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We propose a technique based on independent component analysis (ICA) with constraints, applied to the rhythmic electroen-
cephalographic (EEG) data recorded from a brain-computer interfacing (BCI) system. ICA is a technique that can decompose the
recorded EEG into its underlying independent components and in BCI involving motor imagery, the aim is to isolate rhythmic
activity over the sensorimotor cortex. We demonstrate that, through the technique of spectrally constrained ICA, we can learn a
spatial filter suited to each individual EEG recording. This can effectively extract discriminatory information from two types of
single-trial EEG data. Through the use of the ICA algorithm, the classification accuracy is improved by about 25%, on average,
compared to the performance on the unpreprocessed data. This implies that this ICA technique can be reliably used to identify
and extract BCI-related rhythmic activity underlying the recordings where a particular filter is learned for each subject. The high
classification rate and low computational cost make it a promising algorithm for application to an online BCI system.
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1. INTRODUCTION

The electroencephalogram (EEG) is a recording of the brain’s
electrical activity and is one of the most important mea-
surements used to evaluate neurological disorders in the
clinic and to investigate brain function in the laboratory. The
recording is obtained by placing electrodes on the scalp, gen-
erally according to the 10/20 electrode placement system [1].

A brain-computer interface (BCI) is a communication
system in which messages or commands that an individual
sends to the external world do not pass through the brain’s
normal output pathways of peripheral nerves and muscles
[2]. In an EEG-based BCI, the messages are carried through
EEG activity. The primary aim is to provide people with a
new channel for communication with the outside environ-
ment. Many different disorders, such as amyotrophic lateral
sclerosis (ALS), brainstem stroke, brain or spinal cord injury,
and numerous other diseases can disrupt the neuromuscu-
lar channels through which the brain communicates with its
environment and exerts control. These kinds of severe dis-
eases may cause people to lose voluntary muscle control and

to be unable to communicate in any way (this is known as be-
ing “locked in”). As current knowledge about these disorders
is rather limited, there are no effective treatments which can
provide a cure or even a significant recovery. In the absence of
methods for repairing the damage caused by these diseases,
a BCI system provides an option that conveys messages and
commands to use some devices such as assistive applications
and computers. This type of direct brain interface would in-
crease an individual’s independence and improve quality of
life and also reduce the costs on society.

Historically, EEG activity is divided into four types of
continuous rhythmic sinusoidal waves known as δ, θ, α, and
β frequency bands. In this study, it is the function that al-
lows users to control the amplitude of their µ (8–12 Hz) or
β (18–22 Hz) brain rhythmic activity over the sensorimotor
cortices caused by motor imagery (MI) [3, 4] (i.e., hand or
foot movement imagination), that is of interest. For MI, the
users are instructed to imagine a specific motor action with-
out any related motor output. The imagination of the move-
ment is accompanied by an effect known as event-related
(desynchronization/synchronization) (ERD/ERS) [5]. When
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ERD is present, it is relatively detectable and can be used as
a feedback signal to control specially designed electrical de-
vices, for instance, to control the movement of a cursor on
a computer screen or to drive/steer a wheelchair. However,
imagery is dependent on the individual’s ability to generate
a good ERD, and hence such a BCI will have variable perfor-
mance. Moreover, artifacts (such as movement artifacts, eye-
blinks, and electrical interference) where they appear change
the raw EEG and render the recording virtually unusable.

Many signal processing techniques have been developed
and used in BCI studies, such as autoregressive modelling
[6], and common spatial patterns [7]. These methods tend
to find a spatial filter to maximally improve the signal noise
ratio (SNR). In order to reach an optimal performance, some
additional processing methods are required as preprocessing
steps before the application of, for example, bandpass filter-
ing, common average reference, or manual artifact rejection.
A combination of preprocessing methods could improve the
performance, but also results in a less flexible and robust BCI
system. Moreover, the application of more additional pro-
cessing methods brings with it the problem of increased com-
putation time.

Blind source separation (BSS) techniques such as Inde-
pendent component analysis (ICA) have the ability to ex-
tract the relevant information buried within noisy signals
and allow the separation of measured signals into their fun-
damental underlying independent components (ICs). Gen-
erally, the signal is assumed to be a linear mixture of sta-
tistically independent, possibly nonstationary sources which
may be decomposed using either statistical and information
theoretic signal properties (such as the popular method of
fast ICA [8] and infomax ICA [9]), or signal time structure
(time-structure-based ICA) [10]. ICA has already been quite
broadly applied to the analysis of biomedical signals, such as
analysis of EEG [11], ECG [12], MEG [13], and fMRI [14].

Recent studies have applied ICA in BCI applications [15–
17]. The results indicate that ICA performed well in ex-
tracting time-locked features, such as event-related potentials
(ERPs). However, since MI-based BCI does not use time-
locked activity but rather relies on rhythmic activities as fea-
tures, traditional applications of ICA are unable to track
the changes in power spectra among the different sources.
Using time-structure-based source decomposition methods,
we can capture the sources with stationary waveforms and
unique power spectra. Furthermore, when the power spec-
trum of the particular source activity is known, the spatial
extent of the sources can be extracted by introducing a priori
constraint(s) through constrained ICA (cICA). Our previous
studies where we extracted rhythmic EEG signal components
(such as epileptic seizures) have been shown in [18, 19].

In this work, we examine the use of existing cICA algo-
rithms that we have previously developed to extract reliable
spectral features in the BCI paradigm of MI. The ultimate
aim of applying cICA is to extract rhythmic scalp EEG activ-
ity automatically and repeatedly from the recorded signals, so
that the MI-based BCI system is more reliable and robust—
especially for use outside of the clinical laboratory (i.e., in
the presence of artifacts and across different subjects). In the
following sections, we describe the cICA algorithm, the selec-

tion of power features from the datasets, and the overall clas-
sification system used. We then present the results obtained
and discuss the performance enhancements to be achieved
from the use of this algorithm.

2. METHODS

2.1. Independent component analysis

In the standard, noise-free formulation of the ICA problem,
the observed signals x(t) are assumed to be a linear mixture
of an equal number of unknown but statistically independent
source signals s(t):

x(t) = As(t), (1)

where the square mixing matrix A is also unknown but in-
vertible. The columns of A each depicts a spatial topogra-
phy for each of the ICs in s(t). The problem is solvable up
to a permutation, and sign and power indeterminacy of the
sources, by finding an appropriate de-mixing matrix W =

A−1 which allows estimation of the source waveforms by

s(t) = Wx(t). (2)

Source decomposition on the basis of signal time struc-
ture may be achieved through temporal decorrelation (TD).
For sources with stationary waveforms and unique power
spectra, the time structure is adequately captured by tem-
poral cross-covariances [20, 21]. The decorrelation opera-
tion in time structure ICA methods involves the joint di-
agonalization of a set of symmetric matrices which reflect
the spatio-temporal covariance structure of the source mix-
ture. Furthermore, algorithms have recently been developed
for nonorthogonal joint diagonalization that processes signal
covariances directly with no need for prewhitening, one such
algorithm is used here and is called LSDIAGTD [22].

Assume that there is a set {C1, . . . , Ck} of real-valued
symmetric matrices, the TD approaches find a transforma-
tion W that in some sense diagonalizes all the given matrices
based such that

C
s
τ = WC

x
τW

T (3)

for time lags τ = 1, 2, 3, . . . , where Cx
τ is the signal covari-

ance matrix and Cs
τ is source covariance matrix. Estimation

of W reduces to the well-researched problem of joint (ap-
proximate) diagonalization of the stack of matrices given
by WC

x
τWT , for which a fast and efficient new algorithm

LSDIAGTD is used.

2.2. Constrained ICA

Once a set of sources is determined through ICA, the ICs of
interest must be identified. This is made difficult as the na-
ture of the square mixing matrix means that a great many
more sources will be identified over the expected (smaller)
number of sources underlying the measurement set. A prac-
tical way to extract only the sources of interest automatically
is to use prior knowledge or additional constraints on the



S. Wang and C. J. James 3

source model—cICA—through the use of a constraint or ref-
erence vector. The reference vector can be any vector which
incorporates appropriate prior knowledge into the system.
In this work, as we are interested in rhythmic EEG signals
within our EEG recordings (specifically µ-rhythm activity),
we propose to use a predefined spectral reference as the con-
straint. This spectral constraint then allows only those source
activities with the same power spectrum to be extracted via
the cICA algorithm. In [23], our innovation was to include a
reference channel added as an extra row to the measurement
matrix x(t), such that a new matrix x̂(t) is created with

x̂(t) =

[
x(t)
c1(t)

]
, (4)

where c1(t) is a suitable reference vector. In order to observe
changes in rhythmic activity in specific frequency bands, we
use band-pass- (BP-) filtered white noise to derive a reference
signal. Particularly, we use an 8th order Butterworth BP fil-
ter with lower and upper corner frequencies set appropriate
to the desired constraint. The ICA problem is now such that
the extra row in the measurement space due to the reference
vector results in an extra row in the IC space after the ICA
step (as well as a corresponding extra column in the mixing
matrix). For an n-channel system, the first n elements of the
extra mixing matrix column [a

n+1
1 , a

n+1
2 , . . . , an+1

n ] depict the
spatial distribution (topography) of the new IC given by the
row vector sn+1(t). Furthermore, each of the elements of the
(n+1)th row of the mixing matrix reflects a weighting of each
corresponding IC. This row vector, an+1, can in fact be used to
depict the contribution of each topography described by the
columns of the mixing matrix, due to the reference channel
c1(t). In this way, ICA now provides the desired convenient
spanning basis, and can also be used to obtain the topogra-
phy of interest (extracted by summing the weighted contri-
bution of each column of the mixing matrix). Furthermore,
the weighting value of each IC provides us with a spectrum of
values that can be interpreted to gain some insight into the
complexity for a given reference. The above technique can
be readily extended to more than one reference. However, in
this work we apply the method using just a single (µ-rhythm)
reference. Some techniques, such as this, have already been
included in the popular free ICA toolbox—ICALab [24].

2.3. The reference channel

Since the phase information of this added reference channel
is meaningless (i.e., we cannot expect the phase of the refer-
ence signal to be connected in any way to that of the desired
brain response), we overcome the problem of matching the
phase of the reference channel with that of the desired activ-
ity in the recordings, through calculating the lagged covari-
ance matrices that LSDIAGTD requires via the fast Fourier
transform (FFT) and then removing the phase information
of the signal in the frequency domain. Recall that the cross-
correlation of two functions f (t) and g(t) can be obtained
through convolution of f and g, such that

f ∗ g = F−1
[
F(v)G(v)

]
, (5)

where ∗ denotes convolution, F−1 denotes the inverse
Fourier Transform, F(v) and G(v) denotes the Fourier trans-
form of f and g, respectively, and F(v) denotes the complex
conjugate.

2.4. The dataset

In this work, we used two datasets: the 2003 BCI compe-
tition dataset IIa (self-regulation of µ- and/or central β-
rhythm) and the BCI competition III dataset IVa (mo-
tor imagery, small training sets) which are obtainable from
ida.first.fraunhofer.de/projects/bci/competition ii and com-
petition iii. In dataset IIa, the subjects either increase or de-
crease their µ- or β-rhythm amplitude power to control a
cursor’s vertical position aiming to the height of the cor-
rect target through visual feedback. In dataset IVa, the sub-
jects imagine either right-hand or right-foot movements in-
dicated by a visual cue on-screen without feedback. Although
these two experiments were designed in different ways, they
both used the property of ERD power spectrum adjusted by
different specific activation.

Dataset 1

The 2003 BCI competition dataset IIa (self-regulation of µ-
and/or central β-rhythm) was used, which was provided by
the Wadsworth Center [25]. This dataset contains a whole
record of an actual BCI system from 3 trained subjects in
10 sessions (about 30 minutes per session) each. EEG was
recorded from 64 scalp electrodes (10/20 system) sampled at
160 Hz. For this BCI to work, after a one-second resting pe-
riod during which the screen stays blank, a target appears at
one of four possible positions on the right-hand side of the
screen. One second later, a cursor appears at the middle of the
left of the screen and starts moving at constant speed across
the screen from left to right. When the cursor reaches the
right-hand side, the screen is cleared and the next trial be-
gins. The experiment includes visual feedback whereby the
vertical position of the cursor on the screen is determined
through brain activity. Three data subsets marked as AA, BB,
and CC are supplied. Each session consisted of 192 trials (48
trials for each target can be “top,” “upper middle,” “lower
middle,” or “bottom”). The first six sessions are labelled as
training sets. The remaining four sessions are test sets and
not labelled initially for the purposes of the competition. Af-
ter the competition, the labels for testing sets were released
and the datasets become available for developing new meth-
ods towards improving BCI studies. In this work, we only se-
lect trials with the target position code: “top” (Target 1) and
“bottom” (Target 2) to examine our proposed method.

Dataset 2

The BCI competition III dataset IVa from the Berlin BCI
group [26] was used. This dataset contains 118 multi-
channel (extended 10/20 system) EEG signals recorded from
five healthy subjects (labelled “aa,” “al,” “av,” “aw,” and “ay,”
resp.) at a sampling rate of 100 Hz. During the experiments,
subjects were prompted by a displayed letter (R/right hand,
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or F/right foot) to imagine for 3.5 seconds either right-hand
(Target A) or right-foot movements (Target B) without feed-
back. Each type of MI was recorded 140 times, thus in total
there are 280 trials for each subject. Between the trials, there
was a random period of time (1.75 to 2.25 seconds) in which
the subject could relax. This dataset also brings with it a chal-
lenge in that only a little amount of training data are avail-
able, this allows us to examine the influence of using small
training sets in order to reduce the training time. The task is
to classify the type of the imagined movement for each trial
in an offline fashion.

2.5. The proposed algorithm

The algorithm we propose includes three parts: (a) spatial
filter generation, (b) power feature extraction, and (c) classi-
fication. This is depicted in diagrammatic form in Figure 1.

2.5.1. Spatial filter generation

For the analysis, a number of epochs of the training dataset
were used to estimate the lagged covariance matrix stack Cx

τ .
We treat the stack of matrices as arising from two-part av-
eraged lagged covariance matrix stacks CXT1

τ , CXT2
τ in which

each part is obtained from trial data corresponding to one of
two targets, such that

C
x
τ =

[
C
XT1
τ ; C

XT2
τ

]
,

C
XT1
τ =

[
1

m

∑

xk∈XT1

C
xk
0 , . . . ,

1

m

∑

xk∈XT1

C
xk
l

]
,

C
XT2
τ =

[
1

n

∑

xk∈XT2

C
xk
0 , . . . ,

1

n

∑

xk∈XT2

C
xk
l

]
,

(6)

where τ = [0, . . . , l] depicts the range of lags (here l = 5 as
determined in previous work [27]). x ∈ [XT1,XT2] denotes
that trial data are from training set corresponding to the la-
bels: Target 1/A and Target 2/B. The number of trials in each
dataset, XT1 and XT2, is m and n, respectively. Here we set
the value of m equal to n to balance the proportion of trials
for both targets.

The spectrum, P(i), is defined as a trial spectrum in ith
channel by the sum of the ordinates of the frequency bins
(hd) within the proposed frequency band, that is,

P(i) =
∑

d∈D

hd, (7)

where D denotes the number of frequency bins. After cICA
decomposition, the EEG data are extracted into the ICs.
Thus, the power spectrum after cICA is defined as the sum
of the weighted spectra of sources (ICs) within the µ band.
So, for given source epochs, the power feature reflected in an
individual channel is defined as

fp(i) =
k∑

j=1

ak+1, jPic( j)ai, j , (8)

where k denotes the number of sources. As this implementa-
tion of cICA assumes a square mixing matrix, then the num-

ber of sources is the same as the number of measurement
channels, and ai, j is an element in the mixing matrix A. ak+1, j

is a particular element in the last row of A. Pic( j) denotes a
trial spectrum in the jth IC source.

2.5.2. Feature selection

In order to find discriminative power bands for each sub-
ject, we calculated the power spectra of two targets in these
two datasets, and then combined the variables on each in-
dividual channel into r2 values which represent the propor-
tion of the variance of spectral power values from the la-
belled training sets. By comparing to the averaged power
spectra corresponding to two targets, this describes the re-
lationship between power intensity and target labels. These
parameters were slightly different due to differences in each
individual recording. For example, in dataset IIa, two dis-
criminative power bands roughly around 10–15 Hz and 23–
28 Hz (Figure 2) are used. In this work we chose 10–15 Hz
as the working band. Increased power is taken to correspond
to Target 1 which raises the cursor in Subject AA and Sub-
ject CC while it makes the cursor go down in Subject BB
(Figure 3). In dataset IVa, we selected the subband approx-
imately around 8–15 Hz to calculate power (Figure 4). In-
creased power is related to Target 2 which is the right-foot
imagination (Figure 5) in all subjects.

As described in the above section, the data were origi-
nally recorded from 64 scalp electrodes for dataset IIa and
118 electrodes for dataset IVa. We are only interested in the
activity in the motor cortex, so the electrodes around the sen-
sorimotor cortex were chosen manually, these included C5,
C3, C1, C2, C4, C6, CP5, CP3, Cp1, Cp2, Cp4, Cp6, P5, P3,
P1, P2, P4, and P6. We only used a small segment of EEG
data for training in the proposed algorithm: for dataset IIa,
the data between 0.5–2 seconds of each trial are used after the
cursor is displayed on the screen; for dataset IVa, the data be-
tween 0.5–2.5 seconds are considered after the instruction is
displayed on the screen.

2.5.3. Classification

In order to evaluate the performance of the proposed al-
gorithm, we only consider a simple one-dimensional lin-
ear classifier based on thresholding the power feature(s) in
the chosen frequency band for the final classification. The
threshold value is selected by minimizing the number of tri-
als misclassified in both classes from the training set for indi-
vidual subjects. In addition, as a comparison for the classifi-
cation performance, we also applied a more complex classi-
fier, a support vector machine (SVM) [28] which constructs
a nonlinear separation hyperplane based on a machine-
learning algorithm.

The next procedure is to decide which power feature will
be suitable to use for the classification. Based on the distribu-
tion of r2 values across the topography maps in the previous
section, a number of channels (between 1 and 3) around the
left sensorimotor cortex were selected. The power on C3 was
used in the threshold classifier and the power on C3, CP1,
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Trial data from training set LSDIAGTD

Trial data from testing set Spatial filter

Power feature
extraction Classification

Figure 1: A diagram depicting the proposed algorithm. It includes three parts: spatial filter generation, power feature extraction, and classi-
fication.
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Figure 2: r2 values across the spectrum on C3 channel for Target 1
and Target 2 (Subject CC). The shadowed frequency band was cho-
sen in this work. Inset is the topography of the r2 values at 13.75 Hz
across channels.
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Figure 3: Averaged power spectra of trials corresponding to Tar-
get 1 and Target 2 (Subject CC). In this experiment, greater power
(Target 1) implies the cursor going up and vice versa.

and CP5 for the SVM classifier as the use of these power
features was found to be able to achieve better classification
accuracy in our study.
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Figure 4: r2 values across the spectrum on C3 channel for Target A
and Target B (Subject “ay”). The shadowed frequency band was cho-
sen in this work. Inset is the topography of the r2 values at 12.25 Hz
across channels.
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Figure 5: Averaged power spectra of trials corresponding to Target
A and Target B (Subject “ay”). The averaged power for imagined
foot movement (Target A) is greater than the power for hand move-
ment imagination (Target B).

3. RESULTS

Using the proposed method, the designed spatial filters will
be able to capture the relevant dynamics of the subject’s brain
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Figure 6: The power feature outputs of Subject CC for Testing ses-
sion 10. (a) shows the power features on C3 using unprocessed data;
(b) shows the power features on C3 after cICA processing. A circle
denotes Target 1 (drive cursor up); a star indicates Target 2 (cursor
down).

state more robustly. Furthermore, the resulting time series
would have optimized the spectra which could result in bet-
ter discrimination between two different brain states. The re-
sults show that following this pre-processing, even a simple
linear classifier can achieve superior classification accuracy.

Figures 6 and 7 depict the power features related to dif-
ferent targets before and after the processing for channel C3.
In Figure 6, we plot the power features of testing session 10
for Subject CC in dataset IIa. Ideally, the higher power fea-
ture is for Target 1 and lower power for Target 2 (Figure 3).
However, without spatial filtering, the power features be-
tween two targets from the original data appear overlapped,
and a classifier based on either a simple linear method or a
potentially complicated advanced method is hardly able to
separate these patterns efficiently. After the cICA process-
ing, the weighted power values for two different targets are
more widely separated than the power features from the un-
processed data. Figure 7 shows the power features of Subject
“ay” from dataset IVa. The power related to the right-hand
movement imagination is marked as Target A and the power
for right-foot movement imagination is marked as Target
B. As shown in Figure 5, the averaged power for imagined
foot movement is larger than the power for hand movement
imagination, but powers correlated to two different targets
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Figure 7: The power feature outputs for Subject “ay” on testing
set. (a) shows the power features on C3 using unprocessed data; (b)
shows the power features on C3 after cICA processing. A circle de-
notes the power feature for Target A (right hand imagination); a star
indicates the power feature for Target B (right foot imagination).

do not show much different in the raw data. After processing,
the power features are maximally separated into the different
levels, which further demonstrate the improved separation
achieved by using this spatial filter. The above examples sug-
gest that the use of this spatial filter can help to extract differ-
ent brain activities within a particular µ rhythmic band.

Table 1 lists the classification results on the test sets (most
sessions have 52 trials for each target, several have 51 trials)
in dataset IIa. For each subject, we use 80 randomly chosen
trials in total (40 for each target) to calculate the spatial filter.
The results are shown as three columns for each individual
subject. The first column shows the results using the unpro-
cessed data. The results of using a threshold-based classifier
with one power feature on C3 are shown in the second col-
umn. The third column is for the results from an advanced
SVM-based classifier using three power features on C3, CP1,
and CP5. Table 2 shows the classification performance on the
testing data in dataset IVa. There are five subjects contribut-
ing to individual subsets with different sizes of training and
testing sessions. The numbers of available trial data for train-
ing/testing sessions are shown in the first column. To con-
struct the spatial filter, the total number of training trials is
selected between 28 and 80 (average of 65 trials was used)
due to the different size of training sets. As before, one power
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Table 1: Classification accuracy of the test set based on power feature(s) in dataset IIa. The three columns for each individual subject show
the performance of linear classification on unprocessed data, linear classification and SVM classification on the processed data.

Testing
dataset

Data AA Data BB Data CC

Linear
classifier on
raw data

Linear
classifier on
extracted data

SVM on
extracted
data

Linear
classifier on
raw data

Linear
classifier on
extracted data

SVM on
extracted
data

Linear
classifier on
raw data

Linear
classifier on
extracted data

SVM on
extracted
data

Set 7 64.6% 80.2% 85.4% 65.6% 72.0% 73.0% 58.3% 85.4% 87.4%

Set 8 59.4% 88.5% 89.6% 71.9% 72.9% 72.9% 62.1% 92.2% 90.3%

Set 9 61.5% 80.2% 79.2% 66.8% 63.5% 67.7% 60.1% 86.1% 88.1%

Set 10 65.6% 80.2% 80.2% 59.4% 68.8% 72.9% 61.2% 96.1% 98.1%

Table 2: Classification accuracy of the testing set based on power feature(s) in dataset IVb. The columns depict the results using the three
proposed classification schemes, and the last column lists published [29] for comparison.

dataset
Training/test
trials

Linear
classifier
on raw data

Linear classifier
on extracted data

SVM on
extracted data

SVM on DS
features

al 224/56 48.2% 85.7% 89.3% 96.3%

aa 168/112 46.0% 83.0% 85.7% 83.3%

av 84/196 49.5% 75.0% 75.0% 72.7%

aw 56/224 55.4% 80.3% 85.3% 86.9%

ay 28/252 54.3% 85.0% 85.0% 89.0%

feature on C3 is used for the final classification based on a
threshold and a linear classifier. Moreover, three features on
channel C3, CP1, and CP5 were also applied to examine the
performance of an SVM classifier. In addition, as a compari-
son, the last column lists the classification results from previ-
ous published work [29] which proposes a method based on
dynamical system (DS) features together with an SVM clas-
sifier. The overall classification accuracy is about 85% by this
DS+SVM method. From the two tables, we can see that cICA
implementation extracts the related rhythmic information
very effectively. After processing, the classification accuracy
was of 82% for Subject AA, 69% for Subject BB, and 90% for
Subject CC in comparison with the average 62% accuracy be-
fore processing in dataset IIa. In dataset IVa, the classification
accuracy was of an average of 82% through five testing sets,
which is 30% higher than the accuracy using the unprocessed
data. It is worth noting that the more advanced SVM-based
classifier did not show a significant improvement in perfor-
mance on the same data, although an increase of about 2%
compared to the simple linear classifier was observed.

4. DISCUSSION AND CONCLUSIONS

Two datasets have been used to examine the performance of
the proposed algorithm. Dataset IVa concerns MI data, and
dataset IIa regards the self-regulation of µ/β-rhythm data.
Both of these datasets use the characteristic that changes in
the amplitude of sensorimotor rhythms over the right/left
hemisphere act as the major control pattern. The difficulty
here is to maximally and reliably identify two classes from
single-trial data. The proposed ICA technique using con-
straints has been developed and applied to isolate and extract

the power spectrum in the rhythmic band of interest. In or-
der to demonstrate the performance of the proposed cICA,
we only applied the power feature in the µ-rhythm frequency
band as the major classification pattern. The results, using a
simple linear classifier and an advanced SVM to classify the
ICA processed data, show that the classification accuracy has
considerably increased over processing the raw data. After the
basic analysis, the overall classification accuracy is improved
about 20% in dataset IIa and 30% in dataset IVa. As an ad-
ditional comparison of classification performance to cICA in
dataset IVa, we cited the results of a method using DS features
as well as an SVM in a publication. This method also includes
two steps for data pre-processing (an identical temporal filter
and a spatial filter). The accuracy was about 3% more than
the results of cICA with a linear classifier and 1% more than
cICA with an SVM. If we use a set of well-tuned parameters
to the proposed method, then the classification would be ex-
pected to reach a slightly better performance. Furthermore,
the use of a linear classifier following a simple spatial filter as
in our system is desirable from a computational complexity
perspective.

As this work is an application to single trial classifica-
tion, the sensitivity to artifacts in the EEG becomes a ma-
jor problem. The LSDIAGTD ICA algorithm uses the covari-
ance of the trail data to estimate the covariance stack matri-
ces which are the essentials to calculate the unmixing matrix
and hence the spatial filter. The random selection of train-
ing trials with artifacts can cause serious changes to the final
filter. Therefore, most methods require that the data should
be artifact-free, which can be achieved by several preprocess-
ing steps such as filtering or manual artifact rejection. Here,
instead of applying any preprocessing methods before hand,
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we estimate the stack matrices by using the averaged lagged
covariance matrices from the data. The idea behind the pro-
cess is that the influence of artifacts is reduced since the pro-
cedure of averaging the covariance matrices acts as a filter
which could balance and minimize the random noise level.
Moreover, the system includes a training phase used to tune
the proper unmixing matrix (spatial filter) using the pro-
posed ICA. Once the unmixing matrix has been computed,
it works as a spatial filter to remove the additional artifacts
by weighted spatial averaging the testing data trials and re-
turns the processed time series patterns. After filtering, the
different brain activities in the form of power can be clearly
extracted. It indicates that through the use of cICA, it is pos-
sible to track the rhythmic changes of different brain states in
the EEG. These results show a clear improvement for use in
this kind of BCI system.

In order to bring a BCI system to work outside of lab-
oratory conditions, several items need to be taken into ac-
count in future work. The number of electrodes used in the
system usually decides the cost of hardware and the related
difficulty of processing the ensuing data. The application of
ICA using fewer channels or even a single channel may be
the solution of the problem and is one area we are actively
pursuing [30]. Similarly, classification pattern selection may
be improved as the use of similar patterns (even if the fea-
tures are from different channels) might limit the capability
of the classifier so that even this advanced method cannot
work most effectively. Therefore, careful selection of diverse
features may alleviate the problem, that is, features in time or
in different frequency bands, and so forth. This may further
improve classification accuracy.
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