l = 128 as those are a good compromise between

model performance and interpretability—trade-offs in choosing the number of functional

units k for fMRI analysis are discussed in e.g. [60], and we compare the model performance

for different l in Fig E in S1 Appendix. Choosing l smaller than the number of classes enforces

a low-rank structure over the set of 545 classification maps.

Validation

Quantitative measurements. The benefits of multi-study decoding may vary from study

to study, and a single number cannot properly quantify the impact of our approach. We mea-

sure decoding accuracy on left-out subjects (half-split, repeated 20 times) for each study. For

each split and each study, we compare the scores obtained by our model to results obtained by

simpler baseline decoders, that classify contrast maps separately for each study, and directly

from voxels. To analyse the impact of our method on the prediction accuracy specifically for

each contrast, we also report the balanced-accuracy for each predicted class. For completeness,

we report mean accuracy gain and the number of studies for which multi-study decoding

improves accuracy—those hint at the benefit that one may expect when applying the method

to a new fMRI study. Mathematical definitions of the metrics in use are reported in S1 Appen-

dix, Section C.2.

Exploring MSTONs. Our model optimizes its second and third layers to project brain

images on representations that help decoding. These representations boil down to MSTONs

combinations: MSTONs form a valuable output of the model, as they can easily be reused to

project data for new decoding tasks. We provide 2D and 3D views of the MSTONs, showing

how they cover the brain. We evaluate the importance of each network for decoding a certain

contrast by computing the cosine similarity between the MSTON and the classification map

associated with this contrast. We represent these contrasts’ names as specified in their original

studies with word-clouds, with a size increasing with their similarity with a given MSTON.

Classification maps. As our model is linear, we qualitatively compare the classification

maps that it yields with maps obtained with a baseline single-study voxel-level decoding

approach. For both approaches, we compute the correlation matrix between classification

maps to uncover potential clusters of similar maps, using hierarchical clustering [61]. We com-

pare this correlation matrix in term of how clustered it is, using the cophenetic correlation

coefficient [62] and the mean absolute cosine similarity between maps.

Reusable tools and resources

Our approach can be used to improve statistical power of decoding in new fMRI studies. To

facilitate its use, we have released resources and the cogspaces library (http://cogspaces.github.

io). We include software to train the models. Pre-trained MSTONs networks (with associated

word-clouds) can be downloaded and inspected on a dedicated page (https://cogspaces.github.

io/assets/MSTON/components.html). The statistical maps used in the present study may be
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downloaded using our library, or on neurovault.org. The published MSTON networks hold

the representations extracted from the 35 studies that we have considered.

Results

We first detail the quantitative improvements brought by our approach, before exploring these

results from a cognitive neuroscience point of view.

Improved statistical performance of multi-study decoding

Decoding from multi-study task optimized networks gives quantitative improvements in pre-

diction of mental processes, as summarized in Fig 2. For 28 out of the 35 task-fMRI studies

that we consider, the MSTON-based decoder outperforms single-study decoders (Fig 2A). It

improves accuracy by 17% for the top studies, with a mean gain of 5.8% (80% experiments

with net increase, 4.8% median gain) across studies and cross-validation splits (Fig 2B). Jointly

minimizing errors on every study constructs second-layer representations that are efficient for

many study-specific decoding tasks; the second layer parameters therefore incorporate infor-

mation from all studies. This shared representation enables information transfer among the

many decoding tasks performed by the third layer—predictive accuracy is thus improved

thanks to transfer learning. Although we have not explicitly modeled how mental processes or

psychological manipulations are related across experiments, our quantitative results show that

these relations can be captured by the model—encoded into the second layer—to improve

decoding performance.

Studies with diverse cognitive focus benefit from using multi-study modeling. The different

decoding tasks have varying difficulties—we report performance sorted by chance level in Fig

L in S1 Appendix. Among the highest accuracy gains, we find cognitive control (stop-signal),

classification studies, and localizer-like protocols. Our corpus contains many of such studies;

Fig 2. Quantitative performance of multi-study decoding. (A)Multi-study decoding improves the performance of cognitive task
prediction across subjects for most studies. (B)Overall, decoding from task-optimized networks leads to a mean improvement
accuracy of 5.8% compared to voxel or networks based approaches. Each point corresponds to a study and a train/test split. (C)
Studies of typical size strongly benefit from transfer learning, whereas little information is gained for very large studies. (D)
Contrasts that are moderately difficult to decode benefit most from transfer. Error bars are calculated over 20 random data half-split.
�(D) shows per-contrast balanced accuracy (50% chance level), whereas per-study classification accuracy is used everywhere else.
Numbers are reported in Table A in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1008795.g002
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as a result, multi-study decoding has access to many more samples to gather information on

the associated cognitive networks. The activation of these networks is better captured in the

shared part of the model, thereby leading to the observed improvement. In contrast, for a few

studies, among which HCP and LA5C, we observe a slight negative transfer effect. This is not

surprising—as HCP holds 900 subjects, it may not benefit from the aggregation of much

smaller studies; LA5C focuses on higher-level cognitive processes with limited counterparts in

the other studies, which precludes effective transfer.

Fig 2B shows that simply projecting data onto resting state functional networks instead of

using our three-layer model does not significantly improve decoding, although the net accu-

racy gain varies from study to study. Adding a second task-optimized—supervised—dimension

reduction is thus necessary to improve overall decoding accuracy. Functional contrasts that

are either easy or very hard to decode do not benefit much from multi-study modeling,

whereas classes with a balanced-accuracy around 80% experience the largest decoding

improvement (Fig 2). We attribute this to two causes: easy-to-decode studies do not benefit

from the extra signal provided by other studies, while some studies in our corpus are simply

too hard to decode due to a low signal-to-noise ratio. Fig 2D shows that the benefit of multi-

study modeling is higher for smaller studies, confirming that the proposed method boosts

their inter-subject decoding performance.

In Fig 3, we vary the number of training subjects in target studies, and compare the perfor-

mance of the multi-study decoder with a more standard one. We observe that the smaller the

study size, the larger the performance gain brought by multi-study modeling. Transfer learn-

ing in inter-subject decoding is thus particularly effective for small studies (e.g., 16 subjects),

that still constitute the essential of task-fMRI studies. To confirm this effect, we trained a

multi-study model on a subset of 15 subjects per study, considering studies that comprise

more than 30 subjects. In this case, the transfer learning effect is positive for all studies (Fig K

in S1 Appendix), including those for which negative transfer was observed when using full

cohorts.

Finally, we show in Fig B in S1 Appendix that training a three-layer model and reusing the

first two layers as a fixed dimension reduction when decoding a new study improves decoding

accuracy on average. The extracted functional networks (MSTONs) thus provide a study-inde-

pendent prior that is likely to improve decoding for studies probing different cognitive ques-

tions than the ones considered in the training corpus.

Multi-study task-optimized networks capture broad cognitive domains

We outline the contours of the 128 extracted MSTONs in Fig 4A. The networks almost cover

the entire cortex, a consequence of the broad coverage of cognition of the studies we gathered.

Task-optimized networks must indeed capture information to predict 545 different cognitive

Fig 3. Varying accuracy improvement with study size. Training an MSTON decoder increases decoding accuracy for
many studies (see Fig 2A). Gains are higher as we reduce the number of training subjects in target studies—pooling
multiple studies is especially useful to decode studies performed on small cohorts. Error bars are calculated over 20
random data half-splits.

https://doi.org/10.1371/journal.pcbi.1008795.g003

PLOS COMPUTATIONAL BIOLOGY Extracting representations of cognition across neuroimaging studies

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008795 May 3, 2021 9 / 20

https://doi.org/10.1371/journal.pcbi.1008795.g003
https://doi.org/10.1371/journal.pcbi.1008795


classes from the resulting distributed brain activity. Brain regions that are systematically

recruited in task-fMRI protocols, e.g., motor cortex, auditory cortex, and primary visual cor-

tex, are finely segmented by MSTON: they appear in several different networks. Capturing

information in these regions is crucial for decoding many contrasts in our corpus, hence the

model dedicates a large part of its representation capability to it. As decoding requires captur-

ing distributed activations, MSTON are formed of multiple regions (Fig 4B). For instance,

both parahippocampal gyri appear together in the yellow bottom-left network.

Most importantly, Fig 4B and 4C show that the model relates extracted MSTONs to specific

cognitive information. The MSTONs each play a role in decoding a subset of contrasts. Com-

ponents may capture low-level or high-level cognitive signal, though the low-level components

are easier to interpret. Indeed, at a lower level, they outline the primary visual cortex, associ-

ated with contrasts such as checkerboard stimuli, and both hand motor cortices, associated

with various tasks demanding motor functions. At a higher level, some interpretable compo-

nents single out the left DLPFC and the IPS in separate networks, used to decode tasks related

to calculation and comparison. Others delineate the language network and the right posterior

insula, important in decoding tasks involving music [27]. Yet another MSTON delineates Bro-

ca’s area, associated with language tasks (Fig 5).

Inspecting the tasks associated with the MSTONs reveals structure-function links. Once

again, the results are more interpretable for low-level functions, although some well-known

high-level functional associations are also well captured. For instance, several components on

Fig 4. Visualization of some of task-optimized networks.Our approach learns networks that are important for decoding across
studies. These networks are individually focal and collectively well spread across the cortex. They are readily associated with the
cognitive tasks that they contribute to predict. We display a selection of these networks on the cortical surface (A) and in 2D
transparency (B), named with the salient anatomical brain region they recruit, along with a word-cloud (C) representation of the
stimuli whose likelihood increases with the network activation. The words in this word cloud are the terms used in the contrast
names by the investigators; they are best interpreted in the context of the corresponding studies.

https://doi.org/10.1371/journal.pcbi.1008795.g004
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Fig 4 involve brain regions recruited across a wide variety of tasks, such as the anterior insula,

engaged in auditory and visual tasks [63] and considered to tackle ambiguous perceptual infor-

mation, or the ACC, associated with tasks with affective components [64] and reward-based

decision making [65]. Some MSTONs are more distributed, but correspond to well-known

patterns brain activity. For example, Fig 5 show components that reveal parts the default mode

networks –associated with baseline conditions, theory-of-mind tasks and prospection [66,

67]–, parts of the fronto-parietal control network –associated with a variety of problem-solving

tasks [68]– and the dorsal attentional network –associated with visuo-spatial attention tasks

such as saccades [69].

Visualizing MSTONs along with word-clouds serves essentially an illustratory purpose. It

yields more interpretable results with focal networks than with distributed networks. In both

cases, the words in the contrasts related to the given MSTONs capture documented structure-

function associations. Interpretability may be improved by reducing the number of extracted

networks, at the cost of a quantitative loss in performance. In particular, with k = 128 compo-

nents, the default mode network is split across several MSTONs (Fig 5). Such a splitting is

common for high-dimensional decomposition of the fMRI signal, as noted in resting state

[70], as a network such as the default-mode network has different sub-units with distinct func-

tional contributions [71]. Conversely, some contrast maps are correlated with several distrib-

uted MSTONs, as illustrated in Fig A in S1 Appendix.

Impact of multi-study modeling on classification maps

To better understand how multi-study training and layered representations improve decoding

performance, we compare classification maps obtained using our model to standard decoder

Fig 5. Task-optimized networks associated with high-level functions. SomeMSTONs outline brain-circuits that are
associated with language, e.g. Broca’s area (A), or more abstract functions, e.g. fronto-parietal networks (B) or even
part of the default mode network (C). Those networks are more distributed than the ones displayed in Fig 4, but are
associated with relatively interpretable word-clouds.

https://doi.org/10.1371/journal.pcbi.1008795.g005
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maps in Fig 6. For contrasts with significant accuracy gains, the classification maps are less

noisy and more focal. They single out determinant regions more clearly, e.g., the fusiform face

area (FFA, row 1) in classification maps for the face-vs-house contrast, or the left motor cortex

in maps (row 2) predicting pumping action in BART tasks [29]. The language network is typi-

cally better delineated by our model (row 3), and so is the posterior insula in music-related

contrasts (row 4). These improvements are due to two aspects: First, projecting onto a lower

dimension subspace has a denoising effect on contrast maps, that is already at play when pro-

jecting onto simple resting-state functional networks. Second, multi-study training finds more

scattered classification maps, as these combine complex MSTONs, learned on a large set of

brain images. Our method slightly decreases performance for a small fraction of contrasts,

such as maps associated with vertical checkerboard (row 5), a condition well localized and easy

to decode from the original data. Our model renders them too much distributed, an unfortu-

nate consequence of multi-study modeling.

We also compare original input contrast maps to their transformation by the projection on

task-optimized networks (Fig C in S1 Appendix). Projected data are more focal, i.e. spatial var-

iations that are unlikely to be related to cognition are smoothed. This offers a new angle on the

quantitative results (Fig 2): brain activity expressed as the activation of these networks captures

better cognition and allows decoders to generalize better across subjects than when classifying

raw input directly.

Information transfer among classification maps. In Fig 7, we compare the correlation

between the 545 classification maps obtained using a multi-study decoder and using simple

Fig 6. Classification maps obtained frommulti-study decoding (right). The maps are smoother and more focused
on functional modules than when decoding from voxels (left). For contrasts for which there is a performance boost
(top of the figure), relevant brain regions are better delineated, as clearly visible on the face vs house visual-recognition
opposition, in which the fusiform gyrus stands out better. B-acc stands for balanced accuracy using multi-study
decoding (see text).

https://doi.org/10.1371/journal.pcbi.1008795.g006
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functional networks decoders. Classification maps learned using task-optimized networks are

more correlated on average, and hierarchical clustering reveals a sharper correlation structure.

This is because the whole classification matrix is low-rank (rank l = 128< c = 545) and influ-

enced by the many studies we consider—the classification maps of our model are supported

by networks relevant for cognition. As a consequence, it is easier to cluster maps into meaning-

ful groups using hierarchical clustering based on cosine distances. For instance, we outline

inter-study groups of maps related to left-motor functions, or calculation tasks. Hierarchical

clustering on baseline maps is less successful: the associated dendrogram is less structured, and

the distortion introduced by clusters is higher (as suggested by the smaller cophenetic coeffi-

cient). Clusters are harder to identify, due to smaller contrast in the correlation matrix. Multi-

study training thus acts as a regularizer, by forcing correlation across maps with discovered

relations. This regularization partly explains the increase in decoding accuracy.

Discussion

The methodology presented in this work harnesses the power of deep representations to build

multi-study decoding models for brain functional images. It brings an immediate benefit to

Fig 7. Cosine similarities between classification maps, obtained with our multi-study decoder (top) and with decoders learned separately
(bottom), clustered using average-linkage hierarchical clustering. The classification maps obtained when decoding from task-optimized networks are
more easily clustered into cognitive-meaningful groups using hierarchical clustering—the cophenetic coefficient of the top clustering is thus higher.
Maps may also be compared using the similarities of their loadings on MSTONs, with similar results.

https://doi.org/10.1371/journal.pcbi.1008795.g007
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functional brain imaging by providing a universal way to improve the accuracy of decoding in

a newly acquired dataset. Decoding is a central tool to draw inferences on which brain struc-

tures implement the neural support of the observed behavior. It is most often applied to task-

fMRI studies with 30 or less subjects, which tend to lack statistical power [72]. In this regime,

aggregating existing studies to a new one using a multi-study model as the one we propose is

likely to improve decoding performance. This is further evidenced in Fig B in S1 Appendix:

using MSTONs as a decoding basis on a new decoding task outperforms using resting-state

networks. Of course, such improvement can only occur if the cognitive functions probed by

the new study are related to the ones probed in the multi-study corpus. We foresee limited

benefits when analyzing strongly original task fMRI experiments, and experiments studying

very specific and high-level cognitive functions, that MSTONs are only partially able to capture

(Fig 5).

With increasing availability of shared and normalized data, multi-study modeling is an

important improvement over simple decoders, provided that it can adapt to the diversity of

cognitive paradigms. Our transfer-learningmodel has such flexibility, as it does not require

explicit correspondence across experiments. Beyond quantitative benefits –the gain in predic-

tion accuracy– the models also brings qualitative benefits, facilitating the interpretation of

decoding maps (Fig 6). Pooling subjects across studies effectively increases the sample size, as

advocated by [2]. The resulting increase in statistical power for cognitive modeling will help

addressing the reproducibility challenge outlined by [3]. In our setting, each study (or site)

provides a single decoding objective, which is predicting one contrast among all other con-

trasts from this study. This is a validated approach in decoding [73]. As some studies use dif-

ferent fMRI tasks, we may also use one decoding objective per task, with similar quantitative

improvement in performance (see Fig F in S1 Appendix).

Our modeling choices were driven by the recent successes of deep non-linear models in

computer vision and medical imaging. However, we were not able to increase performance by

departing from linear models: introducing non linearities in our models provides no improve-

ment on left-out accuracy. On the other hand, we have shown that pooling many fMRI data

sources enables to learn deeper models, although these remain linear. Techniques developed

in deep learning prove useful to fit models that generalize well across subjects: using dropout

regularization [14] and advanced stochastic gradient techniques [13] is crucial for successful

transfer and good generalization performance.

Sticking to linear models brings the benefit of easy interpretation of decoding models. The

use of sparsity and non-negativity in the training and consensus phase allow to obtain inter-

pretable networks. Using sparsity only in each phase (as originally advocated by [74]) yields

“contrast” networks with both positive and negative regions, that are harder to interpret (see

also [60]). In particular, this limits the occurence of non-zero weights that reflect noise sup-

pression [75].

The models capture information relevant for many decoding tasks in their internal repre-

sentations. From these internals, we extract interpretable cognitive networks, inspired by

matrix factorization techniques used to interpret computer vision models [76]. The good pre-

dictive performance of MSTONs networks (Fig 2 and Fig B in S1 Appendix) provides quanti-

tative support for their decomposition of brain function. Extracting a universal basis of

cognition is beyond the scope of a single fMRI study, and should be done by analysis across

many studies. We show that, across studies, a joint predictive model finds meaningful approxi-

mations of atomic cognitive functions spanning a wide variety of mental processes (Fig 4).

This methodology provides a step forward towards defining mental processes in a quantitative

manner, which remains a fundamental challenge in psychology [9, 77]. Yet, in the present

work, the delineation of atomic cognitive functions remains coarse and incomplete. This is
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likely due to the limited scope of our corpus, and to the fact that we automatically align the

cognitive functions probed by the various studies of the corpus. Expert annotation of mental

process involved in the studies could greatly help establishing a clearer picture.

Our approach differs from commonly-used decomposition techniques in fMRI analysis

(e.g. ICA [78], or dictionary learning [74]), that are used to extract functional networks. These

techniques optimize an unsupervised reconstruction objective over resting-state data, in effect

capturing co-occurrence of brain activity across distributed locations. They have traditionally

been used with few components (e.g. k� 20). In contrast, after the first decomposition, per-

formed without information from the tasks, we extract the MSTONs components to optimize

the decoding performance on many tasks. Leaving a systematic comparison between MSTONs

and classical functional networks for future work, we already make two observations. First, a

fraction of functional networks extracted by unsupervised methods support non-Gaussian

noise patterns in the BOLD time-series, and permits noise suppression [79, 80]. Typically, only

a fraction of the networks extracted in an ICA analysis is interpreted. MSTONs, on the other

hand, optimize a supervised objective and focus on the fraction of the BOLD signal related to

the tasks. Second, MSTONs (despite being more noisy) appears more skewed towards known

coordinated brain networks (Figs 4 and 5), that differs from the networks recruited at rest (see

e.g. [81] for a comparison of task and rest brain networks).

We use many different fMRI studies to distill MSTONs across various tasks. This data

aggregation approach requires little supervison. The flip side is that it leads to coarse results by

nature: our approach is obviously not sufficient to recover the detailed brain-to-mind map-

ping, collective knowledge of psychologists and neuroscientists, that has emerged from

decades of research on multimodal datasets and careful behavioral experiments. Specific

brain-to-mind associations are best resolved with dedicated experiments using experimental-

pyschology paradigms tailored to the question at hand. Other data than fMRI, for instance

more invasive, may also provide stronger evidence. For instance a double dissociation in

brain-lesion patients give unambiguous evidence of distinct cognitive processes via distant

neural supports, as with Broca andWernicke’s separation of language understanding and gen-

eration [82], or the more recent teasing out of emotional and cognitive empathy [83].

Finally, the current version of our framework does not model explicit inter-subject variabil-

ity, and is rather focused on extracting commonalities across subjects. Future work may aug-

ment multi-study decoding with such information, as obtained by e.g., hyperalignment

techniques [84].

Conclusion

The success of using distributed representations to bridge cognitive tasks supports a system-

level view on how brain activity supports cognition.

Our multi-study model will become increasingly useful to brain imaging as the number of

available studies grows. Such a growth is driven by the steady increase of publicly shared

brain-imaging data, facilitated by online neuroimaging platforms and increased standardiza-

tion [2, 85]. With a larger corpus of studies, the proposed methodology has the potential to

build even better universal priors that overall improve statistical power for functional brain

imaging. As such, multi-study decoding provides a path towards knowledge consolidation in

functional neuroimaging and cognitive neuroscience.

Supporting information

S1 Appendix. Detailed methods. This appendix discusses technical details of the multi-study

decoding approach: the specific architecture, a 3-layer linear model, and the deep-learning
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technique used to regularize and train it.Discussion on the model design. In this appendix,

we perform supportive experiments to explain the observed results, An ablation study of the

various model components is provided to further support modelling choices. Reproduction

details and tables. In this appendix, we provide implementation details for reproducibility,

along with tables with quantitative results per contrast.

(PDF)

S1 Components. This file holds a visualization of all the multi-study task optimized net-

works that we introduce in this paper.

(ZIP)
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