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Abstract

We demonstrate that the structure of a 3D point set with a single bilateral symmetry
can be reconstructed from an uncalibrated affine image, modulo a Euclidean transfor-
mation, up to a four parameter family of symmetric objects that could have given rise
to the image. If the object has two orthogonal bilateral symmetries, the shape can be
reconstructed modulo similarity. Both results are demonstrated using real images with
uncalibrated cameras.

1 Introduction
Many man made objects and animals exhibit reflectional symmetry. We demon-
strate that exploiting this symmetry facilitates 3D structure recovery modulo a lin-
ear transformation. Such structure has been shown to simplify a number of vision
tasks such as model based recognition [9, 15, 19, 20], epipolar calibration [1, 5, 10]
and motion transfer and point matching [4, 8, 13].

Many papers have dealt with the extraction of symmetries in images. These
have generally assumed that the imaged object is within a similarity transforma-
tion of the image (viewed in a fronto-parallel plane) so that the imaging process
does not destroy the mirror symmetry [2, 3, 16]. Some authors have included the
effects of shear [7, 11, 19], but have generally limited consideration to 2D objects.
Here we examine the images of 3D objects with one or more bilateral symmetries.

We assume the affine camera approximation [12]. This has been shown to be
effective if the object dimensions are an order of magnitude less than its distance
from the camera. A single view of a symmetric object is equivalent to two views,
each of half of the object. Consequently, mathematical results established for affine
stereo views [4, 8, 12, 17, 18] can be adapted to recover the 3D affine shape (i.e. 3D
positions modulo an affinity). Building on this connection with stereo we use the
term "epipolar lines" for the images of lines joining corresponding points on each
side of the symmetry plane. We show that the extra constraints resulting from the
object symmetry allow structure recovery to better than an affine transformation.

In the following sections we make precise the degree of ambiguity in the recov-
ered structure, and demonstrate the method on real images. Two of the major
features are that camera calibration is not required at any stage and that objects
do not have to be of a restricted class, such as polyhedra.

Notation We adopt the notation that corresponding points in the world and
image are distinguished by large and small letters (e.g. x and X). Vectors are
written in bold font (e.g X).
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Figure 1: (a) Point Ai is the reflection of point A\ in II. These points project to
6(2 and a\ respectively. Point a is the mid point of the line aia.2- The X' axis is
normal to II, and its projection is parallel to the line aia.2, which defines the X
axis. The Y' and Z' axes are in arbitrary orthogonal directions on II. They form
a 3D orthonormal coordinate frame with X'. Xa is the length aia measured in
the image plane, (b) The affine coordinates Ya and Za are obtained by parallel
projection of a onto the Y and Z axes.

2 Objects with Single Bilateral Symmetry
Lines joining corresponding object points (on either side of the symmetry plane)
are parallel, and orthogonal to the plane of symmetry. Since affine projection
preserves parallelism, the imaged lines are also parallel. The optimal extraction
of their orientation is discussed in section 2.2. In the following we use a natural
object coordinate system provided by the correspondence direction and symmetry
plane. Using a construction based on affine projection properties we establish that:

Theorem 1 Given an uncalibrated affine image of an object with a single bilateral
symmetry, its shape can be reconstructed, modulo a Euclidean transformation, to a
four parameter family of symmetric shapes that could have given rise to the image.

2.1 Proof By Construction
We define two 3D coordinate systems. The first is a possibly non-orthogonal
affine system, XYZ, derived directly from image measurements. The X axis is
along the correspondence direction. The origin and the other two axes lie in the
symmetry plane. The second system is an object centred orthonormal system,
X'Y'Z'. Again, the X' axis along the correspondence direction. The other two
axes and the origin lying in the symmetry plane. These two coordinate systems are
illustrated in figure la. They are related by a four parameter linear transformation.
Structure recovery in the XYZ system is in two stages, as illustrated in figure 1:

1. X coordinate The mid-point, a, of two corresponding image points,
is constructed. Since mid-points are preserved by affine transformations, this
is the projection of the actual mid-point, A, of the 3D points, A\ and A2.
The point A lies on the symmetry plane. The affine X coordinate of ai is
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the distance aa\ in pixels (a pixel is the unit length). As ratios of lengths on
parallel line segments are preserved under affine transformations, the ratio
of lengths Xa : Xi, is equal to the ratio of world distances X'A : X'B, i.e. a
common scale factor, \ly relates all the coordinates X, constructed in this
way, to the Euclidean distances X'.

2. YZ coordinates As mid-points of corresponding points all lie on the sym-
metry plane, there is a plane-to-plane affine transformation (symmetry plane
to image plane) between world mid-points and their images. This transforma-
tion is represented by the matrix M (see below). The mid-point construction
projects points onto the symmetry plane. The affine YZ coordinates of these
points are determined as shown in figure lb.

In general, a zero translation affine transformation has four degrees of freedom.
However the rotation of X'Y' about Z' is not significant and can be disregarded.
This is achieved by noting that any non-degenerate matrix can be decomposed
into the product of a rotation and a symmetric matrix [6]:

(1)

Hence affine transformation between the two systems can therefore be accom-
plished by a symmetric matrix. There only remains then a Euclidian transforma-
tion from this orthonormal system to a world Euclidian frame. To summarise:

where Tx - 0 e / (2)

L 0 / g J

2.2 Epipolar Line Orientation
Since all the imaged correspondence directions are parallel, one point correspon-
dence is sufficient to determine the epipolar structure. However, because of image
localisation errors and limits of the affine approximation a more accurate estimate
is obtained by aggregating many correspondences. It can be shown that the mini-
mum variance solution for the epipolar line orientation is approximately given by:

(3)

where X{ is half the length of the line on the image plane joining the i'th pair of
symmetrically related points, w,- is its orientation, and n the number of correspon-
dences.

3 Objects with Two Orthogonal Bilateral Sym-
metries

In this case there is a natural orthogonal coordinate system consisting of the two
orthogonal correspondence directions, and the intersection line of the symmetry
planes. This structure can be determined from the image by affine constructions.
We prove the following:

Theorem 2 Given an uncahbrated affine image of a 3D object with two orthogonal
bilateral symmetries, Us shape can be reconstructed, modulo a Euclidean transfor-
mation, to a three parameter family of symmetric shapes that could have given rise
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Symmetry Plane II,

Symmetry Plane Il2

(a)

Image Plane

n = unit normal
to image plane

Figure 2: (a) The line / is the image of the intersection of the two symmetry planes
IIi a nd II2- Qij and b{j are the images of reflections of points in the symmetry
planes. Their mid-points, a and 6, lie on /. (b) X', Y' and Z' are three orthogonal
vectors. X, Y and Z are the scaled orthographic projections of the orthogonal
vectors onto the image plane. The angles on the image plane between X, Y and
Z are 6X, 6y and 9Z, as shown. A unit vector perpendicular to the image plane is
denoted by n.

to the image. If the aspect ratio of the camera is known, the three parameter family
reduces to a single scale parameter and the orientation of the object can also be
determined.

3.1 Proof By Construction
We first describe recovery up to the three parameter family. The reduction to a sin-
gle scale factor is described in section 3.2. Here the XYZ and X'Y'Z' coordinate
systems are both orthogonal with X and Y axes parallel to the correspondence
directions, and Z defined by the symmetry plane intersection. As in section 2, the
X'Y'Z' is orthonormal, and the XYZ affine coordinates are determined directly
from image measurements.

1. X and Y coordinates Refer to figure 2a. As in section 2, Xa is obtained
from the mid-point of an<i2i (since A21 is the reflection in II1 of An). Simi-
larly, Ya is obtained from the mid-point of au and a12 (since Ai2 is a reflection
in n2 of .An).

2. Z coordinates We first construct the Z axis, which lies on the line /, the
projection of the intersection of the III and II2 planes. The four symmetry
related points form a parallelogram in the image. Consider two such paral-
lelograms (these are marked, â - and 6^ in figure 2a. The centre of any such
parallelogram will lie on / (since the centre is preserved by affine transfor-
mations). Two centres (e.g. a and 6) define /. When there are more than
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two sets of symmetry points, a least squares fit is used to obtain line /. The
parallelogram centre is the projection of the intersection of the plane contain-
ing the four symmetry related points with the Z axis. This determines the
Z coordinate. Again, image measured Z coordinates are within a constant
factor of Z', since there is a linear affine transformation between world and
image.

It should be noted that if only three of the four symmetry related points can be
seen, the position of the fourth can be constructed. The transformation between
the affine and object orthonormal frame is now a scaling along each axis:

where 0
0

0
Ay

0

0
0

A,
(4)

3.2 Reducing the scaling parameter Ambiguity
The XYZ coordinate system is a projected orthogonal coordinate system. In
essence, this constraint and the angles between the projected axes are sufficient to
determine the 3D orientation of the orthogonal system (up to Necker ambiguity),
and reduce the three scaling parameters in equation (4) to a single overall scaling.
Measuring angles requires image aspect ratio to be known.

Suppose there are three orthonormal vectors X', Y' and Z' in 3D which project
to three image vectors X,Y and Z respectively, as shown in figure 2b. From
equation (4) the norms of these vectors are related by:

X' = \XX, Y' = XyY, Z' = XZZ (5)

Under scaled orthography the vectors are related as:

(6)

where A is the scaling and a,/?,7 are unknowns. Using the orthogonality, i.e.
X'.Y' = X'.Z' = Y'.Z' = 0, we obtain the following three equations:

X.Y = -a/3 Y . Z = - / ? T Z.X = -ay (7)

which can be solved for a, /? and 7:

cos

a = -tx */«*
0
»<fZ = IcosOtCo^ iZ+/cos6xcoj^

V cos0 y cos0 V cos#V

where £ = ±1 and corresponds to the Necker reversal ambiguity. Substituting this
into (5) and using (7) we obtain

1
:

= A Vy where (9)

cos 9X cos 0y

cos 0,

f cos 9y cos 0~ c o s ^ c o s ^ /"

V COS^ r * U COS^y V

Substituting (9) into (4), it can be seen that the three scale factors in (5) reduce
to the single scale, A. Thus there is a similarity transformation between recovered
structure and the X'Y'Z' frame. As a,/? and 7 are known, equation (6) can be
used to determine the orientation of the object relative to the image plane.

1only -f-ve square root is used in (9) because the vector moduli in (5) are positive.
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Figure 3: The coordinate system used to measure the X', Y' and Z' values for
the table (a) and the v-block (b). The numerical values are shown in tables 1 and
2. In both cases the axes origins were placed at the centre on mass of the corner
points, but are shown displaced for clarity.

4 Results
The methods described in sections 2 and 3 have been implemented for a number
of objects. Symmetrically opposite points are currently chosen by hand and the
structure in the XYZ frame calculated. The recovered 3D points are rotated and
reprojected at various orientations. Figure 4 shows the single symmetry recon-
structions and figure 5 the bisymmetric.

To evaluate the accuracy of the reconstructions, we computed the optimal
transformation matrix, T (equation (2) for the single symmetry and the scale
factor A for the bisymmetry) between the recovered XYZ coordinates and their
actual corresponding X'Y'Z' values measured on the object. The T matrix, is then
used to transform the calculated coordinates into the X'Y'Z' frame so they can
be compared with measured values. The T matrix is evaluated by a least squares
minimisation, of equations (2) and (4), yielding: :
Single Symmetry Solution

M
T
 = (A

T
A)-

1
B Ai = (10)

where A = B =
Y{ Z[

n *n J L ' n ^n

Note that we are also calculating the R(<j>) in equation 1.
Double Symmetry Solution

A ^ E L , XjXj + rl>y E L t YjY/ + ^ E
(ii)
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Point
No.

1

2
3
4
5
6

Measured
Position/mm

X
59.0
45.0
45.0
45.0
59.0
59.0

Y
-90.0
-84.2
37.0
37.0
50.0
50.0

Z
-0.1
12.9
12.9
-0.1
-0.1
-25.0

Reconstructed
Position/mm

X
56.9
43.0
43.0
45.5
61.5
60.7

Y
-96.0
-81.8
40.0
40.0
46.7
46.9

Z
-5.3
16.2
9.8
0.9
4.7

-25.5

Error
/mm

X
2.1

2.0
2.0
0.5
2.5
1.7

Y
6.0

3.6
3.0
3.0
3.3
3.1

Z
5.2

3.3
3.1
1.0
4.8
0.5

Table 1: Comparison of recovered and measured corner positions for object an
object with a single symmetry. The point numbers correspond to the corners
marked in Figure 3(a).

Point
No.

1
2
3

4

Angle

a
T

Measured
Position/mm

X

40.0
40.0
40.0
40.0

Y

100.0
65.0
3.0

100.0

z
-52.5
-52.5
7.5

97.5

Reconstructed
Position/mm

left image
X

39.6
39.1
39.4
37.3

Y

101.1
66.4
3.6

99.0

Z

-53.4
-53.1
9.7

97.2

Reconstructed
/mm

right image
X

41.2
40.0
39.1
40.3

Y

98.7
65.6
3.0

98.9

Z

-53.7
-53.4
9.3

97.9
Calculated Axis Angles

X
45.6
109.4

Y
80.2
9.6

Z
46.1
90.0

X
64.6
152.4

Y
55.0
142.1

Z
45.7
90.0

Table 2: Comparison of recovered structure and corner positions measured on the
v-block which has two orthogonal symmetries. The point numbers correspond to
the corners marked in Figure 3(b). The slant angle, <r, is the angle between the
axes and the image plane normal. The tilt angle, r, is the orientation of the axes
when projected onto the image plane.

The results for the calibration table, shown in figure 4, are given in table 1. The
X values are more accurate than Y and Z. The block shown in figure 5a and b
is viewed from a fixed vantage point at two orientations, differing by a 45 degree
rotation about the vertical Z axis. The results in table 2 show both object dimen-
sions (which were calculated to within a scale) and the object orientation. It can
be seen by inspection that the Z axis orientation is consistent to within one degree
between the two images, and the rotation about the Z axis is calculated to be 45.6
degrees (cf. an actual rotation of 45.0 degrees).

There are two sources of error in the reconstruction. The first is due to the
affine approximation to perspective, the second due to point localisation error.

5 Discussion
We have demonstrated that structure, modulo a linear transformation, can be
successfully recovered from single images of 3D objects with bilateral symmetries.
Invariants to this linear transformation (e.g. affine invariants) can be measured
and used as indexes in an object recognition system (e.g. [15]).

We have only illustrated structure recovery for point sets. However, since the
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(b)

(c) (d)

(e) (f)

Figure 4: (a) and (b) show the original images of objects, (c), (d) (e) and (f) show
the reconstructed 3D obiects rotated and nersnectivelv nroiected.
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(a) (b)

(c) (d)

Figure 5: (a) and (b) show the original images a block with two orthogonal bilateral
symmetries at two different orientations, (c) and (d) their respective reconstructed
3D shapes, rotated and perspectively projected.
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epipolar structure is known, if a symmetric objects contains space curves, the pro-
jected curves can be matched pointwise to recover 3D points along their length.
To date we have examined two of the most common symmetry cases, but the
method can easily be extended to, for example, objects with three-fold rotational
symmetry. Also, structure for symmetric objects can be recovered under the more
general perspective, rather than affine, projection. Invariants have been obtained
in this way for the case of a single symmetry [14].
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