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Abstract 

A significant limitation of neural networks is that the represen­
tations they learn are usually incomprehensible to humans. We 

present a novel algorithm, TREPAN, for extracting comprehensible , 
symbolic representations from trained neural networks. Our algo­
rithm uses queries to induce a decision tree that approximates the 
concept represented by a given network. Our experiments demon­

strate that TREPAN is able to produce decision trees that maintain 

a high level of fidelity to their respective networks while being com­
prehensible and accurate. Unlike previous work in this area, our 
algorithm is general in its applicability and scales well to large net­

works and problems with high-dimensional input spaces. 

1 Introduction 

For many learning tasks , it is important to produce classifiers that are not only 
highly accurate, but also easily understood by humans. Neural networks are lim­

ited in this respect, since they are usually difficult to interpret after training. In 

contrast to neural networks, the solutions formed by "symbolic" learning systems 

(e.g., Quinlan, 1993) are usually much more amenable to human comprehension. 

We present a novel algorithm, TREPAN, for extracting comprehensible , symbolic 
representations from trained neural networks. TREPAN queries a given network 
to induce a decision tree that describes the concept represented by the network. 

We evaluate our algorithm using several real-world problem domains , and present 
results that demonstrate that TREPAN is able to produce decision trees that are 
accurate and comprehensible, and maintain a high level of fidelity to the networks 

from which they were extracted. Unlike previous work in this area, our algorithm 
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is very general in its applicability, and scales well to large networks and problems 

with high-dimensional input spaces. 

The task that we address is defined as follows: given a trained network and the 

data on which it was trained, produce a concept description that is comprehensible, 
yet classifies instances in the same way as the network. The concept description 

produced by our algorithm is a decision tree, like those generated using popular 
decision-tree induction algorithms (Breiman et al., 1984; Quinlan, 1993). 

There are several reasons why the comprehensibility of induced concept descriptions 
is often an important consideration. If the designers and end-users of a learning 

system are to be confident in the performance of the system, they must understand 

how it arrives at its decisions . Learning systems may also play an important role 

in the process of scientific discovery. A system may discover salient features and 

relationships in the input data whose importance was not previously recognized. If 
the representations formed by the learner are comprehensible, then these discoveries 

can be made accessible to human review. However, for many problems in which 
comprehensibility is important, neural networks provide better generalization than 

common symbolic learning algorithms. It is in these domains that it is important 

to be able to extract comprehensible concept descriptions from trained networks. 

2 Extracting Decision Trees 

Our approach views the task of extracting a comprehensible concept description 
from a trained network as an inductive learning problem. In this learning task, 

the target concept is the function represented by the network, and the concept 

description produced by our learning algorithm is a decision tree that approximates 
the network. However, unlike most inductive learning problems, we have available 
an oracle that is able to answer queries during the learning process. Since the 

target function is simply the concept represented by the network, the oracle uses the 

network to answer queries. The advantage of learning with queries, as opposed to 
ordinary training examples, is that they can be used to garner information precisely 

where it is needed during the learning process . 

Our algorithm, as shown in Table 1, is similar to conventional decision-tree algo­

rithms, such as CART (Breiman et al. , 1984) , and C4.5 (Quinlan, 1993) , which 

learn directly from a training set. However, TREPAN is substantially different from 
these conventional algorithms in number of respects , which we detail below. 

The Oracle. The role of the oracle is to determine the class (as predicted by 

the network) of each instance that is presented as a query. Queries to the oracle, 
however, do not have to be complete instances, but instead can specify constraints 
on the values that the features can take. In the latter case, the oracle generates 

a complete instance by randomly selecting values for each feature, while ensuring 

that the constraints are satisfied. In order to generate these random values, TREPAN 
uses the training data to model each feature's marginal distribution. TREPAN uses 
frequency counts to model the distributions of discrete-valued features, and a kernel 

density estimation method (Silverman, 1986) to model continuous features. As 

shown in Table 1, the oracle is used for three different purposes: (i) to determine 
the class labels for the network's training examples; (ii) to select splits for each of 
the tree's internal nodes; (iii) and to determine if a node covers instances of only 

one class . These aspects of the algorithm are discussed in more detail below. 

Tree Expansion. Unlike most decision-tree algorithms, which grow trees in a 

depth-first manner, TREPAN grows trees using a best-first expansion. The notion 
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Table 1: The TREPAN algorithm. 

TREPAN(training_examples, features) 
Queue:= 0 /* sorted queue of nodes to expand * / 
for each example E E training_examples 

class label for E := ORACLE(E) 

initialize the root of the tree, T, as a leaf node 
put (T, training_examples, {} ) into Queue 

/* use net to label examples * / 

while Queue is not empty and size(T) < tree...size_limit /* expand a node * / 
remove node N from head of Queue 
examplesN := example set stored with N 
constraintsN := constraint set stored with N 

use features to build set of candidate splits 
use examplesN and calls to ORAcLE(constraintsN) to evaluate splits 
S := best binary split 
search for best m-of-n split, S', using 5 as a seed 
make N an internal node with split S' 

for each outcome, s, of 5' /* make children nodes * / 

return T 

make C, a new child node of N 
constraintsc := constraintsN U {5' = s} 
use calls to ORACLE( constraintsc) to determine if C should remain a leaf 
otherwise 

examplesc := members of examplesN with outcome s on split S' 
put (C, examplesc, constraintsc) into Queue 

of the best node, in this case, is the one at which there is the greatest potential 

to increase the fidelity of the extracted tree to the network. The function used 
to evaluate node n is f(n) = reach(n) x (1 - fidelity(n)) , where reach(n) is the 
estimated fraction of instances that reach n when passed through the tree, and 

fidelity(n) is the estimated fidelity of the tree to the network for those instances. 

Split Types. The role of internal nodes in a decision tree is to partition the input 
space in order to increase the separation of instances of different classes. In C4. 5, 

each of these splits is based on a single feature. Our algorithm, like Murphy and 
Pazzani's (1991) ID2-of-3 algorithm, forms trees that use m-of-n expressions for 
its splits. An m-of-n expression is a Boolean expression that is specified by an 

integer threshold, m, and a set of n Boolean conditions. An m-of-n expression is 
satisfied when at least m of its n conditions are satisfied. For example, suppose we 

have three Boolean features, a, b, and c; the m-of-n expression 2-of-{ a, ....,b, c} is 

logically equivalent to (a /\ ....,b) V (a /\ c) V (....,b /\ c). 

Split Selection. Split selection involves deciding how to partition the input space 
at a given internal node in the tree. A limitation of conventional tree-induction 

algorithms is that the amount of training data used to select splits decreases with 
the depth of the tree. Thus splits near the bottom of a tree are often poorly chosen 

because these decisions are based on few training examples. In contrast, because 
TREPAN has an oracle available, it is able to use as many instances as desired to 

select each split. TREPAN chooses a split after considering at least Smin instances, 

where Smin is a parameter of the algorithm. 

When selecting a split at a given node, the oracle is given the list of all of the 

previously selected splits that lie on the path from the root of the tree to that node. 

These splits serve as constraints on the feature values that any instance generated 

by the oracle can take, since any example must satisfy these constraints in order to 
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reach the given node. 

Like the ID2-of-3 algorithm, TREPAN uses a hill-climbing search process to con­

struct its m-of-n splits. The search process begins by first selecting the best binary 

split at the current node; as in C4. 5, TREPAN uses the gain ratio criterion (Quinlan, 
1993) to evaluate candidate splits. For two-valued features, a binary split separates 
examples according to their values for the feature. For discrete features with more 

than two values, we consider binary splits based on each allowable value of the 
feature (e.g., color=red?, color=blue?, ... ). For continuous features, we consider 

binary splits on thresholds, in the same manner as C4.5. The selected binary split 

serves as a seed for the m-of-n search process. This greedy search uses the gain ratio 

measure as its heuristic evaluation function, and uses the following two operators 

(Murphy & Pazzani, 1991): 

• m-of-n+l : Add a new value to the set, and hold the threshold constant. 

For example, 2-of-{ a, b} => 2-of-{ a, b, c} . 

• m+l - of- n+l: Add a new value to the set, and increment the threshold. 

For example, 2-of-{ a, b, c} => 3-of-{ a, b, c, d}. 

Unlike ID2-of-3, TREPAN constrains m-of-n splits so that the same feature is not 

used in two or more disjunctive splits which lie on the same path between the root 
and a leaf of the tree. Without this restriction, the oracle might have to solve 

difficult satisfiability problems in order create instances for nodes on such a path. 

Stopping Criteria. TREPAN uses two separate criteria to decide when to stop 

growing an extracted decision tree. First, a given node becomes a leaf in the tree if, 
with high probability, the node covers only instances of a single class. To make this 

decision, TREPAN determines the proportion of examples, Pc, that fall into the most 
common class at a given node, and then calculates a confidence interval around this 
proportion (Hogg & Tanis, 1983). The oracle is queried for additional examples 

until prob(pc < 1 - f) < 6, where f and 6 are parameters of the algorithm. 

TREPAN also accepts a parameter that specifies a limit on the number of internal 

nodes in an extracted tree. This parameter can be used to control the comprehen­

sibility of extracted trees, since in some domains, it may require very large trees to 

describe networks to a high level of fidelity. 

3 Empirical Evaluation 

In our experiments, we are interested in evaluating the trees extracted by our algo­

rithm according to three criteria: (i) their predictive accuracy; (ii) their comprehen­
sibility; (i) and their fidelity to the networks from which they were extracted. We 
evaluate TREPAN using four real-world domains: the Congressional voting data set 

(15 features, 435 examples) and the Cleveland heart-disease data set (13 features, 
303 examples) from the UC-Irvine database; a promoter data set (57 features, 468 

examples) which is a more complex superset of the UC-Irvine one; and a data set in 

which the task is to recognize protein-coding regions in DNA (64 features, 20,000 
examples) (Craven & Shavlik, 1993b). We remove the physician-fee-freeze fea­
ture from the voting data set to make the problem more difficult. We conduct our 

experiments using a 10-fold cross validation methodology, except for in the protein­

coding domain. Because of certain domain-specific characteristics of this data set, 
we use 4-fold cross-validation for our experiments with it. 

We measure accuracy and fidelity on the examples in the test sets. Whereas accu­
racy is defined as the percentage of test-set examples that are correctly classified, 

fidelity is defined as the percentage of test-set examples on which the classification 
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Table 2: Test-set accuracy and fidelity. 

domain accuracy fidelity 
networks C4.5 ID2-of-3 TREPAN TREPAN 

heart 84.5% 71.0% 74.6% 81.8% 94.1% 
promoters 90.6 84.4 83.5 87.6 85.7 
protein coding 94.1 90.3 90.9 91.4 92.4 
voting 92.2 89.2 87.8 90.8 95.9 

made by a tree agrees with its neural-network counterpart. Since the compre­
hensibility of a decision tree is problematic to measure, we measure the syntactic 
complexity of trees and take this as being representative of their comprehensibility. 
Specifically, we measure the complexity of each tree in two ways: (i) the number 
of internal (i.e., non-leaf) nodes in the tree, and (ii) the number of symbols used in 
the splits of the tree. We count an ordinary, single-feature split as one symbol. We 
count an m-of-n split as n symbols, since such a split lists n feature ,-alues. 

The neural networks we use in our experiments have a single layer of hidden units. 

The number of hidden units used for each network (0, 5, 10, 20 or 40) is chosen 
using cross validation on the network's training set, and we use a validation set to 

decide when to stop training networks. TREPAN is applied to each saved network. 
The parameters of TREPAN are set as follows for all runs: at least 1000 instances 
(training examples plus queries) are considered before selecting each split; we set 
the E and 6 parameters, which are used for the stopping-criterion procedure, to 0.05; 
and the maximum tree size is set to 15 internal nodes, which is the size of a complete 

binary tree of depth four. 

As baselines for comparison, we also run Quinlan'S (1993) C4.5 algorithm, and 
Murphy and Pazzani's (1991) ID2-of-3 algorithm on the same testbeds. Recall 
that ID2-of-3 is similar to C4.5, except that it learns trees that use m-of-n splits. 

We use C4.5's pruning method for both algorithms and use cross validation to select 
pruning levels for each training set. The cross-validation runs evaluate unpruned 

trees and trees pruned with confidence levels ranging from 10% to 90%. 

Table 2 shows the test-set accuracy results for our experiments. It can be seen 
that, for every data set, neural networks generalize better than the decision trees 
learned by C4 .5 and ID2-of-3. The decision trees extracted from the networks by 
TREPAN are also more accurate than the C4.5 and ID2-of-3 trees in all domains. 
The differences in accuracy between the neural networks and the two conventional 
decision-tree algorithms (C4.5 and ID2-of-3) are statistically significant for all four 
domains at the 0.05 level using a paired, two-tailed t-test. We also test the sig­
nificance of the accuracy differences between TREPAN and the other decision-tree 
algorithms. Except for the promoter domain, these differences are also statistically 
significant. The results in this table indicate that, for a range of interesting tasks, 

our algorithm is able to extract decision trees which are more accurate than decision 
trees induced strictly from the training data. 

Table 2 also shows the test-set fidelity measurements for the TREPAN trees. These 
results indicate that the trees extracted by TREPAN provide close approximations 
to their respective neural networks. 

Table 3 shows tree-complexity measurements for C4.5, ID2-of-3, and TREPAN. For 

all four data sets, the trees learned by TREPAN have fewer internal nodes than 
the trees produced by C4.5 and ID2-of-3. In most cases , the trees produced by 
TREPAN and ID2-of-3 use more symbols than C4.5, since their splits are more 
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Table 3: Tree complexity. 

domain # internal nodes # symbols 
C4.5 ID2-of-3 TREPAN II C4.5 ID2-of-3 TREPAN 

heart 17.5 15.7 11.8 17.5 48.8 20.8 
promoters 11.2 12.6 9.2 11.2 47.5 23.8 

protein coding 155.0 66.0 10.0 155.0 455.3 36.0 
voting 20.1 19.2 11.2 20.1 77.3 20.8 

complex. However, for most of the data sets, the TREPAN trees and the C4.5 trees 
are comparable in terms of their symbol complexity. For all data sets, the ID2-of-3 

trees are more complex than the TREPAN trees. Based on these results, we argue 
that the trees extracted by TREPAN are as comprehensible as the trees learned by 
conventional decision-tree algorithms. 

4 Discussion and Conclusions 

In the previous section, we evaluated our algorithm along the dimensions of fi­
delity, syntactic complexity, and accuracy. Another advantage of our approach 

is its generality. Unlike numerous other extraction methods (Hayashi, 1991; 
McMillan et al., 1992; Craven & Shavlik, 1993a; Sethi et al., 1993; Tan, 1994; 

Tchoumatchenko & Ganascia, 1994; Alexander & Mozer, 1995; Setiono & Liu, 
1995), the TREPAN algorithm does not place any requirements on either the ar­
chitecture of the network or its training method. TREPAN simply uses the network 
as a black box to answer queries during the extraction process. In fact, TREPAN 

could be used to extract decision-trees from other types of opaque learning systems, 
such as nearest-neighbor classifiers. 

There are several existing algorithms which do not require special network archi­

tectures or training procedures (Saito & Nakano, 1988; Fu, 1991 ; Gallant, 1993) . 
These algorithms, however, assume that each hidden unit in a network can be ac­
curately approximated by a threshold unit. Additionally, these algorithms do not 
extract m-of-n rules, but instead extract only conjunctive rules. In previous work 
(Craven & Shavlik, 1994; Towell & Shavlik, 1993), we have shown that this type of 
algorithm produces rule-sets which typically are far too complex to be comprehen­
sible. Thrun (1995) has developed a general method for rule extraction, and has 
described how his algorithm can be used to verify that an m-of-n rule is consistent 
with a network, but he has not developed a rule-searching method that is able to 
find concise rule sets. A strength of our algorithm, in contrast, is its scalability. 
We have demonstrated that our algorithm is able to produce succinct decision-tree 
descriptions of large networks in domains with large input spaces. 

In summary, a significant limitation of neural networks is that their concept repre­

sentations are usually not amenable to human understanding. We have presented an 
algorithm that is able to produce comprehensible descriptions of trained networks 
by extracting decision trees that accurately describe the networks' concept repre­

sentations. We believe that our algorithm, which takes advantage of the fact that 
a trained network can be queried, represents a promising advance towards the goal 
of general methods for understanding the solutions encoded by trained networks. 
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