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Abstract This paper presents an automated method-
ology for extracting the spatiotemporal activity model
of a person using a wireless sensor network deployed in-
side a home. The sensor network is modeled as a source
of spatiotemporal symbols whose output is triggered by
the monitored person’s motion over space and time. Us-
ing this stream of symbols, we formulate the problem of
human activity modeling as a spatiotemporal pattern-
matching problem on top of the sequence of symbolic
information the sensor network produces and solve it
using an exhaustive search algorithm. The effectiveness
of the proposed methodology is demonstrated on a real
30-day dataset extracted from an ongoing deployment
of a sensor network inside a home monitoring an elder.
Our algorithm examines the person’s data over these
30 days and automatically extracts the person’s daily
pattern.
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1 Introduction

The growing numbers of aging baby boomers and the
increasing healthcare cost [30],[13],[31] obviate the need
for automated services that will increase the indepen-
dence and autonomy of elders living at home. Wireless
sensor networks offer a promising technology for realiz-
ing such services. On one hand, small wearable devices
can collect biometric information, provide feedback and
automatically update medical records. On the other
hand, other devices deployed inside the living environ-
ment, can monitor the actual people over space and
time, understand their activities/behaviors and provide
responsive services to them.

In this paper we explore the problem of creating a
human activity model from data collected by a sensor
network deployed inside a home. We do so by deploying
sensors in the house infrastructure without requiring
the inhabitant to wear any sensors. Our reasoning for
constructing the models is based on the fact that human
activity is a sequence of actions over space and time. All
humans execute a daily cycle in which many activities
are periodic and elders living alone in particular, tend to
have a highly periodic set of routines that they execute
from day to day.

As the monitored person moves from room to room
inside the house, a sequence of detected sensing fea-
tures is produced over time. This sequence represents
the monitored person’s activity signature and its com-
posed of a set of triplets containing location, time and
duration information. To better illustrate this, consider
the 7-day data trace, we have acquired through an ac-
tual sensor network deployment in an elder’s person
house, shown in Figure 1. By simply inspecting the se-
quence of rooms that the person visited over time in-
side the house, it is clear that patterns, strongly related
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Fig. 1 7-day window of the data trace recorded from our home network deployment.

to the person’s activities, start emerging. The sleeping
pattern, the bathroom visits, the time that the person
is not home and many more patterns provide invaluable
information about the person’s daily living habits.

The main contribution of this paper is the devel-
opment of a methodology for automatically identify-
ing the activity model of a person (like the one shown
in Figure 9) using a wireless sensor network. First, we
model the sensor network as a spatiotemporal symbol
generator that is triggered by the monitored person as
he moves over space and time. Based on our network
model, we formulate the problem of finding the daily ac-
tivity model of a person as the problem of finding the
most probable, network-level, sequences of node-level,
sensing features, namely location, time and duration.
We propose a methodology for encoding the detected
sensing features (location, time and duration) in a way
that allows us to apply an exhaustive, yet very efficient,
algorithm for automatically discovering sequential pat-
terns based on how frequently they appear in a given
data trace. The effectiveness of the proposed methodol-
ogy is demonstrated using a data trace collected by an
actual sensor network deployment of Passive Infrared
sensors (PIR) in the house of an elder person living
alone for a period of 30 days. Our results, show that: 1)
there is a daily activity pattern and 2) we can automat-
ically generate this daily activity model while taking
into account both its spatial and temporal characteris-
tics.

The rest of the paper is organized as follows. Sec-
tion 2 describes the motivation and contributions of this
work and Section 3 provides an overview of the related

work. In Section 4 we present our testbed along with the
type of information it records and we describe in detail
the proposed network model. In Section 5 we formu-
late the problem of human activity model generation
as a human spatiotemporal pattern discovery problem.
Section 6 describes an exhaustive, yet efficient, pattern
finding algorithm and Section 7 provides a novel, simple
and scalable way for jointly considering space and time
information in the pattern discovery process. In Sec-
tion 8 we present the results of applying the proposed
method on a 30-day dataset, recorded from a deployed
sensor network in an actual elder’s person. Section 9
concludes the paper.

2 Motivation and Contributions

Our approach to human activity modeling is motivated
by, but not limited to, the assisted living application
domain. Elder people living alone need continuous med-
ical attention and they currently face a tremendous
dilemma. To guarantee they receive the medical atten-
tion they need, they have to sacrifice their independence
and personal social life by either living in nursing homes
or spending a significant fraction of their time in a spe-
cialized hospital for continuous monitoring. Not only
does this reduce their independence but it also affects,
in a negative way, their psychological status. An intelli-
gent sensor network could be used to completely elimi-
nate this dilemma. It could guarantee that elder people
living alone receive the medical attention they need,
while maintaining their independence and freedom. As
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Fig. 2 An intelligent sensor network for continuously monitoring elder people living alone.

it can be seen in Figure 2, a wireless sensor network
could be used to continuously monitor the elder person
living alone as he moves over space and time inside the
house. Based on the interpretation of the sensing data,
the network could be used to guard against unsafe ac-
tivities, post reminders, automate tasks and even ini-
tiate conversation with the monitored person. Instead
of passively monitoring the home environment, the net-
work could actively use the sensing information to en-
force a set of rules such as: make sure that the person
is engaging(or not engaging) into the activities that his
doctor recommends (or does not recommend), predict
the activities that will be performed next and auto-
matically prepare the house for them, detect unusual
or abnormal activity and notify the necessary medical
personnel and/or family and close friends with detailed
information about the status of the monitored person
over the last few minutes, hours or days, and more. At
the same time, immediate family members and medical
personnel would be able to configure and re-task the
network, in order to adjust the monitoring process and
customize it to the needs of the elder person over time.

The work presented here is one of the steps we have
taken towards this direction [16-18]. In particular, the
contributions of this paper are the following;:

1. We propose a methodology for properly encoding
continuous time information in the raw sensing data
into discrete spatiotemporal symbols. Our approach
allows us to keep the size of the input data set intact
while encoding all the necessary information (spatial

and temporal) we need to accurately extract activity
information.

2. We formulate the problem of extracting human ac-
tivities from raw sensing data as a sequential pat-
tern search problem and apply an exhaustive, yet
very efficient, algorithm to automatically discover
sequential patterns based on how frequently they
appear over a given time window.

3. We evaluate the proposed methodology using one of
our home sensor network deployments. A combina-
tion of camera and PIR sensor nodes were used to
continuously monitor an elder person living alone
for 30 days. After applying our methodology on the
30-day sensor stream we show that the monitored
person has a daily activity cycle that we are able to
accurately and automatically discover.

3 Related Work

The problem of human activity recognition has been
considered in several different domains [11,22,20,23,14]
including wireless sensor networks [10,25,29,24,1,5-7].
These approaches usually focus on the robust detec-
tion of a single activity either through specification or
typical learning techniques on top of labeled data. Our
work differs in the sense that (1) it provides a general
method for discovering multiple activities given a large
data trace that contains unlabeled data and (2) it takes
special care of both spatial and temporal properties of
the different activities.



Our previous work in hierarchical human activity
recognition based on user-defined probabilistic context-
free grammars [16,17] is complimentary to the work
presented here. Instead of relying on a user-defined spec-
ification of an activity as it was done in previous papers
[16], in this chapter we automatically extract the activ-
ity as a spatiotemporal pattern given a recorded data
set that might contain one or more activities. The two
approaches are complimentary in the sense that the au-
tomatically discovered patterns could be used to refine
the user-defined activity specifications so that more ro-
bust activity detection is achieved.

The most closely related work to ours is the work
done by Agrawal at. al [2,3]. There, the notion of fre-
quent itemset and frequent sequential pattern discov-
ery in a sequence of events is introduced. Based on
the a-priori principle, Agrawal was the first to propose
efficient algorithms for discovering spatiotemporal se-
quences of events in large event sequences [3]. Since
then, several research efforts led to minor [28,9,27,21]
or major [19] modifications of these algorithms. The
magjor difference in our work lies on the way we ez-
tract, encode and use time information in the pattern
discovery phase. In particular, we propose a novel clus-
tering approach for automatically extracting the tem-
poral characteristics of events that can later be used to
encode time information on a per-event basis. By doing
so, we can combine the efficiency of the a-priori based
sequential pattern mining algorithms with the flexibil-
ity of exploiting different temporal characteristics on
different input events.

Our work also differs from previous research efforts
[9,27,4,12,21,26] in the sense that we focus on discov-
ering sequential patterns that are closely related to hu-
man activities and not abstract, statistical correlations
of events in the input sequence that might not be di-
rectly mapped to human activities.

4 Deployment and Network Model

The data considered for this work comes from an on-
going sensor network deployment that monitors an el-
der living alone. The testbed includes a wide variety
of sensors including tracking cameras, door sensors and
passive infrared sensors. To derive the activity models
presented in this paper we only used the PIR measure-
ments. Every room in the house contains PIR sensors
placed in a pattern that can capture the elder’s tran-
sitions from room to room. Each time a sensor gets
triggered it transmits its ID to a home gateway that
timestamps and records the sensor ID and uses the
data to compute a room-transition function. A 7-day
time window of the room transition plot from the actual

testbed is shown in Figure 1. From this high level view
it is already apparent that the daily activity of the per-
son under observation has regular recurring patterns.
The method proposed in this paper will be applied to
the complete dataset to extract these recurring patterns
and construct a model of the person’s daily pattern.
Based on our deployment, the network generates a
sequence of triplets of the form: {P,T, D} where:

— P: is the phoneme detected by the sensor node (a
room identifier for this discussion).

— T is the actual timestamp at which this phoneme
was detected.

— D: is the duration of the phoneme.

For instance, each horizontal line in Figure 1 corre-
sponds to a specific area or room visited by the mon-
itored person inside the house. Vertical lines simply
denote the transition from a specific room/area to a
new one. Note that each horizontal line encodes ex-
actly three pieces of information: the location of the
person at a given time instant denoted by its position
on the y-axis (P), the exact time the person visited the
location denoted by the start of the line (T"), and of
course the duration of this visit denoted by the length
of the line (D). In essence, every line corresponds to a
spatiotemporal triplet {P, T, D}.

As the person moves over space and time, sequences
of such triplets are generated at run-time. Therefore,
the output of sensor node i over time will be a time or-
dered sequence of triplets S%. Assuming that in a given
time frame, sensor node ¢ has generated N; triplets, its
output can be denoted as follows:

St =< {Plz7 ll’Dzl}v{P217 2iv
,where : T{ < Ty < ... < Tk

Consequently, the output O over time of a sensor net-
work with n nodes becomes a collection of such time
ordered sequences of triplets:

O ={S',82... 5",
1S = Ny, |S%| = Na,...,|S"| = N,

where S is the time ordered output sequence at node
1, containing N; triplets. For instance, in Figure 1, the
waveform at the bottom represents the output O of the
sensor network while the two waveforms on the top rep-
resent the outputs of the nodes monitoring the bedroom
and the bathroom respectively.

We define an episode E(Tsiare, Tsiop) as the time-
ordered sequence of all triplets in the output sequences
of every node in the network that were recorded be-

tween Tssqrs and Tszop. Formally, the episode E(Tstart, Tstop)

is defined as follows:

54 APk, Tk, Dy} >



E(Tstar_thstop) = {(P;7T;aD;)|(P;7T’;7D;) S Siv
Tstart S sz S TstopViaj}

Note that each episode is nothing more than a temporal
clustering of triplets that might be recorded to one or
more sensor nodes. Given the definition of episodes we
can express the output O of the sensor network as a
collection of episodes:

O = {E(T\,Ty), E(Ty, T3), E(T3,Ty), ...} 1)

To better illustrate our network model, let us con-
sider the simple night/morning activity of the elder
person monitored in our deployment. According to the
data trace collected, the elder person will go to sleep
around 11pm, wake up to go to the bathroom in the
middle of the night and then return to sleep, then wake
up again in the morning to visit the bathroom and
then visit the kitchen to have breakfast. Given that
the basic phonemes generated by our sensor network
are rooms, a typical sequence of time-ordered phoneme
triplets would be the following(duration is in minutes):

< {Bed,”11 : 00pm”, 300}, { Bath,”4 : 00am”, 5},
{Bed,”4 : 05am”, 300}, {Bath,”9 : 05am”, 10},
{Kitchen,”9 : 15am”,30} >

of the monitored person’s activity at different points
in time. As a result of this, discovering the similarities
across a large set of episodes results into discovering
the basic activity model of the monitored person. The
type of the model depends on the time duration of an
episode. For instance, when an episode is defined as
a single day, week or month of activity then the pro-
cess of discovering activity patterns across a large set
of episodes corresponds to the daily, weekly or monthly
activity model respectively.

In particular, the more frequently a sequence of phoneme

triplets appears on a sequence of episodes the more im-
portant it is for the activity model. In general, given
a sequence of episodes, we define the frequency f; of a
phoneme triplet sequence as:

NE
fs:ﬁ

where NF is the number of episodes where the sequence
s appears at least once and NP is the total number
of episodes. Note that: 0 < f; < 1 and therefore the
frequency fs can be seen as the appearance probability
of the sequence s in the input sequence of episodes.

Problem Statement: Given a sequence of episodes
generated by a sensor network, find all the sequences s;

The above sequence represents an instance of the night/ morlﬁ’iﬁlgiplets with frequency fs, = fen-

activity pattern of the elder person. If we define an
episode as the time-ordered sequences of all phoneme
triplets that take place between 10pm and 10am every
day, then different episodes would correspond to differ-
ent instances of the same activity pattern:

E'(10pm,10am) =< {Bed,”11 : 00pm”, 300},
{Bath,”4 : 00am”, 5}, {Bed,”4 : 05am”, 300},
{Bath,”9 : 05am”, 10}, { Kitchen,”9 : 15am” 30} >

E?(10pm, 10am) =< {Bed,”10 : 30pm”, 270},
{Bath,”3 : 00am”,3},{Bed,”3 : 03am”, 330},
{Kitchen,”8 : 33am”,20} >

E3(10pm,10am) = . ..

Note, that in different episodes the absolute time and
duration characteristics of the sequences or even the
sequences themselves might be different.

5 Extracting Activity Patterns
from Data Sequences

The output O of the sensor network is a collection of
triplet sequences over time that are temporally orga-
nized in episodes. Each episode encodes the spatiotem-
poral activity of the monitored person in a specific time
window. Different episodes provide different instances

The goal of the above problem statement is to find
the most frequent sequences of triplets in a given sen-
sor network output. fy, is a user-specified threshold
that defines what most frequent actually means. All se-
quences with a frequency higher than f;, are considered
to be frequent. Frequency can be considered as a mea-
sure of how often a sequence of triplets appears in the
output of the network. The more often a sequence ap-
pears the more probable is that this sequence encodes
one of the core(most-performed) activities of the moni-
tored person. Being able to find all these core activities
will allow us to build the spatiotemporal model of the
person’s daily, weekly or monthly activity habits. The
ability to construct a model with spatiotemporal char-
acteristics lies on the fact that triplets encode both spa-
tial (phoneme P) and temporal (timestamp T and du-
ration D) information. In other words, triplet sequences
are nothing more than a spatiotemporal signature of the
monitored person as he moves inside the house.

Note, that the sequences we want to find are not
necessarily subsets of the sequences S%,i = 1,...,n pro-
duced by a single sensor node. Instead, the sequences
we aim to find are subsequences of episodes which in
most of the cases include triplets that belong to dif-
ferent node-level sequences S*. We call these sequences
network-level sequences.



6 Human Activity Discovery

To simplify our discussion, in this section, we will ig-
nore the temporal information included in each triplet
generated from a sensor node. In the next section we
demonstrate how the proposed approach can be trans-
parently used on top of the spatiotemporal triplets.

A brute-force approach to the problem would be to
generate all possible sequences of all possible lengths for
all the different episodes, then compute the frequency
of each sequence and choose those sequences that have
a frequency higher than f;;. Even though this consists
of an exhaustive search over the input that will find all
frequent paterns, it requires to first generate a huge list
of candidate frequent sequences and then for each one
of these candidates we have to parse all the episodes
to compute each candidate’s frequency. Even worse, as
the number of different phonemes increases and/or the
number of observed phonemes in an episode increases,
the number of candidate frequent sequences explodes.

Our goal is to reduce the total number of candi-
date frequent sequences before we even try to compute
their frequencies while making sure that all frequent
patterns will be discovered. To deal with this problem,
we take advantage of the apriori principle [2,3]: if a se-
quence is frequent then all of its subsequences must be
frequent. This argument is very similar to the shortest
path argument in a network of nodes. The path be-
tween any pair nodes that are located on the shortest
path between two nodes is also a shortest path. This
observation is very important for two reasons. First, it
indicates that all the candidate frequent sequences of
size L should be generated by the frequent sequences of
size L —1. This is due to the fact that the supersequence
of any non-frequent sequence will also be a non-frequent
sequence. Second, after generating the candidate fre-
quent sequences of size L, every sequence that con-
tains a non-frequent subsequence should be automat-
ically eliminated because it cannot be frequent. Based
on these two fundamental observations, Agrawal et. al
have designed an efficient algorithm, called the a-priori
algorithm, for exhaustively searching the input set of
episodes to find all the frequent sequences [2,3].

Figure 3 shows the basic steps of this algorithm.
First, the frequency of every sequence of length one is
computed. In practice, the frequency of every phoneme
is computed and the set of frequent phonemes F} is
formed by choosing all the phonemes with frequency
higher than f;;,. At the next step, the set of frequent
phonemes is used to generate the candidate frequent
sequences of length two. In general, the algorithm will
iteratively generate all candidate frequent sequences of
size L using as input the frequent sequences of size L—1.

// Find all frequent sequences of size 1

L=1

Fp = {slfs > fin}

while(Fp! = 0)

{ L=L+1
// Generate candidate frequent sequences of size L
Cr, = candidate_generation(Fr,_1)
for every episode E

// Find all candidate frequent sequences
// that appear in episode E

Cg = find_sequences(CpL, E)

for every sequence s in Cg

{
}
}

Fr, = {s|s € Crandfs > fin}

fs:fs+1

}

Frequent_Sequences = U Fr,

Fig. 3 The a-priori algorithm for discovering the frequent se-
quences in a set of episodes.

This is done in two discrete steps that have been ex-
haustively studied in the dta mining domain [2,3,28,
32,8]:the candidate generation and pruning steps. First
(candidate generation step), every frequent sequence of
size L — 1 is expanded by one frequent phoneme. If
there are more than one frequent phonemes then ev-
ery frequent sequence of size L — 1 generates a can-
didate frequent sequence of size L for every frequent
phoneme. Second (candidate pruning step), the candi-
date frequent sequences of size L that contain a non-
frequent subsequence of size L—1 are immediately elim-
inated and C7p, is formed. As soon as (7, is defined, we
pass each episode to find which of the sequences in C7,
are contained in that episode. Every time that a se-
quence in Cp, is contained in an episode its frequency
is increased by one. After we examine all episodes, the
set of frequent sequences of size L (F}) is formed by
keeping only those candidate frequent sequences in Cp,
with frequency higher than f;;. This process continues
iteratively until the set of candidate frequent sequences
is the empty set. The final output of the algorithm con-
sists of all the frequent sequences of different sizes.

Note, that at each iteration of the algorithm the
new candidate frequent sequences are generated by the
frequent sequences identified in the previous step. In
that way, the overall number of sequences for which we
have to compute their frequency is drastically reduced
at every step. This reduces the number of passes we
have to perform over the set of episodes, which in gen-
eral might be quite large. Hence, the cost of finding the
most frequent patterns while making sure that all exist-
ing frequent patterns will be discovered is dramatically
reduced.



7 Handling Space and Time: A Scalable
Approach

The methodology presented in the previous section al-
lows for an exhaustive search over the output of the sen-
sor network for discovering sequences of triplets with a
frequency that is higher than a predefined threshold.
Even though each triplet contains both location and
time information (start time and duration) , so far we
have only used the time in a primitive way for sorting
out the locations produced by the different nodes in the
network. As a result of this, the sequences we discover
are nothing more than sequences of spatial features over
time. It is apparent that essential temporal information
included in the triplets is ignored. For instance, consider
the simple example where we want to monitor the bath-
room usage from an elder person living inside the house.
Knowing that the monitored person visited the bath-
room is a useful piece of information. However, knowing
when this visit took place is even more important; it is
normal for an elder person to visit the bathroom reg-
ularly during a day and right after he wakes up, but
when a bathroom visit is taking place in the middle of
the night its meaning might be totally different. In the
same sense, the duration of this activity is also very
important. For example, a couple of bathroom visits in
the evening or during the day might be considered nor-
mal activity, however, lengthier bathroom visits over
the night can be used to identify abnormal or possibly
emergency situations.

It is clear that even though location, time and du-
ration of an event/activity can independently provide
useful information, when these features are combined
together we can interpret the same event in a totally
different way. Given this, the following question arises:
How can we combine the different spatial and temporal
information that a triplet provides with the methodology
presented in the previous section in a scalable way? An-
swering this question is challenging due to the following
reasons:

1. Different activities and even different phonemes re-
quire different time and duration resolutions. For in-
stance, monitoring bedroom activity requires a du-
ration resolution that can vary from tens of min-
utes to several hours. In the same sense, bathroom
monitoring requires a duration resolution that varies
from a few minutes up to tens of minutes. For the
proposed sequence pattern discovery method to be
efficient enough in terms of discovering informative
patterns, we have to concurrently support all these
different resolutions.

2. The support of different time and duration resolu-
tions must have the minimum possible impact on

the size of the data set over which the proposed
method is executed. Increasing the size of the data
set can lead to extremely large execution times of
the proposed method and therefore limit its appli-
cability.

Current state-of-the-art methods take advantage of
user-defined time windows to guide the pattern discov-
ery process in the sequence of episodes [28,19]. These
time windows are used to constrain the scope of the
pattern search algorithm in terms of the actual time
and duration of a pattern. Even though this approach
does not increase the size of the input to the search
algorithm, it has a significant drawback; it is not flexi-
ble enough to adjust to the different temporal charac-
teristics of different patterns. Using a fixed time win-
dow in the search algorithm prevent us from efficiently
searching for temporal patterns. On the other hand, us-
ing variable window sizes can significantly increase the
complexity of the pattern search algorithm.

To deal with this issue, we have designed a flex-
ible, user-configured, hierarchical temporal abstraction
layer that encodes both the spatial and temporal infor-
mation of a triplet into a single spatiotemporal sym-
bol/phoneme. Executing the method described in the
previous section on top of these symbols allows us to
discover spatiotemporal sequences. Figure 4 shows the
main components of the proposed temporal abstraction
layer. Note that besides the sensor network input of
triplets sequence, the user of the system provides two
sets of condition parameters '. These are used to hi-
erarchically condition the input triplets based on their
timestamps and/or their duration. Both parameter sets
include user-specified conditions that could be applied
to all, a subset or only a specific triplet of the input
sequence. The filtering process for identifying which
triplets are subject to a condition parameter is done
using their phoneme fields. Initially, every triplet in the
input sequence that satisfies the filtering criteria will be
conditioned on the actual timestamp it was recorded us-
ing the user-defined parameters. This process will con-
vert all or a subset of the input triplets: {P,T, D} into
a tuple: {PT, D}, where PT is the new phoneme name
(provided by the user) that embeds both spatial and
absolute time information. Note that if a condition pa-
rameter for a specific type of phoneme does not exist,
then the input triplet is simply converted to a tuple
by ignoring the timestamp field of the triplet. At the
immediate next level, the tuples that satisfy the filter-
ing criteria of the user-specified duration condition pa-

I The start time and duration condition parameters can be
either entered directly by the user based on prior information
or they can be automatically extracted from the input phoneme
triplets using the methodology we presented in [15].



rameters will be conditioned on their duration values.
Again, if a condition parameter for a specific type of
phoneme does not exist, then the input tuple is simply
converted to a spatiotemporal phoneme by ignoring the
duration field of the tuple. This process will convert all
or a subset of the input tuples: {PT, D} into a single
symbol /phoneme: { P77},

Note that PT>P now embeds spatial, absolute time
and duration information into a single spatiotemporal
phoneme. Running the method described in Section 6
on the output sequence of spatiotemporal phonemes
allows us to identify spatiotemporal patterns without
the need to explicitly process absolute time or duration
information. In this way, we manage to identify spa-
tiotemporal patterns by simply conditioning the input
triplets based on absolute time, duration or on both ab-
solute time and duration. This approach can be seen as
a phoneme renaming process that allows us to keep the
size of the input data set intact while encoding all the
necessary information we need. The only incurred over-
head has to do with increasing the different number of
phonemes used, however, this has no effect on the size of
the input to the algorithm and therefore on its complez-
ity. In addition, it provides the necessary flexibility to
the user to apply different condition parameters at dif-
ferent phonemes or even different condition parameters
at the same phoneme according to the requirements of
different activities. Hence, the proposed scheme scales
well with both the size of the input data set as well as
with the number of activities and phonemes we want to
exploit.

To demonstrate how this temporal abstraction op-
erates, consider the following input sequence of room,
time and duration triplets (duration is expressed in
minutes):

< {Bed,”11 : 00pm”, 510}, {Bath,”7 : 30am”, 25},
{Bed,”7 : 55am”,15},{Bath,”8 : 10am”,5},
{Kitchen,”8 : 15am”,30} >

This sequence shows a typical morning activity. The
person went to sleep at 11pm, slept for 8,5 hours, then
woke up, took a shower, then returned to the bedroom
to get dressed, quickly visited the bathroom and finally
went to the kitchen to get breakfast. A possible set of
absolute time condition parameters in this case could
be the following:

<{Bed_Night_Sleep}, {Bath_Morning_Shower},
{Bed_Morning}, {Bath_Morning}, {Kitchen_Short} >

T I Duration
ICondition Parameters
<{Bed_Night,510}, {Bath_Morning,25},
{Bed_Morning,15}, {Bath_Morning,5}, {Kitchen,30} > |

Absolute Time Based Conditioning A—@h

Absolute Time
Condition Parameters
<{Bed,”11:00pm” 510}, {Bath,” 7:30am” 25}, {Bed,
“7:55am",15}, {Bath,”8:10am" 5}, {Kitchen,”8:15am",30} >

f

Sensor Network Output ‘

User

Temporal Abstraction Layer

—— ——

Fig. 4 Outline of the temporal abstraction layer.

After applying this conditioning to the input sequence
of triplets we get the following sequence of tuples:

< {Bed_Night, 510}, { Bath_Morning, 25},
{Bed_Morning, 15}, {Bath_Morning, 5}, { Kitchen, 30} >

Note that all absolute time references have been elim-
inated and the Kitchen phoneme remained the same
since there was no conditioning parameters defined for
it. At the immediate next step the set of duration con-
dition parameters is applied. Such a simple set of pa-
rameters can be seen next:

Phonemes Duration Spatiotemporal
Range Phoneme
{Bed} (120,700) {Bed_Sleep}
{Bed_Night} (120,700) {Bed-Night_Sleep}
{Bath} (15,30) {Bath_Shower}
{Bath_Morning}  (15,30)  {Bath_Morning_Shower}
{Kitchen} (5,40) {Kitchen_Short}

By applying this set of duration condition parameters
on the input sequence of tuples we get the following
sequence of spatiotemporal symbols:

< {Bed_Night_Sleep},{ Bath_-M orning_Shower},
{Bed_Morning},{Bath_-Morning},{ Kitchen_Short} >

Note that each symbol in the new output sequence
encodes absolute time, location and duration informa-
tion. For instance, the Bath_Morning_Shower indicates
a bathroom visit that took place in the morning with a
duration large enough to indicate shower activity. In the

Spatiotemporalsame way, the Bed_Night_Sleep phoneme provides infor-

mation of a sleeping activity that took place during the

Phonemes Time
Range Phoneme
{Bed} (”8:00pm”,”12:30am”)
{Bed} (”5:00am”,”11:00am”)
{Bath} (”5:00am”,”11:00am”)

{Bed_Night} night. The time and duration condition parameters for

Bed_Mornine Whe different phonemes can be either specified by the
{Bed_Morning} P P y
{Bath_Morning Jiser or extracted for exploiting the statistics of the raw

sensing data as it is demonstrated in Section 8.2.



Due to the semantic information embedded in these
symbols, we can use the proposed method for finding
way more fine grained, and thus more informative, se-
quences over space and time. In that way, instead of
modifying the algorithm described in Section 6 to ex-
plicitly process time information, something that could
significantly increase its complexity and would poorly
scale with the size of the input data set, we encode the
spatiotemporal information into the input phonemes
allowing us to implicitly discover spatiotemporal pat-
terns.

8 Experimental Results

We evaluated the proposed spatiotemporal, activity-
based frequent pattern mining method on a 30-day data
trace collected using the home sensor network deploy-
ment described in Section 4. A network of 15 PIR sen-
sors was used to monitor the occupancy of all the differ-
ent rooms in the house. The set of phonemes in this case
became the actual rooms that were visited by the mon-
itored elder person over time and every such phoneme
was associated with an actual timestamp and a dura-
tion interval. To better highlight the value of the pro-
posed approach and to simplify our discussion, we opted
to operate on a slightly processed sequence of the visited
rooms. In particular, we map the generated sequence of
rooms into a sequence of primitive activities by apply-
ing a simple set of rules. This process has been success-
fully demonstrated in our previous work [16-18]. Thus,
the actual input phonemes become the different activ-
ities: Sleep, Bath, Breakfast, GetReady, Hangout, and
Out, that provide information about when the person
sleeps, visits the bathroom, has breakfast, gets ready
for the day, spends time in the living-room watching
TV and when he is out of the house respectively. This
mapping is equivalent to the transformation of the raw
sensing data (red waveform at the bottom) to the sim-
ple activity waveforms (green and blue waveforms on
the top) shown in Figure 1.

8.1 Spatial Pattern Discovery

We applied the proposed method on the 30-day se-
quence of primitive activities, to extract the daily living
model of the monitored person. Since, we were inter-
ested in the daily living model, we defined the dura-
tion of an episode to be the duration of a single 24-
hour day. In that way, the input sequence of activities
was expressed as a sequence of 30 episodes, where each
episode contained an ordered sequence of the five dif-
ferent primitive activities. First, we applied our method
while ignoring the temporal characteristics of the input

[ [ Sequence [ Probability |
<Sleep,Bath> 68.4%
<Sleep,Bath,Sleep> 26.3%
1 <Sleep,Bath,Sleep,Bath> 21%
<Sleep,Bath,Breakfast> 47.3%
<Sleep,Bath,Breakfast,Hangout> 36.8%
<Bath,Sleep,Bath> 68.4%
2 <Bath,Sleep,Bath,Breakfast> 47.3%
<Bath,Sleep,Bath,Breakfast, Hangout> 36.8%
<Bath,Hangout,Out> 42.1%
<Breakfast,Hangout> 73.6%
3 <Breakfast,Hangout,Bath> 42.1%
<Breakfast,Hangout,Bath,Hangout,Out> 26.3%
<Hangout,Sleep> 26.3%
<Hangout,Bath,Sleep> 47.3%
<Hangout,Bath,Hangout> 52.6%
4 <Hangout,Out> 84.2%
<Hangout,Out,Hangout> 57.8%
<Hangout,Out,Hangout,Bath,Sleep> 26.3%
<Out,Hangout> 79%

Fig. 5 A subset of the most frequent spatial sequential patterns
discovered in the collected trace.

sequence (e.g. no time or duration conditioning was ap-
plied). A subset of the extracted frequent sequential
patterns can be seen in Figure 5. To facilitate the inter-
pretation of the patterns, we have organized all the sim-
ilar patterns into chronologically ordered groups. Even
though no temporal information was considered, the
daily living model of the elder person begins to emerge.
From the Sleep and Bath sequences (pattern groups 1
and 2 in Figure 5), one can see that the sleeping pattern
of the monitored person consists of more than one Sleep
and Bath activities. After the person wakes up (alter-
nating sequence of Sleep and Bath activities), he will
have breakfast and then spend most of his time in the
living-room watching TV (pattern group 3 in Figure 5).
Besides some bathroom visits, the person continues to
hangout in the living area until he eventually gets out
of the house. After the person returns, he will continue
to hangout in the living-room and occasionally visit the
bathroom. The day ends by visiting the bathroom for
one last time before going to bed (pattern group 4 in
Figure 5).

8.2 Spatiotemporal Pattern Discovery

While the patterns in Figure 5 provide basic informa-
tion about the monitored person’s daily living habits,
they lack significant temporal information. Without ab-
solute time or duration information the importance of
the discovered patterns degrades. For instance, knowing
that the person wakes up regularly to visit the bath-
room is useful information but it would be even more
informative if we knew when this happens (in the mid-
dle of the night or in the morning) and if it is periodic
or not. In addition, it is important to know that the
person leaves the house but it is even more important
to know when and for how long. To highlight the im-
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Evening sleep

Middle of the night instances

sleepinstances l

/ Very early morning

sleepinstances

Number of Occurrences

Fig. 6 Time and duration characteristics of the Sleep activity.
Time is divided into 4 time windows of 6 hours duration each.
Duration is divided into 30-minutes windows. The z-axis repre-
sents the number of times the Sleep activity appeared in a specific
time and duration window.

portance of time and duration information in the pat-
tern discovery process consider Figure 6 where the time
and duration characteristics of the Sleep activity are
shown. Figure 6 shows the number of times the Sleep
activity appears in a specific time window during a day
(4 time-windows of 6 hours duration each) and with a
specific duration. Note, that the total number of the
Sleep instances are more than the total number of days
in the recorded data trace. This clearly shows that the
sleeping pattern of the elder person consists of multiple
Sleep instances due to regular bathroom visits. Also,
from the time windows where the Sleep instances ap-
pear we can infer when the person goes to sleep (last
time window on the right) and then interrupts his sleep
to visit the bathroom (first two time windows on the
left correspond to bathroom visits in the night and in
the morning respectively). The fact that sleep is inter-
rupted by frequent bathroom visits can also be seen by
the duration of the different Sleep instances. In general
a Sleep activity can last from approximately one hour
up to approximately 10 hours, however, in most of the
cases the duration is limited between 2 and 4 hours. Fig-
ure 6 also shows the correlation between the absolute
time when the Sleep activity happens and its duration.
Sleep activities at different time-windows have different
duration characteristics. As Figure 6 shows, the dura-
tion of the Sleep activity instances is usually large when
the elder person goes for first time to sleep a little bit

[ [ Sequence [ Probability |
<Sleep-N_Long,Bath_-M> 21%
1 <Sleep-M_Long,Bath_M> 31.6%
<Sleep_M_Short,Bath_M> 21%
<Bath_E,Sleep_E_Long> 52.6%
<Bath_N,Sleep_N_Long,Bath_M> 21%
<Bath_M,Sleep_M_Long,Bath_M> 31.6%
2 <Bath_M,Sleep-M_Short,Bath_M> 21%
<Bath_M,Breakfast_M_Long,Hangout_M_Long> 21%
<Bath_M,Breakfast_M_Short> 26.3%
<Bath_A ,Hangout_A_Long,Out_A _Long> 21%
3 <Breakfast_M_Long,Hangout_M_Long> 52.6%
<Breakfast_M_Long,Hangout_M_Long,Bath_A> 31.6%
<Hangout_-M_Long,Bath_A ,Hangout_A_Long> 21%
4 <Hangout_-M_Long,Out_A_Long,Hangout_E_Long> 26.3%
<Hangout_-E_Long,Bath_E,Sleep_E_Long> 42.1%
<Hangout_E_Long,Sleep_E_Long> 21%
5 <Out_A_Long,Hangout_E_Long> 42.1%
<Out_A_Long,Hangout_E_Long,Bath_E,Sleep_E_Long> 21%

Fig. 7 A subset of the most frequent sequential patterns discov-
ered in the collected trace when both time and duration condi-
tioning has been applied. The extensions ‘-M”, ‘_A”, ‘_E”  and
‘_N” stand for morning, afternoon, evening and night.

before midnight and it gradually degrades after each
bathroom visit during the night or in the morning.

This combination of spatial and temporal informa-
tion provides a more detailed insight on the person’s
daily activity and therefore it should also appear in the
discovered patterns. Using the time abstraction layer
described in Section 7 we were able to extract more
information-rich spatiotemporal patterns by condition-
ing the sequence of input activities on absolute time
and duration. In particular, we partitioned the day in 4
time windows (morning, afternoon, evening and night)
and used a rough classification of the input activities
into short and long according to their duration. Since
different activities have different duration characteris-
tics we used activity-specific duration parameters that
we were able to extract using statistical information,
like the one shown in Figure 6, for all the different in-
put activities. Figure 7 shows a subset of the discov-
ered spatiotemporal frequent patterns after running the
proposed method on the conditioned input sequence of
activities. Again, in order to facilitate the interpreta-
tion of the patterns, we have organized all the similar
patterns into chronologically ordered groups. The in-
formation that can be extracted now is more valuable.
By looking at the pattern groups 1 and 2 in Figure
7, we can clearly see that the bathroom visits happen
once during the night and once during the morning. The
same pattern groups show that after the bathroom visit
in the morning the person will go to sleep for a small
period of one to two hours conversely to the previous
night sleeping activity instances. After waking up and
having a long, most of the times, breakfast the person
will spend most of his time in the living-room watching
TV until the afternoon (pattern groups 3 and 4 in Fig-
ure 7). It is during the afternoon, usually around 3pm,
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Different instances for pattern: ['Breakfast_M_Long', 'Hangout_M_Long', 'Bath_A'] with frequency: 10
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Fig. 8 Different instances of a typical morning and afternoon/evening frequent patterns.

where the person will leave the house for approximately
3 hours to continue watching TV in the living room as
soon as he comes back (pattern groups 4 and 5 in Figure
7). During the evening, the person will eventually visit
the bathroom for one last time before going to sleep
(pattern group 5 in Figure 7).

To show the ability of our approach to find spa-
tiotemporal invariant patterns across different days, we
examined the spatiotemporal characteristics of the de-
tected frequent patterns across all the different instances
in the 30-day data trace. In particular, for every fre-
quent pattern we detected, we identified all the instances
of this pattern in the input data set and recorded the
start,stop and duration times for each instance. Figure
8 shows this information for two representative frequent
patterns, a morning and an afternoon/evening pattern.
Note that for the same pattern, the temporal character-
istics across different instances either remain the same
or have very small variations. In other words, the start
and stop time of the pattern along with pattern’s du-
ration do not change significantly across different in-
stances. This verifies that the output of our method
captures the most frequent spatiotemporal patterns of
the input sequence.

8.3 Model Extraction

The detected frequent sequences represent the spatiotem-
poral signature of the input data stream and in our case
the monitored elder’s person core daily activities. Using
these frequent sequences one can easily construct the
spatiotemporal model of the data stream as follows:

1. State Extraction: Every spatiotemporal phoneme
contained in at least one of the detected frequent
sequences becomes a state in the model. Note that
phonemes present in the input stream might not be
present as states in the generated model if they are

not part of at least one frequent sequence. Since each
phoneme is spatiotemporal, each state in the model
will encode both spatial and temporal information.
2. Transition Probability Extraction: For every
state in the model and for all frequent sequences,
count the number of times that each other state ap-
pears immediately next in a frequent sequence. By
normalizing we get all outgoing transition proba-
bilities for every state in the model. Repeating the
same process for every state but considering only
the states that appear immediately before in the fre-
quent sequences we get all the incoming transition
probabilities for every state in the model.

This two step process leads to the construction of
a spatiotemporal context-free model of the input data
stream 2 that can be used to either accurately predict
future activities over space and time or identify unusual
activity sequences at run-time.. Figure 9 shows two
such models produced using the extracted frequent se-
quences of spatiotemporal phonemes like the ones shown
in 7. In both cases, each state in the model is named
after the spatial activity that this state represents fol-
lowed by an alphanumeric identifier. This identifier en-
codes the unique start time and duration characteristics
of the spatial activity. As a result, there are multiple
”Sleep”, "Bath”, ”Breakfast” etc. states that are dif-
ferentiated only by the temporal characteristics (start
time and duration) of the activity they represent.

By visually comparing the two models in Figure 9,
two observations are apparent: (1) the model in Figure
9(a) provides more dense information compared to the
model in Figure 9(b) and (2) the number of states in
these two models might be different. These observations
are justified by the fact that these two models were ob-
tained using a different set of frequent sequences. The

2 In practice any model building method in the literature can
be used

Next Noon
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Fig. 9 The generated spatiotemporal daily activity model of the monitored elder person using all frequent patterns with a probability

higher than (a) 11% and (b) 18%.

model in Figure 9(a) used all the frequent sequences
that appeared in at least 11% of the episodes, while the
model in Figure 9(b) used all the frequent sequences
that appeared in at least 15% of all the episodes. In
general, the lower the frequency threshold, the more fre-
quent sequences are discovered and therefore the more
information is captured in the generated model. In addi-
tion, the higher the number of frequent sequences used
the more states are possible to appear in the model
given the two-step model building process described
earlier.

9 Conclusion

We have introduced a method for extracting spatiotem-
poral human activity patterns by properly encoding
location, time and duration information into a single
phoneme. Our method can be trasnparently used on
different people to automatically extract their daily ac-
tivity model. The 30-day data trace collected from our

home sensor network deployment was invaluable in terms
of understanding the process, its bottlenecks and re-
quirements, and evaluating the effectiveness of the pro-
posed approach. Our exposure to the real data, revealed
that our previous, complimentary work, on grammars
[16,17] is crucial in terms of transforming raw sensing
data into a higher level form more appropriate for dis-
covering meaningful patterns. The reason is that due
to the noise that low level data always include, you can
potentially have infinite permutations making the pat-
tern discovery process extremely difficult. As part of
the future work, we will focus more on the automatic
discovery of the temporal properties of the model.
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