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Abstract

Althoughartificia neura networkshave been appliedin avariety of real-world scenarios
with remarkabl e success, they have often been criticized for exhibiting alow degree of
human comprehensibility. Techniques that compile compact sets of symbolic rules out
of artificia neura networks offer a promising perspective to overcome this obvious
deficiency of neura network representations.

This paper presents an approach to the extraction of if-then rules from artificial neu-
ra networks. Its key mechanism is validity interval analysis, which is a generic
tool for extracting symbolic knowledge by propagating rule-like knowledge through
Backpropagation-style neural networks. Empirical studiesin arobot arm domain illus-
trate the appropriateness of the proposed method for extracting rulesfrom networkswith
real-valued and distributed representations.

1 Introduction

In the last few years artificial neural networks have been applied successfully to a variety
of real-world problems. For example, neural networks have been successfully applied in
the area of speech generation [12] and recognition [18], vision and robotics[8], handwritten
character recognition [5], medica diagnostics[11], and game playing [13]. Whilein these
and other approaches neura networks have frequently found to outperform more traditiona
approaches, one of their major shortcomingsistheir low degree of human comprehensibility.

In recent years, a variety of approaches for compiling rules out of networks have been
proposed. Most approaches [1, 3, 4, 6, 7, 16, 17] compile networks into sets of rules with
equivaent structure: Each processing unit is mapped into a separate rule-or a small set
of rules—, and the ingoing weights are interpreted as preconditions to this rule. Sparse
connectivity facilitates thistype rule extraction, and so do binary activation values. |n order
to enforce such properties, which is a necessary prerequisite for these techniques to work
effectively, some approaches rely on specialized training procedures, network initializations



and/or architectures.

While such a methodology is intriguing, as it draws a clear one-to-one correspondence
between neura inference and rule-based inference, it isnot universally applicableto arbitrary
Backpropagation-style neura networks. Thisis because artificial neural networks might not
meet the strong representational and structural requirements necessary for these techniques
towork successfully. When the internal representation of the network isdistributed in nature,
individual hidden unitstypically do not represent clear, logical entities. One might argue that
networks, if oneisinterested in extracting rules, should be constructed appropriately. But this
would outrule most existing network implementations, as such considerations have barely
played arole. In addition, such an argument would suppress the devel opment of distributed,
non-discrete internal representations, which have often be attributed for the generalization
properties of neural networks. It isthismore general class of networksthat isat stakein this
paper.

This paper presents a rule extraction method which finds rules by analyzing networks as a
whole. Therulesare of thetype* if z theny,” whereboth « and y are described by alinear set
of constraints. The enginefor proving the correspondence of ruleand network classificationis
VI-Analysis. Rules extracted by VI-Anaysis can be proven to exactly describe the network.

2 Validity-Interval Analyss

Validity Interval Analysis (in short: VI-Anaysis) is a generic tool for analyzing the input-
output behavior of Backpropagation-style neurd networks. In short, they key idea of VI-
Anaysis is to attach intervals to the activation range of each unit (or a subset of al units,
like input and output units only), such that the network’s activations must lie within these
intervals. These intervals are called validity intervals. VI-Analysis checks whether such
a set of intervalsis consistent, i.e,, whether there exists a set of network activations inside
the validity intervals. It does this by iteratively refining the validity intervals, excluding
activations that are provably inconsistent with other intervals. In what follows we will
present thegenerd VI1-Analysisalgorithm, which can befound in more detail el sewhere[14].

Let n denotethetotal number of unitsinthe network, and let «; denotethe (output) activation
of uniti (i = 1,...,n). If uniti isan input unit, its activation value will simply be the
external input value. If not, i.e, if i refersto ahidden or an output unit, let P(7) denote the
set of unitsthat are connected to unit ¢ through alink. The activation x; is computed in two
steps:
r;, = Ui(neti) with net; = Z wipxp + 0;
keP(i)

The auxiliary variable net; is the net-input of unit ¢, and w;; and 6; are the weights and
biases, respectively. o; denotes the transfer function (squashing function), which usualy is
given by
t ! with o7t In ( ! 1)
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Validity intervalsfor activation values «; aredenoted by [a;, b;]. If necessary, vaidity intervals
are projected into the net-input space of unit ¢, where they will be denoted by [a}, b/]. Let
T be aset of validity intervals for (a subset of) al units. An activation vector (x4, ..., z,)
issaid to be admissible with respect to Z, if all activationslieinZ. A set of intervalsZ is
consistent, if there exists an admissible activation vector. OtherwiseZ isinconsistent.

Assume an initial set of intervals, denoted by 7, is given (in the next section we will present
a procedure for generating initial intervals). VI-Anaysis refines 7 iteratively using linear



Figurel: VI-Analysisin a singleweight layer. Unitsinlayer P are connected to the units
inlayer S. A validity interval [a;, b;] isassigned to each unit j € P U S. By projecting the
validity intervasforal i € S, intervas[a;, b/] for thenet-inputsnet; arecreated. These, plus
thevalidity intervalsfor al unitsk € P, form aset of linear constraints on the activations «,
inlayer P. Linear programming is now employed to refine all interval bounds one-by-one.

programming [9], so that those activation values which are inconsistent with other intervals
are excluded. In order to simplify the presentation, et us assume without loss of generality
(a) that the network is layered and fully connected between two adjacent layers™, and (b)
that there is an interval [a;, b;] C [0, 1] inZ for every unitin? and S.? Consider a single
weight layer, connecting alayer of preceding units, denoted by P, to alayer of succeeding
units, denoted by S (cf. Fig. 1). In order to make linear programming techniques applicable,
the non-linearity of the transfer function must be eliminated. Thisis achieved by projecting
[a;, b;] back to the corresponding net-input intervals® [al, b)) = o~ ([a;, b;]) € R? for al
i € 8. Theresultingvalidity intervalsin P and S form thefollowing set of linear constraints
on the activation valuesin P:

Yk eP: xp > ap and zp < by

VieS: Z wipey +0; > a;» [by substltutlng net; = Z Wik Tr + 92]
keP keP 1)
Z wiper +0; < b; [by substltutlng net; = Z Wik Tr + 92]
keP keP

Notice that dl these constraints are linear in the activation values «;, (k € P). Linear
programming allows to maximize or minimize arbitrary linear combinations of the variables
x; while not violating a set of linear constraints [9]. Hence, linear programming can be
applied to refine lower and upper bounds for vaidity interval s one-by-one.

In VI-Anaysis, constraints are propagated in two phases:

1. Forward phase. To refine the bounds a; and b; for units: € S, new bounds &; and b; are

1Thisassumptionsimplifiesthe description of VI-Analysis, although VI-Analysiscan also beapplied
to arbitrary non-layered, partially connected network architectures, as well as recurrent networks not
examined here.

2The canonical interval [0, 1] corresponds to the state of maximum ignorance about the activation
of aunit, and henceis the default interval if no more specific interval is known.

3Here R denotesthe set of real numbers extended by 4-cc. Notice that this projection assumesthat
the transfer function is monotonic.



a; = o(as) with a; = minnet; = minZwikxk—l—@'
keP

Bi = 0'(3;) with E; = maxnel; = maxZwlkxk—i—HZ
keP

If a; > a;, atighter lower bound isfound and «; isupdated by a;. Likewise, b; isset to b,
if b; < b;. Notice that the min/max operator is computed within the bounds imposed by
Eqg. 1, using the Simplex algorithm (linear programming) [9].

2. Backward phase. In the backward phase the bounds «; and b; of al unitsk € P are
reﬂne%k = minzy and Ek = maxazyg
Asintheforward phase, a; isupdated by &y, if dy > ay,, and by isupdated by by, if by < by.

If the network has multiple weight layers, this processis applied to al weight layers one-by-
one. Repetitive refinement resultsin the propagation of interval constraints through multiple
layers in both directions. The convergence of VI-Analysis follows from the fact that the
update rule that intervals are changed monotonicaly, since they can only shrink or stay the
same.

Recdl that the “input” of VI-Andysisis a set of intervals Z C [0, 1]" that constrain the
activations of the network. VI-Analysis generates arefined set of intervals, 7' C 7, so that
all admissible activation values in the origina intervals 7 are aso in the refined intervals
Z'. In other words, the difference between the original set of intervals and the refined set of
intervalsZ — 7' isinconsistent.

In summary, VI-Analysis analyzes intervals Z in order to detect inconsistencies. If 7 is
found to be inconsistent, there is provably no admissible activation vector in Z. Detecting
inconsi stenciesis the driving mechanism for the verification and extraction of rules presented
inturn.

3 RuleExtraction

The rules considered in this paper are propositional if-then rules. Although VI-Anaysisis
ableto proverulesexpressed by arbitrary linear constraints[14], for the sake of simplicity we
will consider only ruleswhere the preconditionis given by aset of intervalsfor theindividual
input values, and the output is a single target category. Rules of thistype can be written as:

Ifinput € some hypercube 7 then classis ' (or short: 7 — ()
for sometarget class C'.

The compliance of a rule with the network can be verified through VI-Anaysis. Assume,
without loss of generality, the network has asingleoutput unit, and input patternsare classified
as members of class C' if and only if the output activation, zqy, is larger than a threshold
¢ (see [14] for networks with multiple output units). A rule conjecture Z — ' is then
verified by showing that there is no input vector # € 7 that fals into the opposite class,
—(C'. Thisisdone by including the (negated) condition o, € [0, ¢] into the set of intervals:
Ineg = I + {xou € [0,¢]}. If the ruleis correct, zou Will never bein [0, ¢]. Hence, if
VI-Analysisfinds an inconsistency in Zpeg, the ruleZ — —C' is proven to beincorrect, and
thustheoriginal ruleZ — € holdstrue for the network at hand. Thisillustrateshow rules
are verified using VI-Andysis.

It remains to be shown how such conjectures can be generated in a systematic way. Two
major classes of approaches can be distinguished, specific-to-general and general -to-specific.
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Figure2: Robot Arm. (&) Front view of two arm configurations. (b) Two-dimensiona side
view. The grey areaindicates the workspace, which partialy intersects with the table.

1. Specific-to-general. A generic way to generate rules, which forms the basis for the
experimental results reported in the next section, isto start with rather specific rules which
are easy to verify, and gradualy generalize those rules by enlarging the corresponding
validity intervals. Imagine one has atraining instance that, without loss of generaity, fals
into aclass C'. The input vector of the training instance aready forms a (degenerate) set
of validity intervalsZ. VI-Anaysiswill, applied to Z, trivialy confirm the membership in
C, and hence thesingle-point ruleZ — C. Starting with Z, a sequence of more general
rule preconditionsZ C 7; C Z, C ... can be obtained by enlarging the precondition of
therule (i.e, the input intervals 7) by small amounts, and using VI-Anaysis to verify if
the new ruleis still a member of itsclass. Inthisway randomly generated instances can
be used as“seeds’ for rules, which are then generalized viaVI-Anaysis.

2. General-to-specific. An aternative way to extract rules, which has been studied in more
detail elsewhere [14], works from general to specific. Genera-to-specific rule search
maintainsalist of non-proven conjectures, R. R isinitiaized with the most general rules
(like* everything isin C” and “nothingisin C"). VI-Anadysisis then applied to prove
rulesin R. If it successfully confirmsarule, the rule and its complement is removed from
R. If not, the ruleisremoved, too, but instead new rules are added to R. These new rules
form a speciaized version of the old rule, so that their digunct is exactly the old rule. For
example, new rules can be generated by splitting the hypercube spanned by the old ruleinto
digoint regions, one for each new rule. Then, the new set R ischecked with VI-Anaysis.
Thewhol e procedure continuestill & isempty and the wholeinput domain is described by
rules. In discrete domains, such a strategy amountsto searching directed acyclic graphsin
breadth-first manner.

Obvioudly, thereisavariety of aternative techniquesto generate meaningful rule hypotheses.
For example, one might employ a symbolic |earning technique such as decision tree learning
[10] to the same training data that was used for training the network. The rules, which are a
result of the symbolic approach, constitutehypothesesthat can be checked using VI-Analysis.

4 Empirical Results

Inthissection wewill beinterested in extracting rulesin ared -valued robot arm domain. We
trained a neural network to model the forward kinematics function of a5 degree-of-freedom
robot aam. The arm, a Mitsubishi RV-M1, is depicted in Fig. 2. Its kinematic function
determines the position of the tip of the manipulator in (z, y, z) workspace coordinates and



coverage | average (per rule) | cumulative

first 10 rules 9.79% 30.2%
first 100 rules 2.59% 47.8%
first 1000 rules 1.20% 61.6%
first 20000 rules 0.335% 84.4%

Table 1: Rule coverage in the robot arm domain. These numbers include rules for both
concepts, SAFE and UNSAFE.

the angle of the manipulator £ to the table based on the angles of the five joints. Ascan be
seen in Fig. 2, the workspace intersects with the table on which the arm is mounted. Hence,
some configurations of the joints are safe, namely those for which =z > 0, while others can
physically not be reached without a collision that would damage the robot (unsafe). When
operating the robot arm one has to be able to tell safe from unsafe. Henceforth, we are
interested in a set of rulesthat describes the subspace of safe and unsafe joint configurations.

A total of 8192 training examples was used for training the network (four input, five hidden
and four output units), resulting in a considerably accurate model of the kinematics of the
robot arm. Notice that the network operates in a continuous space. Obviously, compiling
the network into logical rules node-by-node, as frequently done in other approaches to rule
extraction, is difficult due to the real-vaued and distributed nature of the internal represen-
tation. Instead, we applied VI-Analysis using a specific-to-general mechanism as described
above. More specifically, we incrementally constructed a collection of rules that gradually
covered the workspace of the robot arm. Rules were generated whenever a (random) joint
configuration was not covered by a previously generated rule. Table 1 shows average results
that characterize the extraction of rules. Initially, each rule covers arather large fraction of
the 5-dimensional joint configuration space. Asfew as 11 rules, on average, suffice to cover
more than 50% (by volume) of the wholeinput space. However, these 50% are the easy half.
Asthedomain getsincreasingly covered by rules, gradually more specific rulesare generated
in regions closer to the class boundary. After extracting 10,000 rules, only 84.4% of theinput
space is covered. Since the decision boundary between the two classes is highly non-linear,
finitely many ruleswill never cover the input space completely.

How genera are the rules extracted by VI-Anaysis? Generally speaking, for joint configu-
rations close to the class boundary, i.e., where the tip of the manipulator is closeto thetable,
we observed that the extracted rules were rather specific. If instead theinitia configuration
was closer to the center of a class, VI-Analysiswas observed to produce more genera rules
that had a larger coverage in the workspace. Here VI-Analysis managed to extract surpris-
ingly genera rules. For example, the configuration & = (30°, 80°, 20°, 60°, —20°), whichis
depicted in Fig. 3, yiddstherule

ifap < 90.5° and a3 < 27.3° then SAFE.

Notice that out of 10 initial constraints, 8 were successfully removed by VI-Anaysis. The
rule lacks both bounds on o1, «4 @and «5 and the lower bounds on «; and «3. Fig. 3ashows
the front view of the initial arm configuration and the generalized rule (grey areq). Fig. 3b
shows a side view of the arm, along with a dlice of the rule (the base joint «1 is kept fixed).
Noticethat thisvery rule covers 17.1% of the configuration space (by volume). Such genera
rules were frequently found in the robot arm domain.

Thisconcludesthebrief description of theexperimental results. Not mentioned hereareresults
with different size networks, and results obtained for the MONK'’ s benchmark problems. For
example, inthe MONK's problems [15], VI-Analysis successfully extracted compact target



Figure 3: A singlerule, extracted from the network. (a) Front view. (b) Two-dimensional
sideview. The grey area indicates safe positionsfor thetip of the manipulator.

concepts using the originally published weight sets. These results can be found in [14].

5 Discussion

Inthispaper wehave presented amechani smfor the extraction of rulesfrom Backpropagation-
styleneural networks. Thereare severa limitationsof the current approach that warrant future
research. (a) Speed. While the one-to-one compilation of networks into rulesis fast, rule
extraction via VI-Analysis requires multiple runs of linear programming, each of which can
be computationally expensive [9]. Searching the rule space without domain-specific search
heuristics can thus be a most time-consuming undertaking. In all our experiments, however,
we observed reasonably fast convergence of the VI-Algorithm, and we successfully managed
to extract rules from larger networks in reasonable amounts of time. Recently, Craven and
Shavlik proposed a more efficient search method which can be applied in conjunction with
VI-Anaysis[2]. (b) Language. Currently VI-Analysisislimited to the extraction of if-then
ruleswith linear preconditions. Whilein[14] it hasbeen shown how to generalizeVI-Analysis
to rules expressed by arbitrary linear constraints, a more powerful rule language is clearly
desirable. (c) Linear optimization. Linear programming analyzes multiple weight layers
independently, resulting in an overly careful refinement of intervals. This effect can prevent
from detecting correct rules. If linear programming is replaced by a non-linear optimization
method that considers multiple weight layers simultaneously, more powerful rules can be
generated. On the other hand, efficient non-linear optimization techniques might find rules
which do not describe the network accurately. Moreover, itisgeneraly questionablewhether
there will ever exist techniques for mapping arbitrary networks accurately into compact
rule sets. Neural networks are their own best description, and symbolic rules might not be
appropriate for describing the input-output behavior of a complex neural network.

A key feature of of the approach presented in this paper is the particular way rules are
extracted. Unlike other approaches to the extraction of rules, this mechanism does not
compile networksinto structurally equivalent set of rules. Instead it analyzes the input output
relation of networks as awhole. As a consequence, rules can be extracted from unstructured
networkswith distributed and real -valued internal representations. In addition, the extracted
rulesdescribe the neural network accurately, regardless of the size of the network. Thismakes
VI-Analysisapromising candidate for scaling rule extraction techniquesto deep networks, in
which approximate rule extraction methods can suffer from cumulative errors. We conjecture
that such properties are important if meaningful rules are to be extracted in today’s and
tomorrow’s successful Backpropagation applications.
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