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Abstract 

Building occupancy, one of the most important consequences of occupant behaviors, is a driving 

influencer for building energy consumption and has been receiving increasing attention in the 

building energy modeling community. With the vast development of information technologies in 

the era of the internet-of-things, occupant sensing and data acquisition are not limited to a single 

node or traditional approaches. The prevalence of social networks provides a myriad of publically 

available social media data that might contain occupancy information in the space for a given 

time. In this paper, we explore two approaches to extract the typical occupancy schedules for the 

input to the building energy simulation based on the data from social networks. The first approach 

uses text classification algorithms to identify whether people are present in the space where they 

are posting on social media. On top of that, the typical building occupancy schedules are extracted 

with assumed people counting rules. The second approach utilizes the processed Global Positioning 

System (GPS) tracking data provided by social networking service companies such as Facebook 

and Google Maps. Web scraping techniques are used to obtain and post-process the raw data to 

extract the typical building occupancy schedules. The results show that the extracted building 

occupancy schedules from different data sources (Twitter, Facebook, and Google Maps) share a 

similar trend but are slightly distinct from each other and hence may require further validation and 

corrections. To further demonstrate the application of the extracted Typical Occupancy Schedules 

from Social Media (TOSSM), data-driven models for predicting hourly energy usage prediction of a 

university museum are developed with the integration of TOSSM. The results indicate that the 

incorporation of TOSSM could improve the hourly energy usage prediction accuracy to a small 

extent regarding the four adopted evaluation metrics for this museum building. 
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1 Introduction 

Occupant behaviors in buildings have become a hot topic 

with building systems getting more sophisticated and people 

spending significant time in buildings (Abergel et al. 2017). 

Occupants and their behaviors are known as a driving factor 

of the building energy consumption. They have a direct 

impact on the accuracy of building energy modeling (Yu  

et al. 2011; Muroni et al. 2019), operation and control of 

intelligent building systems (Naylor et al. 2018; Park et al. 

2019), as well as the design of the future building system 

(Samuelson et al. 2016). Therefore, knowing the presence, 

number, variation, and comfort requirements of occupants 

in buildings is a key component of the occupant-oriented 

research (Dong et al. 2019). 

A large number of cases studies have been conducted  

in the past decades to investigate both commercially and 

computationally achievable ways to extract the occupancy 

for the building energy applications. Among these, sensor 

technology is a prevalent way to obtain occupancy infor-

mation in both academia and industry, mostly due to its easy 

implementation and high feasibility. The most commonly 

used sensing technique for the occupancy in buildings is a 

passive infrared (PIR) sensor (Agarwal et al. 2010), which 

falls into the category of movement-based sensors, including 

ultrasonic doppler sensors, sound sensors, etc. (Dong et al. 
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Nomenclature 

AHU    air handling unit 

API      application program interfaces  

CHW    chilled water 

CV(RMSE)   coefficient of variation of root-mean squared  

     error 

FP      false positives 

FN      false negatives  

GPS      Global Positioning System 

HW      hot water 

IoT      Internet of things 

IP      Internet Protocol 

MAC    media access control 

MAE    mean absolute error 

NMBE    normalized mean bias error  

Occ     occupancy 

PCC     Pearson correlation coefficient 

PIR     passive infrared 

R2    R-squared  

RGB    red, green, blue 

RF    Random Forest 

SVM    support vector machine 

TFIDF   term frequency-inverse document frequency

TOSSM   typical occupancy schedules from social media 

TP     true positives  

TN     true negatives 

URL     uniform resource locator 

XGB     XGBoost 

  

 
2019). These sensors can generate an output value of one 

or zero in each time step, which represents the binary data, 

“occupied” and “unoccupied” status, of the space, respectively. 

Despite their broad applications, the inherent issues with 

such binary sensors are that they can only provide the 

occupancy presence information instead of people counting. 

Hence, they are not likely to be used in the load-oriented 

control cases for modern intelligent building controls (Pang 

et al. 2020). To address this limitation, some other occupancy 

detection technologies, such as vision-based technologies 

(e.g., RGB camera, infrared thermal camera) (Jazizadeh 

and Jung 2018) and environment-based technologies 

(CO2 sensor, etc.) (Jin et al. 2018) are introduced. These 

approaches, sometimes coupled with the movement-based 

sensors, can assist in detecting the number of people in the 

room (Jung and Jazizadeh 2019). Regardless of this fact, the 

occupant detection approaches still have privacy concerns 

(image-based) and delayed response issues (ambient-based). 

Besides, initial costs are always a barrier for large-scale 

adoption of both presence and counting sensing system. 

Considering the initial investment, some studies proposed 

to use the existing sub-metering and infrastructure systems 

(like applicants and communication systems) in the buildings 

to extract the occupancy information. For example, Newsham 

et al. (2017) conducted a field study to test the accuracy of 

various IoT data stream for detecting the occupancy in the 

office. They discovered that a combination of keyboard/ 

mouse activity and pixel change in a webcam image could 

provide a better occupancy detection than incumbent 

commercial sensors, such as the PIR sensor. Another example 

is that Christensen et al. (2014) extracted the occupancy 

schedules of two buildings based on the existing IT 

infrastructure (i.e., the Wi-Fi network). In detail, they 

monitored and mapped the IP and MAC addresses of Wi-Fi 

access points and routers to the occupants of each space  

in the building, and therefore the occupancy schedules  

are created. The existing infrastructure-based occupancy 

extraction methods have the advantages of no additional 

costs in terms of hardware and installation. However, they 

are only suitable for those buildings in which the infrastructure 

is well-functioned and available. Another communication 

approach that does not depend on the building infrastructure 

system is the Global Positioning System (GPS). An in-depth 

analysis of the massive location data generated by the mobile 

service users could also be used to create the occupancy 

schedules at the building level. Pang et al. (2018) monitored 

the occupancy variation of an office building in Shanghai, 

China using the location data shared by the smartphone 

users when they use online services such as food delivery, 

carpooling, navigation, etc. Based on the monitored results, 

an occupancy schedule was generated to facilitate a building 

energy model calibration. Besides, Gu et al. (2018) extracted 

the typical occupancy schedules for various building types 

using the same data source. Despite its merits of no hardware 

and installation costs, this method suffers from the issue 

of privacy violation, because these raw data are all collected 

from users’ private information.  

The merits and demerits of the aforementioned 

occupancy detection methods are summarized in Table 1. 

Although these studies show promising potential to extract 

the building occupancy information, their drawbacks are 

also non-negligible, e.g., the sensor error, high cost, scalability, 

and privacy issues, which hinder a broad implementation of 

occupancy sensing in buildings. Therefore, alternative data 

sources for building occupant behavior extraction should 

be considered and explored. 
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To fill this gap, this paper explored another occupancy 

detection approach, which takes the advantage of the social 

media data posted by the users voluntarily and publicly. 

The prevalence of social networks provides a myriad of 

publicly available social media data that contains occupancy 

information in space and in time (Lu et al. 2019). However, 

only a few existing studies were targeted at using this data 

source to estimate the building occupancy. The Population 

Density Tables (PDT) project by Oak Ridge National 

Laboratory estimated the ranges for an average day and 

night population density for over 50 building types using 

the Bayesian learning model with different open source 

data (Stewart et al. 2016). Stewart et al. (2017) proposed   

a social network unit occupancy model to extract the social 

media-based occupancy curve for a museum during its 

operating hours. Sims et al. (2017) applied social media 

data to conduct a high-resolution mapping of a special 

event population. Twitter posts and Facebook check-ins were 

calculated for the Game Day at the University of Tennessee 

Knoxville. Population distributions for game hours and 

nongame hours of the game day were modeled using social 

media data. It is noted that it used a linear relationship to 

describe the event population with social media activity. 

Bentz et al. (2019) designed a thermostat in which the setpoint 

could be adjusted based on the expected occupancy and the 

social media activity. These studies indicate the feasibility 

of extracting the building occupancy information from 

social networks. However, none of these studies moved 

further to explore its integration with the building energy 

modeling, and research on its influence on the modeling 

accuracy. 

In this paper, we propose two different non-intrusive, 

cost-free, low-privacy-sensitive approaches, based on the 

data from social networks for extracting the typical occupancy 

schedules. These schedules then act as inputs for the building 

energy simulation. In the meanwhile, to demonstrate the 

application of the extracted building occupancy schedules 

and evaluate their values, data-driven building energy models 

for a university museum are constructed to see whether 

additional feature regarding the occupancy at the building 

level will facilitate the improvement of the prediction accuracy 

and the fidelity of the building energy model.  

The paper is organized, as illustrated in Figure 1. 

Section 2 described two proposed methods (i.e., approach 1 

of text classification through Tweets and approach 2 of 

web-scraping from Facebook/Google Maps) to extract typical 

occupancy schedules from social media with a case study 

using a public museum building. Section 3 demonstrates 

the integration of the extracted typical occupancy schedules 

through approach 2 into a data-driven building energy 

prediction model of a university museum. Section 4 presents 

the conclusions, limitations, and future work. 
 

2 Extraction of typical occupancy schedules from social 

media (TOSSM): case study 1 for a public museum 

building 

2.1 Overview 

In this section, two different approaches for extracting the 

typical building occupancy schedules at the building level 

Table 1 The merits and demerits of the normal occupancy extraction methods 

Methods Typical sensors 

Occupancy 

information Merits Demerits 

Movement-based 

technology 

PIR sensor 

Ultrasonic sensor 

Sound sensor 

Presence Easy installation and low costs 

Only the binary presence information 

is available 

Additional costs 

Intrusion 

Vision-based technology 
RGB camera 

Infrared thermal camera 

Presence/ 

Counting 
The occupant number is available 

Privacy issues 

High costs 

Intrusion 

Environment-based 

technology 

CO2 sensor 

Temperature/Humidity 

sensor 

Presence/ 

Counting 

The occupant number is indirectly 

obtained 

Non-intrusive 

Delayed response 

IoT-based technology 
Keyboard/mouse 

Pixel webcam 

Presence/ 

Counting 

No additional costs for the hard-

ware and installation. 

Non-intrusive 

Privacy issue  

Scalability issue: complete and well- 

functioned building infrastructure is 

needed 

Communication-based 

technology 

Wi-Fi network 

Mobile-GPS 

Presence/ 

Counting 

No additional costs for the hard-

ware and installation 

Suitable for all buildings 

Not intrusive 

Privacy issue 

Scalability issue: mobile infrastructure 

is needed 
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are explored based on the data from social networks. The 

first approach is to use text classification algorithms to 

identify whether people are present in space where they 

are posting on social networks (e.g., Tweeter). To achieve 

this, word embedding and machine learning algorithms for 

classification are used. On top of that, the typical occupancy 

schedules could be extracted by assuming certain people 

counting rules. The second approach is to utilize the 

processed GPS tracking data provided by social networking 

service companies such as Facebook and Google Maps. Web 

scraping techniques are used in this process to obtain the 

raw data and extract the typical occupancy schedules at the 

building level. 

The Art Institute of Chicago, a public museum, is selected 

as a case study building. The Art Institute of Chicago, 

founded in 1879 and located in Chicago’s Grant Park, is 

one of the oldest and largest art museums in the United 

States. It opens daily from 10:30 to 17:00 except on Thursdays 

until 20:00. The reason why we select a public museum 

building in this study is that there is a higher chance of people 

creating posts about their visits to such a tourist attraction. 

Besides, both Facebook and Google Maps provide popular 

time information on their websites for this type of building. 

Therefore, more datasets could be obtained to facilitate the 

comparison of the two approaches. 

2.2 Text classification of implicitly geo-tagged posts from 

Tweets 

Utilizing public application program interfaces (APIs) 

provided by the social media services, it is possible to attain 

the geographic information through either geo-tagged posts 

from Twitter or Facebook check-in messages, which is 

depicted in Figures 2 (a) and (b). These datasets explicitly 

indicate the occupant presence and could be used to estimate 

the occupancy. However, it is well known that most social 

media users probably are not willing to disclose their location 

information. Although the datasets from the explicitly 

geo-tagged posts could be insufficient to represent the 

occupancy information, the implicitly geo-tagged posts could  

 

Fig. 1 Schematics of paper organization and sections relationship 

Fig. 2 Explicit geo-tagged posts: (a) geo-tagged posts, (b) check-in posts; implicit geo-tagged posts: (c) example 1, (d) example 2 
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be a workaround as another social media data source for 

occupancy sensing. These geo-tagged posts are those that 

could be inferred for the human occupancy, but the user 

does not add his/her location to the posts. Figures 2 (c) and 

(d) show two examples of the implicitly geo-tagged posts. 

We could infer from the Tweet textual semantics that the 

user is currently in the building, that is, the Art Institute of 

Chicago. However, there are some cases that the users 

mentioned the detailed location in the post, but they are 

apparently not present at a certain location. For example, 

in the following posts: “I’ve always wanted to go to the 

Art Institute of Chicago. # bucketlist”; “Hotels near the 

Art Institute of Chicago https://www.govisitchicago.com/ 

top-hotels-near-art-institute-chicago/.” 

Text classification and semantic analysis could be utilized 

to help us identify the right implicitly geo-tagged posts, which 

contain the occupancy information. Text classification 

problems have been widely used and addressed in many 

real applications, such as information retrieval, sentiment 

analysis, recommender systems, etc. (Kowsari et al. 2019). 

To increase the volume of the social media datasets in the 

building occupancy applications, we present a methodology 

to detect the implicitly geo-tagged posts from the social 

media that hold valuable occupancy information to sense 

the occupancy in buildings at the building level. 

This approach involves four essential procedures: data 

collection and pre-processing, feature generation, classifier 

formulation, and result evaluation, as illustrated in Figure 3. 

Each of these four procedures will be described with details 

in the following subsections.  

2.2.1 Data collection and preprocessing 

One way of collecting the data is through the official APIs 

of social networking service providers. The U.S. social 

media giants Twitter, Facebook, and Reddit all have their 

proprietary APIs. However, this approach has some 

limitations for free and standard users. Take the Twitter 

Standard Search API as an example; the free standard tier 

allows the return of at maximum 100 relevant Tweets in 

the seven days. The data fidelity is incomplete compared to 

the paid categories. The paid access could allow the developer 

access to the full-fidelity data from as early as 2006, along 

with direct account management support, and dedicated 

technical support to help on an integration strategy. 

Another way of collecting data is through web-scraping. As 

aforementioned, official APIs have the limitation of time 

constraints; therefore, we cannot get tweets older than a 

week. However, web-scraping tools such as GetOldTweets 

(Henrique 2019) could provide us with history posts. The 

basic underlying principle is summarized as follows. When 

we enter a Twitter page, a scroll loader would automatically 

start. If we scroll down, we will get more and more tweets 

with the scroll loader. The GetOldTweets tool exactly mimics 

this process. In this way, we could take the best advantage 

of Twitter Search on browsers and deeply search the oldest 

tweets.  

All data needs to be cleaned before the feature extraction 

and being fed to the classifier, which can help to reduce the 

noise in text data. Most text data from social media contain 

many unnecessary words such as stop words, misspelling, 

slang, etc. Many text-processing techniques are suggested, 

such as tokenization, stop word elimination, case lowering, 

slang and abbreviation paraphrase, spelling correction, 

stemming, lemmatization, etc.  

We collected the history posts between April and 

May 2019 using the Twitter official API approach and its 

counterpart, the GetOldTweets approach. We searched the 

relevant Tweets using the keywords “art,” “institute,” and 

“Chicago.” We compared the data from the two data sources 

and found that the data size is smaller for the second 

approach. However, we also found that the data from 

GetOldTweets neglected the retweet posts and the posts that 

are existing in history. The others are the same for these 

two methods. Considering that the retweet posts and the 

existing posts in the history typically do not indicate the 

presence of the people, it would be suggested to use the 

Fig. 3 Schematics of the workflow of text classification and semantic analysis 



Lu et al. / Building Simulation 

 

6 

GetOldTweets approach since it is free of charge and also 

have a similar amount of data compared with the official 

API approach.  

On top of that, we collected all the available history 

posts from December 2016 to June 2019 (approximately 

30,000 in total) using the GetOldTweets approach and 

manually labeled the latest 3,000 history posts, which 

indicated whether the user was present or not. It is found that 

the positive (people-presence) data only occupies ~15% of 

all the labeled data. To balance the proportion of the true 

positives and true negatives, we use all the true positives. 

The total number of the training and validation datasets 

is 1,000. For the data pre-processing, we lower the case of 

the posts, conduct the tokenization, and then remove the 

stop words. 

2.2.2 Feature engineering 

In this step, the raw text data will be transformed and 

processed into the feature vectors. Different categories of 

features will be combined to help improve the accuracy of 

the classifier, such as weighted words, word embedding, as 

well as social media-based features. The first two methods 

are typical feature extraction methods with the text data 

while the third method is based on the characteristics of the 

social media posts. 

For the weighted words, the Bag-of-Words (BoW) model 

(Wallach 2006) and Term Frequency-Inverse Document 

Frequency (TF-IDF) (Wu et al. 2008; Wikipedia Contributors 

2020) are two commonly used approaches. The BoW is 

represented as the bag of its known words where the 

occurrence of each word is used as a feature. TF-IDF is a 

statistical measure that weighs down the frequent words 

and scales up the rare ones to reflect the word importance 

in a corpus. Both methods are easy for the implementation. 

However, they only produce the counting and importance 

of the single word and do not capture the position and the 

meaning in the text. Word embedding models could capture 

the semantics of the word, and each word will be mapped to 

an N dimension vector of real numbers. A word embedding 

is a form of representing words using a dense vector 

representation. Word2Vec (Mikolov et al. 2013), GloVe 

(Pennington et al. 2014), and FastText (Bojanowski et al. 

2017) are the three most common pre-trained models to keep 

the syntactic and semantic information of each sentence. 

Apart from the pre-trained word embedding, we could also 

learn the word embedding layer as a part of fitting a machine 

learning model. Social media-based features are statistical 

features based on the characteristics of the social media 

posts such as the presence of URLs, the presence of hashtags, 

hashtag count, favorite count, repost count, etc. Different 

combinations of these features will be fed into a classifier. 

For the feature selection, we generated the word 

embeddings using Word2Vec, where each word is presented 

by a high dimension vector. Word2Vec is a pretrained 

statistical model for efficiently learning a standalone word 

embedding from a text corpus. It was developed by Google 

(Mikolov et al. 2013) and has become the de facto standard 

for developing pre-trained word embedding. The advantage 

of leveraging this model is that it was built using billions of 

words with a vast corpus of language that captures word 

meanings in a statistically robust manner. The dimension 

of the vector space is 300. For each Tweet, the aggregated 

vector is weighted by the value of the TF-IDF.  

In addition, we also considered social media content-based 

features. The posted time is a critical feature because the 

valid “presence” posts must be made within the range of 

opening time. Many Tweets are synchronized from other 

applications such as Facebook, Swarmapp, Artic, Foursquare, 

etc. The domain name with the check-in app “Swarmapp” 

could have more probability for the people presence rather 

than art institutes application such as “artic.” Therefore, 

whether the domain name is a check-in application name 

could be an important feature. The counts of favorites, 

retweets, hashtags, and mentions could also be essential 

features for identifying the features. When visiting and making 

a post in a museum, people may mention some official 

accounts and persons of significance to share the joy and 

findings. In addition to the aforementioned features, the 

username of the users could also be a critical feature. For 

example, some users are official accounts, and they would 

not normally make a check-in post. Therefore, we check if 

the usernames have strings such as “art,” “archeo,” “Chicago,” 

“museum,” etc. Finally, combining the word embeddings 

and the other selected Tweet-content-based features, we 

select 309-dimension vectors for each data point. Table 2 

shows a summary of the selected features. 

2.2.3 Classifier formulation and performance evaluation 

In this step, we tested the performance of different categories 

of classifiers. We selected a traditional classifier, i.e., Support 

Vector Machine (SVM), an ensemble classifier of the Random 

Forest, and the shallow neural network (that contains three 

types of layers). The training/testing data ratio is 8:2. 

The evaluation metrics of the text classifiers measure 

the performance of making the right classification decision 

from different methods. Generally, four metrics are widely 

used: accuracy, precision, recall, F1-score based on the 

number of true positives (TP), false positives (FP), false 

negatives (FN), and true negatives (TN), as illustrated in 

Eqs. (1)–(4). The significance of these four elements may 

vary based on the classification application. It is noted that 

compared to the accuracy, the last three metrics are more  
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Table 2 Summary of the selected features 

 

Categories 

 

Selected features 

 

Type 

Dimension 

num. 

Word 

embedding 

300-dimension word embeddings 

weighted by the TF-IDF 
Float 300 

Whether the posted time is within 

opening hours 
Binary 1 

Whether the username of users 

contain the keywords like “art” 
Binary 1 

Whether the domain name in the 

URL contains check-in apps 
Binary 1 

Hashtags in the Tweet count Integer 1 

Mentions in the Tweet count Integer 1 

Favorite/like count Integer 1 

Retweet count Integer 1 

Posted hour Integer 1 

Tweet- 

content 

Posted day of the week Integer 1 

 

meaningful in terms of the effectiveness of the text classifiers 

because the accuracy is insensitive to variations in the 

number of correct decisions due to the large value of the 

numerator (TP+TN) (Kowsari et al. 2019).  

TP TN
Accuracy

TP FP FN TN

+
=

+ + +
                   (1) 

TP
Precision

TP FP
=

+
                             (2) 

TP
Recall

TP FN
=

+
                                (3) 

2TP
F1-score

2TP FP FN
=

+ +
                         (4) 

The performance metrics of different classifiers from 

this case study are listed in Table 3 in terms of accuracy, 

precision, recall, and F1-score. It can be seen that the 

accuracy of the different classifiers is in a similar range, with 

the Random Forest and the neural network slightly being 

higher. This is as expected because we have a large number of 

true negatives when calculating the accuracy using Eq. (1). 

As mentioned in the last section, the precision and recall 

are more meaningful in the evaluation of the effectiveness 

Table 3 Summary of the performance metrics of different 

classifiers 

Performance 

metric 

 

SVM 

Random 

Forest 

Shallow neural 

network 

Accuracy 0.8485 0.9091 0.9091 

Precision 0.6000 0.8333 0.7500 

Recall 0.8571 0.7143 0.8571 

F1-score 0.7059 0.7692 0.8000 

of the text classifiers. Although the Random Forest has a 

relatively high score of precision, it has a lower score of the 

recall score. This means the classification algorithm could 

not recognize the “presence” of the user and label it as the 

“not present.” Since we need to know the number of the 

valid presence of the people in buildings, it is desirable to see 

a higher recall score. In terms of the F1-score, the neural 

network performs the best with a score of 0.8. F1-score is 

an overall metric combining the precision and the recall. It 

can be seen that the neural network performs slightly better 

than the other two classifiers. 

In Table 4, the detailed classification results of the testing 

sets are presented using the shallow neural network. The 

labels “1” and “0” represent the status of the people-present 

(positive) and people-not-present (negative). Majorities of 

the labels belong to be “0” (i.e., people not present). For the 

labels “1”, the results show that the method could basically 

distinguish them from most of the “0” labels (not-present 

labels). Indexes 59 and 168 were mislabeled, but their 

prediction scores are above 0.1. In addition, Index 96 

was mislabeled to be “1” although they should be “0”. The 

Tweets that are easy to be semantically differentiated, such 

as Indexes 198 and 30, have a high prediction score.  

2.2.4 Typical occupancy schedule extraction results from 

Tweeter 

We need to translate the count of classified “presence” 

Tweet to the building occupancy information. There exist 

sources of uncertainties in this translation. For example, we 

might not know how many hours people will stay there if 

they only have one valid “presence” post. Even if they have 

several posts, we are still not confident about how long 

he/she will stay. Therefore, we propose the following rules 

to extract the building occupancy pattern: 

 Use one hour as a time slot. 

 Count one person if the posts indicate the presence from 

the classifier. 

 Assume probability > 0.5 as presence. 

 Assume every person’s average duration in the place 

from Google Maps statistical information. For example, 

we get the information from Google Maps that normally 

people will stay in the Art Institute of Chicago for up to 

three hours. A Monte Carlo simulation could be conducted 

to allow for the uncertainty of the people stay time in the 

place. However, for this feasibility study, we use the fixed 

average stay duration, as suggested by the Google Maps. 

 If a person has two valid posts within several hours, we 

assume his/her presence in these several hours. 

On top of that, we add up the count of the classified 

presence tweet in the same time slot in each weekday for  

all the historical data. The extracted occupancy pattern is 

aggregated time series curves for different weekdays. In this 
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way, we obtained the weekly typical occupancy schedules 

at the building level to be used as inputs for the building 

energy models, as shown in Figure 4, which shows two 

different types of typical occupancy daily schedules. It is 

noted that the opening hour is 10:30 to 20:00 on Thursday 

while 10:30 to 17:00 on Friday.  

2.3 Web scraping from Facebook and Google Maps 

The second approach is to utilize the processed GPS location 

tracking data provided by social network makers such as 

Facebook and Google Maps. Web scraping techniques are 

used to obtain the data and extract the typical occupancy 

schedules at the building level.  

Figure 5 shows the sample of “Popular Times” by Google 

Maps and “Popular Hours” by Facebook. The principle 

behind these types of data lies in that these social network 

giants use aggregated and anonymized data from users who 

have opted in to share their real-time location. These com-

panies also have Points-of-Interest (POI) building footprints 

(polygons), which determine the location, shape, and size 

of a place. Based on these data, machine-learning algorithms 

are used to join the GPS data against the building footprints 

to derive the occupancy information. 

Table 4 Demonstration of the classification results using the shallow neural network 

Index Posted Time Tweets Label Prediction Score 

136 4/1/2019 3:20 Art Institute of Chicago will be hosting Gregg... 0 0 0.00257 

139 3/19/2019 4:03 The Art Institute of Chicago is hosting Every... 0 0 0.02752 

198 2/8/2019 11:27 I’m at The Art Institute of Chicago - @ artins... 1 1 0.60308 

59 3/12/2019 15:38 Art Institute was amazing! # rembrandt # beaut... 1 0 0.16830 

96 3/30/2019 16:43 Cut Piece, de Djanira. Performance, Art Instit... 0 1 0.63309 

23 3/27/2019 10:48 Hopper @The Art Institute of Chicago https://w... 1 1 0.50097 

30 3/28/2019 13:38 I’m at The Art Institute of Chicago - @ artins... 1 1 0.73036 

54 3/20/2019 5:10 Can’t wait to see this babe in May. # wcw # tr... 0 0 0.00174 

39 4/7/2019 16:01 Got to spend an afternoon this weekend with Va... 1 1 0.70794 

66 4/4/2019 21:00 Criticized for Failing to Consult Indigenous G... 0 0 0.02370 

67 3/28/2019 8:21 Thanks so much for this Art Institute of Chica... 0 0 0.05156 

88 3/25/2019 14:43 Wall-Floor Positions, de Gustave Klimt. Video... 0 0 0.04427 

63 4/12/2019 8:10 School of the Art Institute of Chicago has nam... 0 0 0.27143 

168 3/14/2019 15:15 A. Lincoln # artinstituteofchicago # chicago #... 1 0 0.48824 

86 3/24/2019 9:43 Autorretrato aos 13, de Giotto. Desenho, Art I... 0 0 0.04016 

184 3/23/2019 1:00 The Art of Reading at the Art Institute of Chi... 0 0 0.01482 

55 4/4/2019 10:16 Art Institute of Chicago delayed exhibition of... 0 0 0.00174 

25 3/27/2019 11:33 Art museum I’m ready to come home tbh. Work to... 1 1 0.65585 

72 3/13/2019 0:13 I Like America and America Likes Me, de Alexan... 0 0 0.00103 

158 4/9/2019 21:12 Art Institute of Chicago where Swami Ji delive... 0 0 0.01881 

60 4/3/2019 14:40 In a move museum leadership is calling unprec... 0 0 0.07430 

110 4/9/2019 20:13 I’m too sad to tell you, de Joseph Beuys. Vide... 0 0 0.03527 

199 3/18/2019 11:22 @ JohnMu Just about every result page for the ... 0 0 0.03667 

 

 

Fig. 4 Typical occupancy schedules for two day types extracted from social media data 



Lu et al. / Building Simulation 

 

9

Please note that the data from Facebook and Google 

Maps are relative occupancy information (i.e. normalized 

occupancy fraction for a given day) that is depicted as the 

height of the bar as shown in Figure 5. Therefore, we directly 

scraped the data from their websites. Figure 6 depicts the 

bar chart of the extracted typical building occupancy schedules 

for the Art Institute of Chicago from Facebook and Google 

Maps. The extracted occupancy schedules from Facebook and 

Twitter have a similar trend, but there still exist deviations. 

The deviations lie in that there might be several users who 

would be visiting who do not have Google Maps or location 

history enabled. 

2.4 Results and discussion 

It can be seen from Figure 7 that the extracted building 

occupancy schedules from different data sources (Twitter, 

Facebook, and Google Maps) share a similar trend but 

slightly distinct from each other. Figure 8 further calculates 

the Pearson correlation coefficient (PCC), which measures 

the strength and direction of the relationship between two 

variables, for these occupancy schedules extracted from 

two given approaches. The PCC has a value between +1 

and −1, where 1 represents a total positive linear correlation, 

0 indicates that there is no linear correlation, and −1 gives  

a total negative linear correlation. All PCCs between −0.8 

and +0.8 are considered not significant. The correlation 

coefficients between Facebook and Google Maps achieve 

a high score (~0.95), while the value between Twitter and 

Facebook/Google Maps is slightly lower. This observation 

requires further validation and corrections to consider the 

underlying uncertainties. For the approach 1 (i.e., text 

classification from Tweets) in Section 2.2, it is believed to 

have more uncertainties associated with algorithms used 

 

Fig. 5 The sample of “Popular Times” by Google Maps and “Popular Hour” by Facebook 

 

Fig. 6 Comparisons of typical occupancy schedules for two days extracted from Facebook and Google Maps 

 

Fig. 7 Comparisons of typical occupancy schedules for two days extracted from two approaches 
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during the entire procedure. For example, the Twitter posts 

may occur within the normal hours of operation but not 

occur at the time of occupancy, which results in inaccurate 

timestamp data. For the approach 2 (i.e., web-scraping from 

Facebook/Google Maps) in Section 2.3, the uncertainty 

arises from the fact that users who would be visiting  

might not have Google Maps or location history enabled. 

Furthermore, the ratio of users to non-user of social media 

should be acknowledged due to the age bracket of the social 

media users. Such uncertainty will lead to inaccurate extracted 

occupancy schedules for both approaches.  

3 Integration TOSSM with building energy modeling: 

case study 2 for a university museum 

In this section, a case study for a university museum is 

presented to demonstrate the application of the extracted 

TOSSM into building energy models. Another objective of 

this case study is to verify whether the additional occupancy 

features from social media could improve the prediction 

performance of the building energy model. Therefore, 

data-driven building energy models are established for the 

hourly cooling and heating energy prediction with or without 

the social media extracted occupancy features. Section 3.1 

discusses the data preprocessing and Section 3.2 describes 

the feature selection process. Section 3.3 details the 

construction of the data-driven models. In Section 3.4, the 

results and discussion are presented. 

3.1 Data preprocessing  

Alabama Museum of Natural History, the case study building 

in this section, is located in Smith Hall at the University of 

Alabama campus in Tuscaloosa, AL. This building is selected 

as the case study building because we have detailed and 

sufficient data for the model development and validation 

(e.g., the building floor plan, building system configuration, 

energy usage data, etc.), as well as the actual meteorological 

data from an onsite weather station. The floor plans of the 

museum and the location of the air handling unit (AHU) 

are depicted in Figure 9. The chilled water and hot water 

are from a campus energy plant through a district network. 

The weather data for this case study is collected from an 

onsite weather station on the campus, which is about 120 

meters southeast of the Smith Hall, to accurately capture 

relevant microclimate variation. The weather data is logged 

in a two-minute time step and it is further resampled to an 

hourly mean time series. As Table 5 exemplifies, the weather 

data has the attributes of dry bulb temperature, relative 

humidity, dew point temperature, wind speed, gust speed, 

wind direction, and global solar radiation. The typical 

occupancy schedules at the building level are extracted 

using approach 2 (i.e., web-scraping from Google Maps) 

described in Section 2.3, as depicted in Figure 10. The 

chilled water (CHW) usage and hot water (HW) usage are 

metered in a 15-minute interval. We select the data at a 

time frame from March 28th, 2018 to May 23rd, 2019,   

and further process these data into an hourly time series. 

Figure 11 depicts a weekly example of the energy usage data 

for both chilled water and hot water consumption. Both 

temperatures and humidity need to be controlled in this 

building, and a traditional cool-reheat approach was used 

for dehumidification. This explains the relatively high hot 

water consumption in August in a humid climate zone. 

3.2 Filter-method-based feature selection 

Selecting a set of correlated input features is critical for 

building a data-driven building energy prediction model. 

The input features can be categorized into exterior factors 

such as meteorological data, internal factors such as occupancy, 

HVAC operation data from building automation systems, 

and time-lag history data, etc. (Zhang and Wen 2019). 

Based on the aforementioned factors and the input data 

availability for this case study, the raw input features we 

consider include the meteorological data such as dry bulb 

temperature, relative humidity, dew point temperature, 

solar radiation, wind speed, gust speed, wind direction; the 

 

Fig. 8 Heat map of Pearson correlation coefficient for schedules extracted from two approaches (left map: Thursday; right map: Friday)
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calendar features such as hour of day, day of week, day type, 

and month of year; the occupancy information such as the 

extracted building occupancy schedules from social media. 

It is noted that calendar features such as the hour of the day 

and day type could also indicate the occupancy condition 

and pattern (Wang and Srinivasan 2017; Wang et al. 2019) 

and may have a correlation with the occupancy features we 

extracted.  

To determine the prominent features and improve the 

performance of the data-driven models, a filter-method- 

based feature selection approach reported in Ref. (Zhang 

and Wen 2019) is adopted. In this approach, the Pearson 

correlation coefficients (PCC) are calculated between each  

 

Fig. 10 Normalized typical occupancy schedules through web- 

scrapping from Google Maps for Smith Hall 

Fig. 9 Floor plan and AHU location of Alabama Museum of Natural History 

Table 5 Example of weather station data set used in an hourly basis 

Time (CDT) 

Dry bulb 

temperature 

(°F) 

Relative 

humidity (%) 

Dew 

temperature 

(°F) 

Wind speed 

(mph) 

Gust speed 

(mph) 

Wind 

direction (°) 

Solar 

radiation 

(W/m2) 

3/29/2018 11:00 67.64 80.69 61.34 3.55 9.37 143.77 81.63 

3/29/2018 12:00 59.92 94.34 58.32 1.74 5.67 214.93 50.17 

3/29/2018 13:00 60.09 95.32 58.78 0.38 2.18 220.17 56.97 

3/29/2018 14:00 60.20 95.06 58.82 0.23 2.09 261.27 48.23 

3/29/2018 15:00 59.49 95.38 58.21 1.53 4.02 264.57 35.27 

3/29/2018 16:00 59.57 96.30 58.54 4.22 7.67 210.27 29.57 

3/29/2018 17:00 60.05 96.26 59.02 0.63 2.00 160.30 34.73 
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input feature and the output of interest to filter out the 

weakly correlated features. Table 6 lists the results from  

this feature selection method. It can be seen that dry bulb 

temperature, dew point temperature, solar radiation, 

occupancy, and relative humidity are the top five correlated 

features with the outputs. In comparison, the day of the 

week, gust speed, wind speed, and wind direction are the 

least four uncorrelated features with the output. The cut-off 

thresholds need to be carefully determined since the feature 

that has a low correlation with the output by itself can still 

provide a significant performance improvement when being 

combined with other features. From our domain knowledge, 

we keep the feature Day of Week since it may improve the 

prediction performance when being combined with other 

calendar features. However, the feature Wind Direction is 

eliminated in this step based on the feature selection results 

and our domain knowledge. On top of that, the Pearson 

correlation coefficients between the input features are also 

calculated to eliminate the features that are closely co-related. 

The results show that the features Wind Speed and Gust 

Speed are closely correlated (PCC>0.95). Since the feature 

Table 6 Pearson correlation coefficients between each input 

feature and the output of interest 
 

Pearson correlation coefficient 

Input features CHW usage HW usage 
 

Dry bulb temperature 0.7658 −0.2507 

Dew point temperature 0.6644 −0.332 

Solar radiation 0.4579 0.1913 

Occupancy 0.2576 0.1990 

Relative humidity −0.2069 −0.1437 

Hour of day 0.13 0.0376 

Month of year 0.142 −0.0207 

Day of week −0.0268 −0.0659 

Gust speed 0.0886 0.157 

Wind speed 0.0497 0.1237 

Wind direction −0.0469 0.0265 
 

Gust Speed shows a closer correlation with the output, this 

feature is kept, and the feature Wind Speed is eliminated. 

Therefore, the input feature sets after the feature 

selection are composed of dry bulb temperature, dew point 

temperature, solar radiation, occupancy, relative humidity, 

hour of day, month of year, day of week, gust speed. It is 

noted that the occupancy feature might serve as a critical 

factor that contributes to the prediction improvement from 

the result in this section. To further investigate the efficacy 

of the occupancy feature extracted from social media, 

feature assessment of feature “Occupancy” is conducted in 

the next section. 

3.3 Feature importance assessment for feature 

“Occupancy” 

In this section, two feature input sets are compared by two 

different machine-learning algorithms to evaluate the 

feature importance of feature “Occupancy”. As Table 7 

shows, the features in feature input set 1 are derived from 

the result in Section 3.3, while the feature input set 2 has 

the same features with the feature “Occupancy” removed. 

Based on that, eight data-driven models are constructed 

with different feature input sets, different machine-learning 

algorithms, and different outputs of interest, as shown in 

Table 8.  

Two well-used machine-learning algorithms, Random 

Forest (RF) (Liaw and Wiener 2002) and XGBoost (XGB) 

Table 7 Two feature sets for evaluating feature “Occupancy” 

Set Features 

Feature input set 1

Dry bulb temperature, dew point temperature, 

solar radiation, relative humidity, hour of day, 

month of year, day of week, gust speed 

Feature input set 2

Dry bulb temperature, dew point temperature, 

solar radiation, occupancy, relative humidity, 

hour of day, month of year, day of week, gust 

speed 
 

 

Fig. 11 Weekly time series for chilled water usage and hot water usage in Smith Hall 



Lu et al. / Building Simulation 

 

13

(Chen et al. 2015), are adopted as the prediction models. 

Random forest regression model utilizes an ensemble learning 

method that operates by constructing a multitude of decision 

trees at training time and outputting the mean prediction 

of the individual trees (Wang et al. 2018), which achieves a 

significant improvement in terms of accuracy and stability 

compared to the basic decision trees. XGBoost, proposed in 

2014, is an implementation of gradient boosted decision 

trees designed for speed and performance (Chen and Guestrin 

2016). This algorithm has recently been dominating applied 

machine learning and Kaggle competitions for structured 

or tabular data. To form an optimal model architecture,   

a set of hyperparameters needs to be learned and tuned 

(Duan et al. 2003). The main parameters affecting the RF 

performance include number of trees (NT), the maximum 

depth of the tree (MDT), the maximum number of features 

(MNF), the minimum number of samples required to split 

a node (MSS), and the minimum number of samples required 

at each leaf node (MSL). Likewise, XGBoost has critical 

parameters such as number of trees (NT), the maximum 

depth of decision trees (MDT), learning rate, subsample 

number, etc.  

Regarding the evaluation of the constructed prediction 

model, various performance indicators are used, as shown 

in Eq. (5)–Eq. (8). They are mean absolute error (MAE), 

R-squared (R2), the coefficient of variation of root-mean- 

squared error (CV (RMSE)), and normalized mean bias 

error (NMBE). 

MAE reflects the average over the test sample of the 

absolute differences between prediction and actual obser-

vations where all individual differences have equal weight. 

R2 and CV(RMSE) both indicate the goodness of fit for the 

prediction results with respect to the real data. It is noted 

that R2 focuses more on the error observed over individual 

data points while CV(RMSE) quantifies the average error. 

The metric of NMBE indicates the error bias (positive or 

negative). Though NMBE could be a misleading metric for 

the prediction alone since the positive bias and negative 

bias may cancel out, it helps to present the relative position 

of the simulated data with respect to the measured data.  

In ASHRAE Guideline 14 (ASHRAE 2018), it suggests the 

error tolerance limits for building energy prediction, the 

CV(RMSE) and NMBE should be within 30% and ±10% 

for the hourly prediction data, respectively. 
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represent the measured data, predicted 

data, and mean of the measured data, respectively; n is the 

total number of the data samples. 

3.4 Results and discussion 

In this case study, these two data-driven models are 

implemented using the sklearn module in Python (v3.7). 

The training and testing datasets are hourly data from Mar 

28th, 2018 to May 23rd, 2019, as described in Section 3.1. 

The ratio between the training and testing datasets is 9:1 for 

both the chilled water and hot water usage prediction. For 

the hyperparameter tuning, the grid search, random search 

(Bergstra and Bengio 2012), and Bayesian optimization 

algorithms (Klein et al. 2016) are commonly used methods. 

In this study, the random search approach is used with 

3-fold cross-validation. Table 9 details the hyperparameter 

setting of the models to ensure them well-configured.   

Table 10 compares the model performance for cases 

1–4 with chilled water usage predictions. It can be seen that 

both CV (RMSE) and NMBE are bounded within 30% and 

Table 8 Description of eight constructed models  

Case number & name Features Machine learning algorithms Output 

Case 1: CHW-RF-w/Occ Feature input set 1 Random Forest (RF) Hourly Chilled Water Usage 

Case 2: CHW-RF-w/oOcc Feature input set 2 Random Forest Hourly Chilled Water Usage 

Case 3: CHW-XGB-w/Occ Feature input set 1 XGBoost (XGB) Hourly Chilled Water Usage 

Case 4: CHW- XGB -w/oOcc Feature input set 2 XGBoost Hourly Chilled Water Usage 

Case 5: HW-RF-w/Occ Feature input set 1 Random Forest Hourly Hot Water Usage 

Case 6: HW-RF-w/oOcc Feature input set 2 Random Forest Hourly Hot Water Usage 

Case 7: HW- XGB-w/Occ Feature input set 1 XGBoost Hourly Hot Water Usage 

Case 8: HW- XGB -w/oOcc Feature input set 2 XGBoost Hourly Hot Water Usage 
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±10% for all the four cases, which indicates a good prediction 

performance. Comparing case 1 & case 2 and case 3 & case 4, 

it is evident that the model prediction performance is slightly 

enhanced for both machine-learning algorithms with 

occupancy information extracted from social media. MAE 

and CV (RMSE) increase by ~5%, which is modest. The 

improvement of R2 is limited, probably due to the co-linearity 

between the feature “Occupancy” and the three calendar 

features (hour of day, day of week, and month of year). 

Table 11 shows the model performance comparison of 

cases 5–8 with hot water usage predictions. Similar results 

can be found. Both CV(RMSE) and NMBE are bounded 

within 30% and ±10% for all the four cases. Comparing 

case 5 & case 6 and case 7 & case 8, the model prediction 

performance is slightly enhanced for both machine-learning 

algorithms except that the NMBE decreases slightly using 

RF (the absolute values of RF for both bases are small although 

the relative improvement ratio is high). MAE increase by ~5% 

for both algorithm and CV (RMSE) increases by 1.87% 

and 4.12% for RF and XGB, respectively. The improvement 

of R2 is also limited.  

Figure 12 depicts the comparison of predicted data and 

measured data in the testing set (first 200 data points) for 

chilled water usage and hot water usage considering the 

occupancy feature. Overall, the incorporation of the Feature 

“Occupancy” could improve the hourly energy usage 

prediction to a small extent regarding the four evaluation 

metrics. In other words, from an engineering perspective, 

the data-driven models without the integration of the 

TOSSM but with calendar features have already achieved  

a high prediction performance in this building type. The 

model performance improvement is rather modest probably, 

due to the following justifications. First, the case study 

building is a school museum. The number of occupants is 

normally lesser than its design value and will have less impact 

on the building loads. Furthermore, the HVAC control for 

Table 9 Hyperparameter setting of the models 

Case number & name Hyper-parameters setting 

Case 1: CHW-RF-w/Occ n_estimators=1400, max_depth=90, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, bootstrap=False 

Case 2: CHW-RF-w/oOcc n_estimators=1400, max_depth=90, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, bootstrap=False 

Case 3: CHW-XGB-w/Occ 
learning_rate=0.1, n_estimators=300, max_depth=7, min_child_weight=9, gamma=0, subsample=0.9, 

colsample_bytree=0.9 

Case 4: CHW- XGB -w/oOcc 
learning_rate=0.1, n_estimators=300, max_depth=7, min_child_weight=1, gamma=0, subsample=0.8, 

colsample_bytree=0.8 

Case 5: HW-RF-w/Occ n_estimators=1400, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, max_depth=,60 bootstrap=False 

Case 6: HW-RF-w/oOcc n_estimators=1400, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, max_depth=60, bootstrap=False 

Case 7: HW- XGB-w/Occ 
learning_rate=0.1, n_estimators=350, max_depth=13, min_child_weight=5, gamma=0, subsample=0.9, 

colsample_bytree=0.7 

Case 8: HW- XGB -w/oOcc 
learning_rate=0.1, n_estimators=400, max_depth=7, min_child_weight=7, gamma=0, subsample=0.9, 

colsample_bytree=0.7 

Table 10 Comparison of cases 1–4 for chilled water usage prediction in Smith Hall 

 
Case 1 

CHW-RF-w/Occ 

Case 2 

CHW-RF-w/oOcc 

Improvement 

ratio (%) 

Case 3 

CHW-XGB-w/Occ 

Case 4 

CHW-XGB-w/oOcc 

Improvement 

ratio (%) 

MAE (MMBTU) 0.0263 0.0275 4.36 0.0256 0.0278 7.91 

R2 0.9155 0.909 0.72 0.9192 0.9111 0.89 

CV(RMSE) (%) 4.64 4.81 3.53 4.53 4.76 4.83 

NMBE (%) −0.96 −1.04 7.74 0.4267 1.0268 58.44 

 

Table 11 Comparison of cases 5–8 for hot water usage prediction in Smith Hall  

 
Case 5 

HW-RF-w/Occ 

Case 6 

HW-RF-w/oOcc 

Improvement 

ratio (%) 

Case 7 

HW-XGB-w/Occ 

Case 8 

HW-XGB-w/oOcc 

Improvement 

ratio (%) 

MAE (MMBTU) 0.0236 0.0248 4.84 0.0244 0.0256 4.69 

R2 0.8883 0.8838 0.51 0.9001 0.8912 1.00 

CV(RMSE) (%) 4.19 4.27 1.87 3.96 4.13 4.12 

NMBE (%) 0.29 0.23 −26.09 0.3538 0.5632 37.18 
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this 110-year old building with a typical schedule-based 

operation is not heavily occupant-centric. Therefore, the 

influence of the occupancy might not be as considerable as 

that in a modern large office building with occupant-centric 

controls. Secondly, the Feature “Occupancy” has a strong 

correlation to the calendar features. It is evident from cases 

2, 4, 6, and 8 that using calendar features as the indictor 

of occupancy has already achieved a sufficient accuracy for 

this type of building.  

4 Conclusions, limitations, and future work 

In this paper, we presented two approaches to extract the 

typical occupancy schedules for the input to the building 

energy simulation using social media data. The first approach 

formulates a semantic classifier to identify whether people 

are present in the space where they are posting from Twitter. 

With assumed people counting rules, the typical occupancy 

schedules are then extracted. In the second approach, web 

scraping techniques are used to extract the building typical 

occupancy schedules based on the processed GPS tracking 

data provided by social network makers such as Facebook 

and Google Maps. The quantitative results show that the 

extracted building occupancy schedules from three data 

sources (Twitter, Facebook, and Google Maps) share a similar 

trend but slightly distinct from each other, which requires 

further validation and corrections.  

To further demonstrate the application of the extracted 

typical occupancy schedules from social media (TOSSM), 

data-driven models for hourly energy usage prediction of a 

university museum are developed using Random Forest 

and XGBoost, with the integration of the TOSSM. For the 

chilled water usage prediction, MAE and CV(RMSE) increase 

by ~5% while the improvement of R2 is limited. NMBE 

increases by 58.44% for XGBoost, but the absolute increase 

value is small. Similar results can be observed for the hot 

water usage prediction. By comparing the models with and 

without the occupancy schedule features, the incorporation 

of the TOSSM could improve the hourly energy usage 

prediction to a certain extent regarding the four adopted 

evaluation metrics. 

The future work includes improving, validating, and 

correcting the occupancy schedule estimation from two 

proposed approaches using the visitor counting (e.g., ticket 

information, people counting data from occupancy sensors, 

etc.) from the museum. We will investigate some uncertainties 

 

Fig. 12 Prediction performance comparison for chilled water usage and hot water usage considering occupancy feature 
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that mentioned in Section 2.4:  

 The inaccurate timestamp issue, the fake account issue, 

etc., for approach 1 (text classification through Tweets) 

in Section 2.2. 

 The fact that users who would be visiting might not have 

Google Maps or location history enabled for approach 2 

(web-scraping from Facebook/Google Maps) in Section 2.3. 

 Considering the non-user of social media for both 

approaches.  

We would also like to implement the evaluation of the 

value proposition of using the TOSSM for building energy 

modeling, as described in Section 3, for different types of 

buildings, such as office buildings, school buildings, hotel 

buildings, etc. It is anticipated that building energy 

consumption in some of these building types will be more 

correlated with occupancy schedules. Furthermore, such 

occupancy information at the building level will be in-

corporated with the urban-scale community and city energy 

modeling.  
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