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Extracting thresholds from noisy
psychophysical data
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and The University of Texas Southwestern Medical Center, Dallas, Texas

Psychophysical studies with infants or with patients often are unable to use pilot data, training,
or large numbers of trials. To evaluate threshold estimates under these conditions, computer sim­
ulations of experiments with small numbers of trials were performed by using psychometric func­
tions based on a model of two types of noise: stimulus-related noise (affecting slope) and extrane­
ous noise (affecting upper asymptote). Threshold estimates were biased and imprecise when
extraneous noise was high, as were the estimates of extraneous noise. Strategies were developed
for rejecting data sets as too noisy for unbiased and precise threshold estimation; these strate­
gies were most successful when extraneous noise was low for most of the data sets. An analysis
of 1,026 data sets from visual function tests of infants and toddlers showed that extraneous noise
is often considerable, that experimental paradigms can be developed that minimize extraneous
noise, and that data analysis that does not consider the effects of extraneous noise may under­
estimate test-retest reliability and overestimate interocular differences.

Psychophysical measurements of threshold frequently
involve large numbers of trials under a range of stimulus
conditions and data analysis that defines threshold as a
point on a psychometric function. Data analysis typically
consists of fitting the data with a psychometric function
by using maximum likelihood estimation. The bias and
precision of threshold estimates have been shown to de­
pend on the slope of the psychometric function, on the

placement of stimuli relative to threshold, and on the to­
tal number of trials (McKee, Klein, & Teller, 1985; O'Re­
gan & Humbert, 1989; Rose, Teller, & Rendleman, 1970;
Watson & Fitzhugh, 1990).

With normal adults, relatively unbiased and precise
threshold estimates can be obtained by training, by using

pilot data to guide stimulus placement, and by gathering
large numbers of trials. Unfortunately, these strategies
are at best difficult and at worst impossible to employ with
infants or with patients in a clinical research setting. In

these situations, data sets are limited to small numbers
of trials and pilot data may not be available to guide stim­
ulus placement. Stimulus-related noise, because of vari­

ability in the stimulus and in the responses of the visual
system to it, may be increased by immaturity and/or dis-
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ease (i.e., the slope of the psychometric function may be
shallower than it is for normal adults; Brown, Dobson,
& Maier, 1987; Mayer & Dobson, 1982). In addition,
extraneous noise, such as responses to irrelevant aspects
of the experimental situation, may result in upper asymp­
totes of less than 100%, increasing bias and decreasing
precision of threshold estimates (Green, 1990; Hall, 1981;
Klein & Manny, 1989; Madigan & Williams, 1987;
Manny & Klein, 1985; McKee et al., 1985; Pelli, Rob­
son, & Wilkins, 1988; Teller, Mar, & Preston, in press).

The only detailed study of the effects of extraneous noise
on clinical threshold estimates has been an evaluation of
a descending method of limits in a visual contrast sensi­
tivity test (Pelli et al., 1988). However, in a number of
clinical and infant tests, two-alternative forced choice
(2AFC) is used with either a constant stimuli protocol with
widely spaced ( ~ 1 octave) stimuli or an adaptive stair­
case protocol in order to achieve adequate stimulus place­
ment with a limited number of trials and no a priori in­
formation about threshold. The present study therefore
focused on 2AFC threshold estimates under the "worst
case" conditions of small numbers of trials and high
amounts of both stimulus-related and extraneous noise.
The three aims were to quantify the bias and precision
of threshold estimates under these conditions, to develop

strategies for rejecting data sets as too noisy, and to eval­
uate the effects of extraneous noise on forced-choice­

preferential-looking (FPL) data. For the first two aims,
maximum likelihood estimation was used to analyze 2AFC
experiments simulated with Monte Carlo techniques in
which psychometric functions having shallow slopes and
varying upper asymptotes were used. For the third aim,
maximum likelihood estimation was used to analyze 1,048
FPL data sets obtained from visual function tests of 320
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healthy infants and toddlers (data from Birch, 1985; Birch

& Hale, 1988; Swanson & Birch, 1990).

METHODS
Model

In a typical 2AFC experiment, a stimulus is presented on each

trial in one of two locations and the subject is required to choose

which of the two locations contains the stimulus. The stimulus level
is varied from trial to trial along the physical dimension of interest

(such as intensity, spatial frequency, or contrast). If the range of

stimulus levels is chosen appropriately, if the number of trials is
sufficiently large, and if the subject is fully cooperative, the per­

centage of correct responses will decrease monotonically from 100%

to 50%. Such data sets are well described by a function, R(x), which

gives the probability of a correct response for 2AFC with stimulus
level x:

R(x) = P(x) + 0.5[I-P(x)], (I)

in which P(x) gives the probability of detecting the stimulus. Quick's

(1974) version of the Weibull function was used to define P(x):

P(x) = I - 2-(xla)13, (2)

in which a is threshold and (3 controls the slope.

For a sufficiently large number of trials, the subject will be cor­
rect on the fraction P(x) of the trials because the stimulus was seen,

and will be correct by chance on half of the remaining fraction

[1- P(x)] of the trials. If the subject is fully cooperative but the
range of stimulus levels is not appropriate and/or the number of

trials is too small, the function may not be monotonic and may not

reach either 100% or 50% correct, but Equation I can still be used

to describe the data.
If the subject responds to irrelevant aspects of the experimental

situation or mistakenly makes the wrong response even though the

stimulus was detected, R(x) may never reach 100% correct, even

if the range of stimulus levels is appropriate and the number of trials

is large. To model the effects of extraneous noise, Equation I was

modified:

R(x) = 'YP(x) + 0.5[I-P(x)], (3)

in which "I is the upper asymptote of R(x).\ Figure I shows exam­

ples ofR(x) for several values of (3 (upper panel) and 'Y (lower panel).

The purpose of the current paper is to explore the consequences
of adding one additional component (extraneous noise) to the com­
monly used model of a single source of noise (stimulus-related

noise). In fact, other forms of noise could also be expected. For

example, if the subject becomes fatigued or habituated as the ex­

periment proceeds, the amount of noise could increase. On the other
hand, noise could decrease during the course of the experiment be­

cause of practice effects. Such sources of noise are certainly worth

consideration but are outside the scope of the current study.

Parameter Estimation
Maximum likelihood estimation (Harvey, 1986; Watson, 1979)

was used to fit each data set with Equation 3. For a given stimulus

level x, the likelihood L(x) that correct responses are obtained on

k out of n trials is given by

L(x) = [n!/(k!(n-k)!)][R(x)]k [I-R(x)]"-k, (4)

and the likelihood of a complete data set for a given experiment

is the product of the likelihoods for all of the stimulus levels used

in that experiment. Preliminary simulations showed that, with three

parameters, searching algorithms tended to get caught in local
minima. To avoid this problem, likelihoods were computed for a

fixed range of parameters (a,(3,'Y), and the parameter set that gave

the maximum likelihood for an individual data set yielded the esti­
mates. The parameter sets evaluated varied 'Y from 76% to 100%

in steps of 2 % and (3 from 0.8 to 14.2 in steps of 0.25 log unit.

For the simulations, a was varied from 0.0 to 4.0 in steps of 0.1

log unit; for the fitted data, a was varied in steps of 0.1 log unit

across the range of available stimulus levels.
To compare maximum likelihood threshold estimation with more

common methods of estimating threshold, threshold estimates were
also generated with other techniques. For the simulations of stair­

case experiments, comparisons were made with the means of re­
versals of the staircases.2 For the analysis of published data, com­

parisons were made with values from the original studies, in which

the constant stimuli data were analyzed in a graphical manner (Birch,

1985, estimated the 75% correct point for constant stimulus data
by interpolating between points on the psychometric function) and

the staircase data were analyzed by taking the mean of all but the
first two reversals.

Simulations
To determine the effects of extraneous noise on threshold esti­

mation under the difficult conditions of a small number of trials,

a shallow slope for P(x), and upper asymptotes less than 100%,
Monte Carlo simulations of 2AFC experiments limited to 20-60

trials3 were performed by using psychometric functions P(x). w i ~

(3 = 2 and "I ranging from 85% to 100%. Both constant stImulI
and staircase experiments were simulated for a range of stimulus

distributions.
Monte Carlo simulations were performed as in previous studies

(e.g., Madigan & Williams, 1987; McKee et a!., 1985; O'Regan

& Humbert, 1989; Watson & Fitzhugh, 1990). For a given param­
eter set (a,(3,'Y), experiments were simulated by using Equation 3.

The simulated data were analyzed by using maximum likelihood

estimation, resulting in an estimated parameter set (aest,(3es!,'Y.est).

For a given parameter set (a,(3,'Y), means and standard deVIatIons

for aesh (3esh and 'Yest were computed from the results of 100-1 'O?O
simulations. Bias of parameter estimates was calculated as the dIf­

ference between the actual parameter value and the mean of the

estimates. Precision of the parameter estimates was calculated as
the standard deviation of the estimates. For both bias and preci­

sion, calculations were in log units for a and (3 and in linear units

for "I.

To avoid the need to refer to a particular physical dimension of

the stimulus, stimulus intensity was expressed relative to the maxi­
mum stimulus level employed. Log threshold (log a) was set to

0.0 when thresh~ld was equal to the maximum stimulus level, and
simulations varied log a in O.I-Iog-unit steps from -3.0 to 0.0.

For the constant stimuli simulations, 1,000 simulations were run

for each parameter set (a,(3,'Y). Optimal stimulus distributions were
determined by simulating constant stimuli data for 60 trials, with

'Y ranging from 100% (no extraneous noise) to 85% (extraneous
noise affecting 30% of trials) in steps of 5 %. Five stimulus inten­

sities were used, ranging in 1.0-octave steps from the maximum

intensity to 1.2 log units below maximum, with 12 trials/intensity.
For the staircase simulations, a staircase protocol in wide use

was simulated; this chooses the stimulus level for each trial by a

2-down-I-up decision rule, with a step size of0.5 octave. All s.tair­
cases began at maximum stimulus intensity and continued untIl 10

reversals were obtained; variations in this protocol were also ex­
plored, as discussed in the section titled "Staircases." One hundred

simulations were run for each parameter set (a,(3,'Y).

RESULTS

Simulation

Threshold Estimates
The results of 1,000 constant stimulus simulations per

value of ex, for'Y = 100%, are shown in Figure 2. Thresh­

old estimates were relatively unbiased (log exes! -log ex

near 0.0) and precise (standard deviation oflog 'Yes! near
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Figure 1. Theoretical psychometric functions, R(x), calculated from Equation 3 for several values of
{J with 'Y = 100% (upper panel) and for several values of 'Y with {J = 2.0 (lower panel). Since (J is in­
versely proportional to stimulus-related noise, P(x) becomes steeper as (J increases. Note that P(x) also

becomes steeper as 'Y increases.

0.0) only when log a (the actual threshold) was near the
middle of the stimulus range. Since there is a ceiling ef­
fect when the actual threshold is near 0.0, it may appear
that the situation is not so bad for high thresholds; how­
ever, if the simulations ignore the ceiling and allow
log aes! to exceed 0.0, the standard deviations increase
dramatically in this region. For"y < 100%, means were
similar, but standard deviations were up to twice as large.
This example illustrates the problem of not having an
a priori threshold estimate. For experiments with only a
limited number of trials, the method of constant stimuli

is therefore only appropriate when a very good a priori

threshold estimate can be used to guide stimulus placement.
Several additional constant stimuli simulations were per­

formed to determine whether different choices for the
stimulus distribution could provide unbiased and precise
threshold estimates with less stringent demands on the ac­
curacy of the a priori threshold estimate. When the step
size between stimulus levels was increased to 1.5 or 2.0
octaves, unbiased thresholds were recovered over a wider
range for log a, but precision decreased because of the
fact that fewer stimuli were near threshold. When the step
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Figure 2. Bias (mean of log a.a.-log a) and precision (standard deviation of log a.a.) of threshold
estimates for the method of constant stimuli for 1,000 simulations/condition with 'Y= 100%. There were
12 trials each at five stimulus levels, indicated by arrows on the x-axis.

size between stimulus levels was decreased to 0.5 octave,

with six trials at 10 stimulus levels (in order to give the

same total number of stimuli and the same range of stim­

ulus intensities), results were almost identical to those in

Figure 2. Therefore, precision of threshold estimates for

the method of constant stimuli could not be improved by

changing the step size.
Results of maximum likelihood estimation on the stim­

ulus distributions obtained from staircases are shown in

Figure 3, for 100 staircase simulations per condition.

When there was no extraneous noise ('Y = 100%), bias

was low over most of the three-Iog-unit range of thresh­

old values (for log a > -0.3, the estimates were a little
low; this is a ceiling effect), and precision was good (stan­

dard deviations were generally less than one step size).

This performance is comparable to that for data gathered

with the method of constant stimuli in which an optimal

stimulus placement is used, indicating that when there is

no extraneous noise staircases can provide optimal stim­
ulus placement without requiring an a priori estimate of

threshold.
High levels of extraneous noise counter the benefits of

staircases. When extraneous noise was moderate ('Y =

95%), precision remained good, and bias increased only

slightly for values of log a > -2.0. When extraneous

noise was high ('Y = 90% or 85%), decreases in log a
were accompanied by dramatic increases in bias and de­

creases in precision, with thresholds tending to be over­

estimated.

Stimulus-related Noise Estimates
For both the constant stimuli and staircase simulations,

the amount of stimulus-related noise tended to be under-

estimated ({jest > (j), and the precision was poor (stan­
dard deviation was 0.3 to 0.4 log unit, independent of a).

This means that even if maximum likelihood estimation

suggests that stimulus-related noise is low (i.e., (jest is

large), it is still possible that stimulus-related noise was

in fact high.

Extraneous Noise Estimates
Estimates of extraneous noise for staircase data are

shown in Figure 4. When'Y = 100% and log a < -0.5,
the estimates of extraneous noise tended to have little bias

and good precision but, as 'Y decreased, the bias tended

to increase and the precision tended to decrease. In prac­
tical terms, this means that when the mean 'Yest for group

data is near 100% with a small standard deviation, then

most individual data sets must have had minimal extrane­

ous noise. On the other hand, 'Yest near 100% for an indi­

vidual data set does not indicate unequivocally that ex­

traneous noise was minimal for that data set.
An additional source of information, the logarithmic

mean of stimulus intensities at the staircase reversals, can

be used to estimate the amount of extraneous noise for

a given data set. The difference between log aest and the

mean of reversals was computed for each simulated stair­

case; the means and standard deviations for these differ­

ences are shown in Figure 5. For 'Y = 100%, the two es­

timates were quite similar; for'Y < 100%, the means and

standard deviations of the difference increased as log a

decreased. In general, for 'Y < 100%, the maximum

likelihood estimates of threshold were considerably smaller

(and hence closer to the actual threshold) than the mean­
of-reversals estimates of threshold. This suggests that

when an individual data set yields similar threshold esti-
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mates with both mean of reversals and maximum likeli­

hood estimation, extraneous noise probably had little ef­

fect on the threshold estimate.
The primary reason that extraneous noise had a greater

effect on mean of reversals than on the maximum likeli­

hood estimate is that because of extraneous noise, errors

can occur early in the staircase, at stimulus levels well
above threshold. The first error will be the first reversal,
followed by a second reversal with the subsequent cor­

rect responses. Each error caused by extraneous noise will

therefore contribute two reversals near that stimulus in­

tensity, which may be well above threshold. Some re­
searchers have attempted to compensate for effects of ex-

traneous noise on staircase estimates by excluding early
reversals in the mean of the reversals. The rationale for

this approach is that incorrect responses that occur early

in the staircase may have a starting point bias (e.g., Nach­

mias, 1982). Simulations showed that means of reversals

did indeed yield lower threshold estimates when the first
two reversals were excluded, with the greatest effects for

the smallest values of log a. For'Y = 100%, the decrease

in threshold was always less than 0.03 log unit; for

'Y = 95 %, the decrease in threshold was as much as
0.26 log unit. The decrease in threshold was smaller for

lower values of 'Y: no more than 0.23 log unit for 'Y =
90%, and no more than 0.15 log unit for 'Y = 85%. Ex-
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cluding even more reversals resulted in even greater im­

provements for high amounts of extraneous noise. The

best case was for simulations run with a step size of

1 octave for the first 4 reversals and 0.5 octave thereafter.

When 12 reversals were obtained, and only the last 4 re­

versals averaged for the threshold estimate, the difference
between the mean of reversals and the maximum likeli­

hood threshold estimate was quite small, even for 'Y =

85%. However, when extraneous noise was high, both

threshold estimates were still biased and imprecise. Since

a discrepancy between the two estimates may indicate that
threshold estimates are biased, it may not be desirable to

reduce the difference between the two estimates.

One approach to decreasing bias and improving preci­

sion of 'Ycst is to include free trials throughout the stair­
case; these are trials at the maximum stimulus level, for

which responses do not drive the staircase but can be used

in maximum likelihood estimation. Simulations were run

in which the number of free trials ranged from 10% to
30% of the number oftrials in the staircase, and two dif­

ferent types of data analysis were used. First, 'Ycst was

determined by allowing all three parameters (<Xcst, (jest,

'Ycst) to vary. Second, 'Ycst was set equal to the percentage
of correct responses to the maximum stimulus intensity,

and the data were fitted to allow only <Xcst and {jest to vary.
With the number of free trials equal to 30% of the total
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0.2

number of trials, the first strategy reduced the bias for

'Yes! by as much as a factor of 2, and the second strategy
reduced the bias by as much as a factor of 6; in neither

case was the precision substantially affected.4 Therefore,

including free trials can decrease the bias of 'Yes! but can­
not improve its precision.

Criteria for Rejecting Individual Data Sets
Based on the preceding analysis of bias and precision

of parameter estimates, several strategies were explored
for establishing criteria used to reject individual data sets

as unreliable. Simulations were performed for each of

three hypothetical populations, with distributions of values

for 'Y as shown in the lower portion of Figure 6: (I) high
amounts of extraneous noise for most data sets (left),

(2) amount of extraneous noise uniformly distributed

(middle), and (3) low amounts of extraneous noise for

most data sets (right). For all staircases, free trials were

included as a fraction (30 %) of the total number of trials

generated by the staircase. For each population, the stair­

cases for a given value of'Y were divided into seven equal
groups on the basis of log lX, ranging from -3.0 to 0 in

0.5-log-unit steps. A total of 1,008 simulated data sets
were generated for each of the three populations. For each
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combination ('Y, a), the number of simulated experiments

was between 4 and 72, as determined by the percentage

of data sets for a given population having that value of

'Y. The simulated data sets were evaluated with five dif­

ferent strategies, which are outlined in Table I. The strate­

gies differed in the method for obtaining 'Yest, the method

for obtaining the threshold estimate, and the criterion for

rejecting data sets as unreliable.

For each population and strategy, the success of the strat­

egy was evaluated with receiver-operating-eharacteristic

(ROC) methodology. ROC methodology was first applied

to statistical decision theory by radiologists (Lusted, 1967)

and has since been used for a wide range of decision pro­

cesses (reviewed by Metz, 1982). For the current appli­

cation, the decision to be evaluated was whether or not

a given data set should be rejected as inadequate for reli­

able threshold estimation. For the ROC analysis, a true
positive was a data set accepted by the criterion for which

the threshold estimate was within 0.2 log unit of the ac­

tual threshold (log a), and afa/se positive was a data set

accepted by the criterion for which the threshold estimate

was not within 0.2 log unit of log a. For a given popula­

tion and strategy, the fraction of true positives was plotted

as a function of false positives for a range of criteria,

generating5 an ROC curve. The area under the ROC curve

was used as an index of the success of the strategy: Per­

formance at chance level yields ROC area = 0.5; per­

fect discrimination yields ROC area = 1.0.

For example, in the first strategy, we used the mean

of reversals as the threshold estimate and rejected data

sets for which the fraction of correct responses to free

trials was less than a specified lower limit. Thirteen lower

limits from 76% to 100% (steps of2%) were evaluated

and, for each lower limit, the true-positive fraction was

plotted against the false-positive fraction. For Popula­

tion I, with high amounts of extraneous noise for most

data sets, ROC area = 0.50. For Population 3, with low

amounts of extraneous noise, ROC area = 0.72.

ROC results for five strategies are shown in the top por­

tion of Figure 6. The straight diagonal lines show per­

formance at the level of chance. The first strategy (in

which we used the mean of reversals for the threshold
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Table I
Strategies for Rejecting Data Sets as Unreliable, Used to Construct ROC Curves in Figure 6

Strategy I 2 3 4 5

"True Positive" defined as threshold estimate

within 0.2 log unit of log a using:

log mean of reversals •

log a." • • • •

Reject data set if:

% of correct responses to free trials < criterion

-y." < criterion

log a." - log mean of reversals < criterion

• •
•

•
•
•

Regardless of other rejection criterip., accept data

set if:

log a." < -2.9 or log aes. > ~.2 •

Note-For the second strategy, log a." was determined with -Yesl fixed equal to the fraction of

correct responses to free trials, whereas for the Strategies 3, 4, and 5, log a." was determined

with -y." allowed to vary.

estimate) was always less successful than the use of in­

formation from maximum likelihood estimation and was

no better than chance for the population with high amounts

of extraneous noise for most data sets. The fifth strategy

(a combination of criteria) was always the most success­

ful (ROC area = 0.81 for Population 3, 0.75 for Popu­

lation 2, and 0.70 for Population 1). This analysis shows

that the optimal strategy for obtaining unbiased thresh­

old estimates is to design a test paradigm that minimizes

the number of data sets affected by extraneous noise and

to utilize information obtained with maximum likelihood

estimation.

Extraneous Noise and Stimulus Distributions
Staircases may not yield optimal stimulus distributions

when extraneous noise is high, since incorrect responses

caused by extraneous noise can prevent the staircase from

reaching sufficiently low stimulus intensities, as illustrated

in Figure 7. When both the upper asymptote and the thresh­

old are low, only a small fraction of trials fall within I oc­

tave of threshold.

Several strategies to improve staircase stimulus place­

ment were evaluated. Three kinds of staircases were simu­

lated: constant step size throughout (I-octave or 0.5­

octave steps), I-octave steps to the fourth reversal and

0.5 octave steps thereafter, or l-octave steps until the first

reversal and then a reduction in step size with each re­

versal until a minimum step size of 0.5 or 0.25 octave

was obtained. All three gave similar results to those shown

in Figure 7; in some cases, the bias was reduced slightly,

but in no case did the precision improve. To obtain more

stimuli near threshold, after every 5 presentations a stim-
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Figure 7. Effects of extraneous noise on stimulus distributions obtained with a 2-down-l-up stair­

case. The percentage of trials within I octave of threshold is shown as a function of log a.
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ulus was presented that was 1-2 octaves less intense than

the current staircase level; the responses did not drive the

staircase but were included in the maximum likelihood

analysis. This"'approaCli"decreased the mean values for

log <Xest - log <X but doubled the standard deviation of

the estimate.

An alternative to staircase procedures is to use more

complicated methods employing ongoing maximum likeli­

hood estimates of the psychometric function to guide stim­

ulus placement (e.g., Harvey, 1986; Madigan & Wil­

liams, 1987; Pentland, 1980; Taylor & Creelman, 1967;

Watson & Pelli, 1983). These assume fixed values of 'Yest

and f3es.. varying only <Xes.. and use an a priori likelihood

distribution to guide initial trials in the staircase. To evalu­

ate the effects of 'Y that is lower than 99 %, simulations

were performed assuming f3est= 2.0 and 'Yest fixed at

values ranging from 85% to 99%. No fixed value for 'Yest

yielded unbiased and precise threshold estimates for all

levels of extraneous noise. When 'Yest was fixed at 95 %,

results were similar to those for staircases. Fixing 'Yest

at lower values resulted both in lower precision in thresh­

old estimates than for staircases and in overestimates of

threshold when 'Y was near 100%. These deficiencies stem

from the fact that stimulus placement is inadequate when

the actual amount of extraneous noise differs from the

fixed value of 'Yest.

Comment
The simulations showed that constant stimulus meth­

ods require optimal stimulus distributions for unbiased and

precise threshold estimates. Watson and Fitzhugh (1990)

came to a similar conclusion by using a somewhat differ­

ent approach. If there is no a priori threshold estimate,

staircase methods are more suitable for obtaining adequate

stimulus distributions. If extraneous noise is low, stair­

case estimates can be as unbiased and precise as optimal

constant stimulus experiments; if extraneous noise is high,

then staircases yield stimulus distributions nearly as un­

suitable as those from constant stimulus experiments. Since

it is difficult to estimate the amount of extraneous noise

for individual data sets when the number of trials is low,

the best strategy is to develop experimental designs that

minimize extraneous noise (as estimated from group data)

and to utilize information from maximum likelihood es­

timation in developing criteria for rejecting individual

data sets.

FPL DATA

Database

Four groups offorced-ehoice-preferential-looking (FPL)

data sets gathered from normal infants and toddlers were

fitted with Equation 3. One group was composed of 294

monocular and binocular grating acuity data sets gathered

from 0-11-month-old infants with the method of constant

stimuli (Birch, 1985). These experiments used 12 trials

for each of five spatial frequencies, which were spaced

in octave steps. Stimulus placement was based on expected

age norms. Fourteen infants had at least 1 data set for

which the estimated acuity (<Xest) was higher than the

highest spatial frequency used, so the 36 data sets from

these 14 infants were excluded from the subsequent anal­

yses. A second group was composed of 312 grating acuity

data sets gathered from 0-11-month-old infants with a

staircase method (Birch & Hale, 1988). Each staircase

started with a 0.38 c/deg grating and proceeded to higher

spatial frequencies with a 2-down-1-up decision rule, with

approximately 0.5-octave steps and a total of 10 rever­

sals. At random intervals during the course of the stair­

case, low spatial frequencies (0.38 and 0.75 c/deg) were

presented as free trials to maintain interest. A third group

was composed of 351 grating acuity data sets gathered

from 17-61-month-old toddlers with the same staircase

procedure, using an operant technique that involved train­
ing with 0.38 c/deg gratings prior to the start of the stair­

case and a food reward for each correct response. A fourth

group was composed of 128 contrast-sensitivity data sets

gathered from 4-8-month-old infants with a staircase

method (Swanson & Birch, 1990). Each staircase started

with 100% contrast and proceeded to lower contrasts with

a 2-down-1-up decision rule, with a step size of 1.0 octave

until the first reversal, then 0.5 octave until the second

reversal, and then 0.25 octave until a total of 8 reversals

were obtained. When the running mean of reversals was

within 1 octave of 100% contrast, an alternate block

method (Dobson, 1983) was used. For 23 of the data sets

the block method was used and the fraction correct at

100% contrast was less than 75%, so these data sets were

excluded from the analysis.

Extraneous Noise for Different
Experimental Methods

The extraneous noise estimates for the four groups are

given in Table 2. These results indicate that extraneous

Table 2
Extraneous Noise Estimates for Dill'erent Experimental Methods Used

With Normal Infants and Toddlers

Method

Constant stimuli (infant acuity)

Staircase (infant acuity)

Operant staircase (toddler acuity)

Staircase(infant contrast sensitivity)

No. of

Data Sets

258
312
351
105

Mean "Ye..

(in %)

93.1±7.8
9O.6±7.0
99.8±0.1
97.1 ±6.1

% of Data Sets With:

"Ye.. > 95% "Ye.. < 85%

53.5 19.8
29.2 20.9
99.7 0
77.1 8.6
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noise can be significant for data sets gathered from in­

fants. For two of the groups (infant constant stimuli and

staircase acuity data sets), the mean value of 'Yest was near

90%. In comparison, the operant staircase toddler acuity

data sets and the infant contrast-sensitivity staircase data

sets had fairly high values for 'Yest. This indicates that ex­

traneous noise can be significant for some data sets and

that experimental paradigms can be devised that greatly

reduce the amount of extraneous noise for most data sets

gathered from inexperienced subjects.

The simulations showed that the bias of maximum likeli­

hood threshold estimates was slight in the presence of ex­

traneous noise for constant stimuli data sets with appropri­

ate stimulus distributions but, for staircase data sets, bias

could be significant in the presence of extraneous noise.

Since the simulations also showed that 'Yest tends to be

an overestimate when 'Y is low, it is possible that most

of the infant staircase acuity data sets had 'Y < 90% and

hence underestimated acuity. This would be the case if

the amount of extraneous noise was approximately the

same for all data sets. However, it is also possible that

most data sets had low levels of extraneous noise, while

a few data sets had very high levels. It is necessary to

distinguish between these possibilities in order to estimate

the bias of the group average.

To estimate the fraction of data sets that had high levels

of extraneous noise, the difference between the maximum

likelihood acuity estimate and the original acuity estimate

was computed for each data set. The average differences

were 0.1 ±O.7 log unit for the constant stimulus infant

data (t = 0.71, P > .2), 0.2 ±0.4 octave for the stair­

case infant data (t = 1.58, P > .1), and 0.0±0.2 octave

for the staircase toddler data (t = 0.42, P > .5), none

of which were statistically significant. This indicates that

most of the acuity estimates could not have been signifi­

cantly affected by extraneous noise. Although there was

no overall tendency for the maximum likelihood acuity

estimate to be different from the original acuity estimate,

the individual data sets showed small but significant dif­

ferences between the two acuity estimates. The absolute

value of the difference between the two acuity estimates

was 0.5 ±0.5 octave for the constant stimulus infant data,

0.3 ±0.3 octave for the staircase infant data, and 0.1 ±

0.1 octave for the staircase toddler data (these values were

all statistically different from zero; t > 14, P < .(01).

The difference between acuity estimates was correlated

with 'Y: For data sets with 'Yest less than 100%, the origi­

nal acuity estimate tended to be lower than the present

estimate (r = .56 for the constant stimulus infant data,

r = .46 for the staircase infant data, r = .32 for the stair­

case toddler data sets; in all cases, p < .(01). This indi­

cates that the populations were similar to the hypotheti­

cal population shown in the bottom right in Figure 6, with

most data sets having little extraneous noise, but a few

data sets having a high amount of extraneous noise.

Independence of Estimates of Extraneous
and Stimulus-Related Noise

The analysis leading to Equation 3 assumes that extrane­

ous noise ('Y) and stimulus-related noise (fj) are indepen­

dent factors affecting the psychometric function. How­

ever, in fitting individual data sets, it is possible that 'Y

and {3 may interact. For instance, if threshold is within

an octave or two of the most intense stimulus used, and

the fraction correct never reaches 100%, this could be

due to low values of either {3 (shallow slope) or 'Y (upper

asymptote below zero). This type of interaction would al­

low 'Yest to be high when {3est is low, and vice versa. If

such interactions occurred in the data analysis, they should

be most obvious for the infant constant stimuli and stair­

case grating acuity data sets, which had the lowest mean

values for 'Yest. Figure 8 shows log ({3esl) as a function

of 'Yest for these data sets; the correlations were r = .30

(p < .(01) for staircase and r = .15 (p < .02) for con­

stant stimuli. In both cases, there is a tendency for log {3est

to be slightly smaller when 'Yest is near 100%. However,

'Yest accounts for little of the variance in log {3est ( < 10%

staircase, < 3 % constant stimuli). Therefore, stimulus­

related noise and extraneous noise can be considered rela­

tively independent influences on performance.

Both stimulus-related noise and extraneous noise were

relatively independent of age. For the infant acuity data

sets, with both constant stimuli and staircase methods,

there were no significant correlations with age for either

{3est or 'Yest (r < .085 in all cases, p > .10). For the oper­

ant data sets, {3est was slightly smaller at older ages (r =
.148, P < .01), but this accounted for less than 3% of

the variance. The operant data showed no dependence of

'Yest on age (r = .08, p > .10) because most had values

of 'Yest = 100% and those with 'Yest < 100% were distrib­
uted approximately evenly across the range of ages tested.

There was not a significant difference in the mean values

of {3est for the infant and toddler staircase grating acuity

data sets, (t= 0.50, p > .20). For the infant contrast­

sensitivity data sets, there was not a significant change

with age for either {3est (r = .06, p > .2) or 'Yest (r =
.12, P > .1).

Consequences of Assuming That 'Y = 100%
Infant grating acuity data sets tended to have maximum

likelihoods with 'Yest < 100%. However, in many thresh­

old estimation algorithms, it is assumed that the upper

asymptote is always 100%. The consequences of this as­

sumption were evaluated by obtaining maximum likeli­

hood fits with 'Yest fixed at 100% for the constant stimuli

and staircase infant grating acuity data sets. For 'Yest fixed

at 100%, the highest likelihoods were usually obtained

with shallower slopes (smaller (3est) and lower acuities

(smaller crest) than for 'Yest allowed to vary. In addition,

the maximum likelihood across (crest. (3est) is usually

greater when 'Yest is allowed to vary than when 'Yest is fixed
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Figure 8. Scatterplots of extraneous noise ('Yell) versus slope of the psychometric function Gog ~e.t)

for infant acuity data gathered with staircase (upper panel) and constant stimuli Gower panel) meth­

ods. Because of the discrete parameter values used in the fitting procedure (10 for log ~ ..., 12 for log 'Y"'>,
many of the points in each graph represent more than one data set; in such cases, the number of data
sets with each parameter set is indicated.

at 100%. For the combined constant stimuli and staircase

data sets, fits obtained with 'Yes! fixed at 100% yielded

lower acuities (0.6 octave constant stimuli, 1.4 octave

staircase), lower likelihoods (0.4 log unit constant stim­

uli, 1.1 log unit staircase), and lower values of{3es! (0.4 log

unit constant stimuli, 0.7 log unit staircase) than did the

fits that allowed 'Yes! to vary. These differences were all

statistically significant (t > 5, p < .(01).

Consequences of Assuming That

Stimulus-Related Noise ({3) Is Constant

The introduction of 'Y as a third variable in the psycho­

metric function complicates data analysis. It has been sug­

gested that this complexity could be reduced by fixing {3

(Klein & Manny, 1989). To evaluate the effects of this

simplification, the 570 infant acuity data were reanalyzed

with {3 fixed either at its average value (4.9) or at a lower
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value (2.0), and the resulting threshold estimates were

compared with those obtained when {j was allowed to

vary. For the constant stimuli data sets with {jest fixed at

4.9, the fraction of data sets with more than 1.0 octave

difference in acuity was 33 %, whereas with {jest fixed at

2.0, less than 10% of the data sets had differences of more

than 0.5 octave. For the staircase data sets, less than 3%
of the data sets had differences of more than 0.5 octave

for either value of {jest. In most cases for {jest = 2.0, there

was either no change in 'Yest (69% for constant stimuli,

58% for staircase) or only a change in 'Yest by 2% (17%
constant stimuli, 23 % staircase). Similarly, in most cases

for {jest = 2, the likelihood decreased by either less than

0.5 log unit (91 % constant stimuli, 59% staircase) or be­

tween 0.5 and 1.0 log unit (7% constant stimuli, 32%

staircase). Overall, fixing {jest = 2.0 caused relatively little
change in the fits.

Extraneous Noise in Test-Retest and
Interocular Comparisons

Since analyses that do not account for extraneous noise

(i.e., 'Yest fixed at 100%) can yield acuity values signifi­

cantly different from those obtained when extraneous

noise is accounted for (i.e., 'Yest is allowed to vary), the

magnitudes of test-retest differences and interocular dif­

ferences may be overestimated if changes in extraneous

noise between tests are not accounted for. Infant stair­

case grating acuity data on monocular test-retest differ­

ences (38 pairs of tests) and on interocular differences

(79 pairs) were examined. Test-retest differences were

0.4 octave higher when 'Yest was fixed at 100% than when

'Yest was allowed to vary (0.8±0.7 octave vs. 0.4±0.4 oc­
tave). Interocular differences were 0.3 octave higher when

'Yest was fixed at 100% than when 'Yest was allowed to vary
(0.8±0.7 octave vs. 0.5±0.5 octave). In each case, these

overestimates were statistically significant (t > 2.9,
p < .(01).

Comment
This analysis of published data from infants and tod­

dlers indicates that extraneous noise can be significant and

that the fraction of data sets affected by extraneous noise

can be reduced by manipulating the experimental situa­

tion. Stimulus-related noise and extraneous noise are rela­

tively independent factors. Fixing 'Y at 100% resulted in

underestimates ofacuity, whereas fixing {j had little effect

on data analysis. Analysis that does not consider extraneous

noise may underestimate sensitivity, underestimate test­

retest reliability, and overestimate interocular differences.

CONCLUSIONS

Simulations show that when extraneous noise is high,

thresholds tend to be underestimated because of inap­

propriate stimulus distributions. Analysis of published data

shows that extraneous noise can be a significant factor,
increasing apparent test-retest and interocular differences.

Simulations indicate that the most fruitful approach is to

develop strategies that reduce or effectively eliminate ex­

traneous noise, and analysis of published data shows that

such strategies can be developed. It is difficult to estimate

either the amount of extraneous noise affecting individ­

ual data sets or the slope of individual psychometric func­

tions, but analysis of group data can yield useful criteria

for rejecting individual data sets as unreliable ifthe over­

all estimate of extraneous noise is low for the group.
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NOTES

I. For 2AFC, the subset of trials affected by extraneous noise will

be 2(1-)') of the total number of trials. On these trials, the response

will be correct 50% of the time by chance, yielding 0.5[2(1-)'»). The

right side of Equation I will only apply to the subset of trials not af­

fected by extraneous noise, which will be 1-2(1-)'), yielding

{P(x)+0.5[I-P(x)]H 1-2(1-)')}. Adding these fractions correct for

the two subsets of trials yields

R(x) = 0.5[2(1-)')] + {P(x)+0.5[I-P(x)]} [1-2(1-)')].

Algebraic rearrangement yields Equation 3.

2. This method estimates the 71 % correct point of P(x) , so the mean

of reversals tends to be slightly lower than a, which is the 75% correct

point. For the analysis of published data, the original thresholds were

compared with the 71 % correct point for the best-fitting P(x).

3. The staircases were terminated when a required number of rever­

sals were obtained; the average number of trials required was about 20

when threshold was near the starting point and about 45 when thresh­

old was 3 log units below the starting point.

4. The reason that the bias for )'e.. was diminished more by the sec­

ond strategy than by the first is that when all three parameters are al­

lowed to vary there can be interaction between {Je.. and )'e.. ; that is,

shallow slopes may allow higher upper asymptotes. This interaction is

discussed further in the section titled "Independence of estimates of ex­

traneous and stimulus-related noise."

5. ROC methodology assumes that there are two Gaussian distribu­

tions to be distinguished. For each strategy and population, the z scores

for false positives were plotted as a function of the z scores for the true

positives, for all of the criteria tested. These scatterplots were well de­

scribed by straight lines, with r > .98 for all cases except one (Strategy 5

with Population 3 had r = .87; removing the highest and lowest points

from the analysis yielded r = .99), indicating that the assumption of

two Gaussian distributions was appropriate. The slope and intercepts

of the best-fitting lines were used to generate the smooth ROC curves

shown in the upper portion of Figure 6. Since the slopes were always

greater than 1.0 and varied from one scatterplot to the next, d' is not

an appropriate measure of success; therefore, the area under the smooth

ROC curves was used.
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