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Obtaining the trajectories of all vehicles in congested tra
c is essential for analyzing tra
c dynamics. To conduct an e�ective
analysis using trajectory data, a framework is needed to e
ciently and accuratelyextract the data. Unfortunately, obtaining accurate
trajectories in congested tra
c is challenging due to false detections and tracking errors caused by factors in the road environment,
such as adjacent vehicles, shadows, road signs, and road facilities. Unmanned aerial vehicles (UAVs), with incorporating machine
learning and image processing, can mitigate these di
culties by their ability to hover above the tra
c. However, research is
lacking regarding the extraction and evaluation of vehicle trajectories in congested tra
c. In this study, we propose and compare
two learning-based frameworks for detecting vehicles: the aggregated channel feature (ACF), which is based on human-made
features, and the faster region-based convolutional neural network (Faster R-CNN), which is based on data-driven features. We
extend the detection results to extract vehicle trajectories in congested tra
c conditions from UAV images. To remove the errors
associatedwith tracking vehicles, we also develop a postprocessingmethod based onmotion constraints.	en, we conduct detailed
performance analyses to con�rm the feasibility of the proposed framework on a congested expressway in Korea. 	e results show
that Faster R-CNNoutperforms the ACF in images with large objects and in those with small objects if su
cient data are provided.
	is framework extracts the vehicle trajectories with high precision, making them available for analyzing tra
c dynamics based
on the training of just a small number of positive samples. 	e results of this study provide a practical guideline for building a
framework to extract vehicles trajectories based on given conditions.

1. Introduction

	e trajectories of all the vehicles on the road provide
very useful empirical data. To reduce tra
c congestion and
collisions, these data can be used to analyze various tra
c
phenomena such as drivers’ characteristics, lane-changing
behavior, tra
c oscillation, capacity drops, and crash poten-
tial [1–4]. To conduct a reliable analysis of trajectory data,
a framework is needed to e
ciently and accurately extract
the data. For more than 40 years, researchers have gathered
such valuable data by applying the vision-based detection
techniques to track vehicles from aerial platforms [5–9] and
surveillance cameras mounted at elevated locations [10–12].

Although these studies have improved the overall quality
of the data-gathering process, the need for improvements
remains. In particular, the accurate tracking of vehicles in
congested areas is known to be a challenging problem due
to false detections and tracking errors caused by factors in
the road environment such as adjacent vehicles, shadows,
road signs, and road facilities. Nevertheless, a few studies
have implemented vehicle detection and tracking scheme in
congested tra
c conditions [12, 13] which most tra
c-�ow
studies have implemented [1–3].

To the best of our knowledge, Next Generation SIM-
ulation (NGSIM) data [12] are the only published vehicle
trajectory data in congested tra
c conditions that include
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all of the vehicles on the road. 	ese data were collected
by automated vehicle tracking systems using surveillance
cameras, which tracked approximately 75% of the vehicles.
Subsequently, manual correction of false-positive and false-
negative errors was required, which is ine
cient [14]. Even
with a fully automated system, camera-based detection has
di
culty converting pixel coordinates into real-world coor-
dinates (i.e., camera calibration). With the development of
remote sensing technology, global positioning system-based
(GPS-based) measurements, such as those acquired by probe
cars, smartphones, and car navigation systems, have been
used to extract vehicle trajectories. However, these devices
can only provide trajectories for equipped vehicles, and the
accuracy is insu
cient for analyzing tra
c dynamics [15, 16].

Unmanned aerial vehicles (UAVs), the use of which
has increased in tra
c-related research, can mitigate these
di
culties [17–20]. 	e key advantages of UAVs as a tool
for collecting vehicles’ trajectories are that they can hover
(stationary �ight) above the tra
c to obtain images with-
out causing any disturbance or geometric image distortion.
	is approach can facilitate e
cient supervised learning for
vehicle detection with simpli�ed preprocessing. However, the
images provided by UAVs have the disadvantages such that
vehicles appear as small objects in a large-scale image, and
theymay be partially occluded by shadows and road facilities.
	is problem can be further exacerbated in congested tra
c.
Although some studies have tried to extract vehicle trajecto-
ries fromUAV images, they have limited success in improving
accuracy due to the use of conventional vehicle detection
methods, such as background subtraction, optical �ow, and
blob analysis. 	ese approaches cannot robustly detect the
exact location of vehicles in congested tra
c, which results
in false tracks in the tracking process [7–9, 18].

To accurately detect vehicles, some researchers have sug-
gested a supervised learning-based method for UAV images.
	ese methods use a trained vehicle classi�er that shows
superior performance based on e�ective feature representa-
tion and a strong learning algorithm [13, 17, 19, 20]. Some
of these methods extend the vehicle detection to tracking
by matching the detected vehicles in sequential frames [13].
Recently, deep learning approaches, especially the convolu-
tional neural network (CNN), have been applied with great
success to object detection tasks. Whereas the possibility
of the performance improvements based on human-made
features has reached its limits, the structure of CNN and
its variants continue to make a new breakthrough based
on the data-driven features of the images [21]. Some of the
CNN-based methods have been suggested for application
in detecting vehicles from UAV images and have shown
better performance than feature-representation schemes [22,
23]. However, these studies were conducted with su
cient
amounts of training data and high-resolution images and
involved high computational cost, which limits their practical
application. In actual research, it is not easy to obtain a
su
cient number of samples due to the limited operation
history of UAVs and the large labeling e�ort required. In
addition, the image resolution tends to be lower to cover
a wide spatial range. 	e most e�ective detection method
can vary depending on the given conditions. 	erefore, it is

necessary to consider the frameworks available for extracting
vehicles trajectories that are the most practical in the analysis
of actual tra
c �ow.

In this paper, we present a framework for extracting
vehicles trajectories from UAV images in congested tra
c
conditions. A�er performing simpli�ed preprocessing, we
trained two di�erent vehicle classi�ers using the human-
made features and the data-driven features extracted from
theCNN structure, respectively.We then compared these two
classi�ers regarding their detection performance according
to the number of training samples and the image sizes.
Next, we extended this detection to tracking by assigning
vehicle identi�cations (IDs), and we identi�ed some tracking
errors by detailed performance analysis and corrected them
using postprocessing based on motion constraint in con-
gested tra
c. Unlike previous studies which evaluated only
detection accuracy, we evaluated tracking accuracy including
mismatching and location errors, using manually labeled
ground-truth locations of the trajectories. Finally, with the
extracted vehicle trajectories from the proposed method, we
calculated and evaluated the aggregated tra
c data that are
generally used for the tra
c-�ow studies.

	e key contributions of this paper can be summarized as
follows: (a) we propose and compare two di�erent learning-
based frameworks for detecting vehicles and extend these
to vehicle tracking, to extract multivehicle trajectories in
congested tra
c from UAV images; (b) our framework
shows promising performance using only a small number of
training samples and involves a reasonable computation cost
for constructing large-scale vehicle trajectories dataset; (c) we
propose postprocessing for trajectories in congested tra
c
usingmotion constraints and conduct a detailed performance
analysis to present the quality of the trajectories; and (d)
evaluation with the aggregated tra
c data con�rms that the
extracted trajectories are enough to be applicable for the
tra
c-�ow analysis.

	e remainder of this paper is organized as follows. First,
we describe the existing frameworks used to extract vehicle
trajectories and examine their advantages and shortcomings.
In the next section, we discuss in detail the methodology of
our framework. 	en, we present the experimental process
and describe the data we used. We then conduct a detailed
performance analysis of the results, which con�rm the
excellence of the proposed framework. Lastly, we discuss our
�ndings, make brief concluding remarks, and share future
research plans.

2. Related Work

Many previous studies have conducted vision-based vehicle
detection and tracking in the collection of tra
c information.
	e vehicle tracking outputs include temporal information
about the object in sequential frames, whereas vehicle detec-
tion outputs only localize the objects in images. For single-
object tracking, many studies havemainly focused on design-
ing a sophisticated appearance model [24, 25] or a motion
model [26] to deal with challenging environments involving
occlusion and illumination variations. For multiple-object
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tracking, the key issue is to overcome the various inter-
ruptions such as interaction among crowded objects, the
similar appearance among objects, and track initialization
and termination as the objects appear in or disappear from
each frame [27, 28]. 	erefore, the density of the objects in
images determines the tracking method. UAV images taken
in the vertical direction from above congested tra
c can be
categorized as semicrowded images, which most researchers
manage using the “tracking-by-detection” approach [28]. In
this section, we mainly review existing methods for detecting
vehicles that heavily a�ect the performance of “tracking-by-
detection” approach, as well as some extensions for tracking
vehicles in UAV images.

	e use of surveillance cameras, which are deployed
extensively around the world, has been studied for a long
time. Coifman et al. [10] proposed a real-time system for
vehicle tracking and tested this system on both free-�ow
and congested tra
c. 	eir system exhibited good per-
formance in obtaining the speeds of vehicles, but inferior
performance in obtaining their �ow, density, and trajecto-
ries. Subsequently, Wan et al. [11] suggested an improved
framework that included a novel 3-D Hungarian algorithm
for tracking vehicles. 	is algorithm detected the center of
the mass of the vehicle and solved the assignment problem
for sequential frames to identify and match each vehicle.
	is framework showed excellent performance for speed
and volume, but no vehicle trajectories of the vehicles
were extracted in this study. Since surveillance cameras
gather tilted angles in their images, the camera must be
calibrated to transform the pixels in the image into real-world
coordinates. 	is procedure distorts the shapes of vehicles,
which results in only the vehicles’ speci�c proportions being
detected and tracked rather than providing bounding boxes
around each vehicle. 	e camera calibration process also
generates bias due to the sensitive parameters of the cameras
[29].

Because of these fundamental di
culties associated with
using surveillance cameras, UAV-based studies have been
proposed as an alternative. Azvedo et al. [6] used median-
based background subtraction and blob analysis to detect
vehicles. 	e authors collected partial trajectories by aircra�
�ying over an extensive area. Ke et al. [18] suggested unsu-
pervised, real-time vehicle detection and tracking systems
that used interest-point tracking and clustering. Although
the authors extracted no vehicle trajectories, their framework
performed well in estimating speed but showed slightly lower
performance in counting vehicles. Khan et al. [8] proposed
an automated framework based on background subtraction
using optical �ow and blob analysis. 	ese authors tested
their framework on a four-street intersection but performed
no quantitative evaluation of vehicle trajectories. 	e auto-
mated frameworks mentioned above that use unsupervised
detection methods can be applied rapidly and conveniently
without any training classi�er. However, these methods are
sensitive to the complexity of the scene, such as adjacent
vehicles, shadows, road signs, and road facilities. 	erefore,
their performance decreases signi�cantly in congested tra
c
in which vehicles are crowded together and moving slowly
[13].

To overcome these limitations, supervised learning-based
vehicle detection has been applied in computer vision based
on the development of feature representation and a powerful
learning algorithm. Since these methods detect vehicles as
bounding boxes rather than points or blobs, they can be
applied robustly in congested tra
c conditions. Grabner et
al. [17] were the �rst to suggest the supervised learning-
based vehicle detection method using aerial images. 	e
authors utilized the AdaBoost classi�er with three feature
types conducted tests on an urban road and a parking lot.
Liu and Mattyus [20] proposed a multiclass vehicle detection
process based on AdaBoost and integrated channel features.
	eir methodology showed higher accuracy in counting
vehicles on the road than other relevant approaches. Xu et
al. [13] extended the detection of vehicles using the Viola and
Jones (V-J) object detection scheme [30] for the tracking of
vehicles, and they showed that the V-J scheme outperforms
many other methods based on feature representation. 	e
authors trained the classi�er using a vast number of training
sets and conducted experiments at various sites, including
those with congested tra
c.	eir framework performed well
even in congested �ow. However, they only evaluated the
performance of this scheme using detection-based measures,
such as precision and recall, and not tracking errors, such
as mismatching and location errors. To con�rm the usability
of the vehicle trajectories for analyzing tra
c dynamics, the
measures are needed to consider the spatiotemporal context
of the vehicles to account for tracking errors.

More recently, deep learning approaches based on CNN
have shown impressive performance in object detection.
Speci�cally, region-proposal-based detectors such as R-CNN
[31], Fast R-CNN [32], and Faster R-CNN [33] have been
proposed to precisely locate objects in an image. Xu et al.
[22] applied the Faster R-CNN for vehicle detection from
UAV images, and Faster R-CNN showed better performance
than conventional methods with a su
cient amount of
computation cost and training samples. However, the authors
did not extend the detection to tracking, and a detailed
comparison with a more advanced method based on human-
made features is needed to support the conclusion of the
performance excellence of the Faster R-CNN. Tang et al. [23]
proposed a modi�ed Faster R-CNN for small-sized vehicles
from UAV images. 	ey employed hierarchical feature maps
to deal with features in small pixels. 	eir method showed
better performance than that of the aggregated channel
feature (ACF) detector. However, since the test was only
conducted on urban streets and a parking lot, its performance
in congested tra
c should be determined.

Several implications can be drawn from the above review
of previous studies. First, the learning-based vehicle detection
method has shown superior performance compared with the
conventional unsupervised method. CNN-based approaches,
in particular, have shown promising performance in the
detection of vehicles in UAV images. For practical applica-
tion, however, evaluation in congested tra
c conditions is
necessary with respect to e
ciency and accuracy. Second,
although a few studies have extended vehicle detection to
tracking, there is room for improvement by taking advantage
of UAV images in congested tra
c conditions. 	erefore, an
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overall framework for extracting vehicle trajectories should
be speci�ed. 	ird, more detailed analyses of tracking errors
are needed to con�rm the usability of vehicle trajectories.

3. Materials and Methods

3.1. Overview. Our framework for extracting vehicles tra-
jectories comprises four sequential processes, as shown in
Figure 1. First, we manually extract the road coordinates in
the �rst frame and use these for all the frames, since the UAV
can remain stable and balanced in �ight. 	en, we detect
vehicles on the road using a supervised classi�er trained by
ACFs [34] and Faster R-CNN [33]. 	e locations of vehicles
in each frame are collected during this process. To create the
trajectories of vehicles over time, the detected locations of the
same vehicles in sequential frames are matched by solving
the assignment problem. Lastly, we perform postprocessing
to remove three types of false positives that occurred in
the tracking process, using motion constraints in congested
tra
c. Detailed descriptions of these processes are presented
in the following sections.

3.2. Preprocessing: Road Extraction and Camera Calibration.
Road extraction and camera calibration are the important
preprocessing steps in the vision-based detection and track-
ing of vehicles. Road extraction can reduce the computa-
tion time required for the detection process and eliminate
false-positive errors by limiting the search space. Camera
calibration involves converting image coordinates into real-
world coordinates. For this process, exact camera parameters
are required, including the focal length, camera height, and
tilt angle. 	ese sensitive parameters in�uence the accuracy
of the trajectory [29]. In this study, we simpli�ed the two
preprocessing steps described above by using UAV images.
Since all images were obtained froma vertical direction above
the tra
c, this eliminated the need to calibrate the camera. In
some cameras, the �sh-eye e�ect must be removed [8], which
was not necessary in our case. Also, sinceUAVs can hover and
produce videos that maintain almost constant coordinates
among frames, we were able to use the manually extracted
road coordinates from the �rst frames for all the frames.
Although, we focused on the automated process excluding
preprocessing, real-time approaches require automated road
extraction and camera calibration. Further details about these
processes are presented in other work [8, 35].

3.3. Vehicle Detection

3.3.1. Aggregated Channel Features. ACFs [34], which were
improved from integral channel features [36], have been
shown to exhibit e
cient and accurate performance in
the detection of pedestrians [37]. Liu and Mattyus [20]
recently showed that these features also enable the very
fast and accurate detection of vehicles from UAV images.
	e integral image �rstly suggested by Viola and Jones [38]
is an intermediate representation of images for computing
features, and, using this concept, Haar-like features, which
are approximate local derivatives, can be computed at any

scale or locations. ACFs are calculated for several channels
by linear and nonlinear transformations of the input images.
We used normalized gradient magnitude, six channels of the
histogram of oriented gradients, and LUV color as channels
[36]. Single pixel lookups aggregated from each channel in
a smoothed image can be computed extremely fast using
the integral image, and we used these as �rst-order features
for detection. Higher-order channel features (e.g., Haar-like
features) can also be computed using multiple �rst-order
features. Since these features naturally integrate data from
di�erent sources (e.g., lighting and weather conditions), they
are suitable for collecting tra
c data. We computed the
ACFs using fast feature pyramid, which extracts su
ciently
approximated features on �nely sampled pyramids for rapid
calculation [34].

To extract only the richer ACFs, only critical feature
should be selected in the learning algorithm. We used
AdaBoost as the training classi�er, which combines weak
classi�ers, including a small number of features, to form a
stronger classi�er. In each iteration, �, a new weak classi�er,
ℎ�(x), is trained using adaptively weighted samples that
had been previously misclassi�ed by a weak classi�er. 	is
combined classi�er has the form �(x) = ∑� ��ℎ�(x), where
�� is calculated by greedily minimizing a loss function in
each iteration, � [39]. As a weak classi�er, we used a decision
tree with a maximum depth of �ve. We trained a boosted
classi�er with 1,024 weak classi�ers. Since using all of the
weak classi�ers on every pixel in an image is ine
cient,
to improve e
ciency, a cascade of classi�ers is required,
which removes negative subwindows using a smaller boosted
classi�er. We used a “so� cascade structure” as described
in [38], to relax the distinct stages of the cascade using
the rejection threshold. When performing the detections,
multiple detections near one vehicle occurred because our
trained classi�er used a sliding window to detect vehicles in
the image. To suppress these overlapping detections, we used
nonmaximal suppression with an overlap threshold, whereby
if the overlapped area of two detected vehicles was greater
than 40% of their total area, only the vehicle with the higher
detection score (i.e., higher probability of being detected as a
vehicle) was retained.

3.3.2. Faster R-CNN. R-CNNs extract region proposals,
which indicate candidate locations for objects from the raw
image and then compute the CNN features using these
locations as inputs [31]. Fast R-CNN features a major change
in the method used to compute the CNN feature [32]. A�er
extracting region proposals from the data, this method uses
the coordinates of region proposals to select regions of
interest (ROI). R-CNN and Fast R-CNN both use selective
searches to generate region proposals, whereas Faster R-CNN
uses a region proposal network to improve e
ciency [33].
Faster R-CNN comprises two parts as shown in Figure 2(a):
a region proposal network (RPN) and an object detection
network. 	e object detection network has the same frame-
work as the Fast R-CNN. 	e RPN uses a feature map from
a convolutional neural network and creates up to 300 region
proposals. It uses an anchor to identify the area where objects
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Figure 2: Architecture of Faster R-CNN: (a) overall architecture and (b) design of each anchor.

are likely to exist. 	e anchor is a type of sliding window
with di�erent sizes and ratios. We used an anchor with base
size of 128×64 pixels, a scale from 0.25 to 4.0, and a ratio
ranging from 1.0 to 4.0 as in Figure 2(b). We chose the
hyperparameters based on background knowledge about the
imagewhich contain rectangular objects of relatively uniform
size.	e loss of each anchor is calculated by the cross-entropy
loss, which has two classes: object and background.	e result
generated by the region proposal network is then given to
the object detection network. ROI are pooled and each ROI
is trained by a classi�er and a bounding box regressor. 	e
classi�er loss and the bounding box regressor are calculated
in integrated loss form, as follows:

� ({
�} , {��}) =
1
���

∑
�
���� (
�, 
∗� )

+ � 1
�	


∑
�

∗� ��	
 (��, �

∗
� )

(1)

where ��� and �	
 are the minibatch size and number of
anchor locations, respectively. 
� is the predicted probability
of anchor � being an target object, and 
∗� is the ground
truth, which has a value of 0 or 1, depending on whether
anchor � is an object or not. �� and �∗� are modi�ed forms of
bounding-box and ground-truth-box coordinates. ���� uses

cross-entropy loss and ��	
 uses the smooth �1 loss that has
�� − �∗� as an input.

3.4. Vehicle Tracking. Based on the detection results, we
implemented a simple motion-based tracker. 	e objective
of tracking vehicles is to extract their trajectories over time
by locating their positions. Of the various object-tracking
methods [27, 28], we used simple point tracking based on
individually detected vehicles. 	is method associates the
vehicles in frame � to those in frame � + 1 and then assigns
identi�cations (IDs) for extracting the trajectory of each
vehicle. 	e vehicle tracking procedure has three steps. In
the �rst, assuming constant velocity, we used previously
tracked vehicles to predict their locations in frame � + 1
using a Kalman �lter [40]. Although we could instead use the
vehicle’s location in frame �, the prediction process reduces
the in�uence of noise associated with the detection error
of the � frame and of some partially missed vehicles in one
trajectory. In the second step, we associated the detected
vehicles across frames and solved the optimization problem
(i.e., assignment problem) to minimize the correspondence
cost of predicted and detected vehicles in frame � + 1.
We de�ned this cost as the Euclidean distance between the
predicted and detected locations in the frame � + 1. To
bound the search region in congested tra
c conditions, we
added the constraint that the instantaneous speed of the
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Figure 3: False tracks generated in congested tra
c: (a) excessive
lateral movement, (b) reverse direction, and (c) mismatching.

vehicles should be less than 85 km/h. We used the Hungarian
algorithm to solve this optimization problem [41]. In the last
step, we created and discarded tracks based on the assigned
results and management rules. We created tracks when the
visible count (i.e., the number of frames in which the vehicle
was detected) was more than 15 frames, and we deleted them
if they were not visible in at least 15 frames or if the visibility,
which is the total number of visible tracks counted divided by
the total number of frames, was less than 0.6.

3.5. Postprocessing. Vehicle tracking in congested tra
c is
signi�cantly a�ected by false positives (i.e., detection of
vehicles when none is present and detection of vehicles
with incorrect size) and false negatives (i.e., detecting no
vehicles when some are present). Duplicate detection, road
facilities, shadows, and partially detected trucks are typical
false positives in UAV images. Figure 3 shows three types
of frequently occurring false tracks in the tracking process.
Because false positives did not occur uniformly in sequential
frames, their tracks appear to di�er from the motion of a
typical vehicle in a tra
c jam. Excessive lateral movement
and reverse direction are examples of cases in which tracks
were generated by false positives, as shown inFigures 3(a) and
3(b).	e mismatching in Figure 3(c) is an example of a track
becoming disconnected in the middle and being converted
to a new track. 	is error greatly in�uences the microscopic
trajectory analysis, although it does not a�ect the collection of
aggregated speeds or densities. Both false negatives and false
positives can cause this disconnection.

Since vehicles in congested tra
c have strong motion
constraints, they can be used to remove false tracks. During
postprocessing, we identify three types of false tracks and
remove the errors associated with each. 	ree cases of post-
processing were proposed to remove each case of errors. Ini-
tially, we eliminated the trajectories of vehicles with excessive
lateral movement and opposite-direction movements based
on their speeds and directions. Subsequently, we extended
the trajectories of each vehicle by three seconds before and
a�er the vehicle, while assuming constant speed, and attached
mismatches in cases where two extended trajectories were
overlapped (i.e., closer than half of the vehicle’s length).

3.6. Quantitative Evaluation. We evaluated the false positives
(FP) and false negatives (FN) identi�ed in the vehicle detec-
tion procedure based on the manually labeled ground-truth
locations of the vehicles. 	e precision and recall are well-
known measures for object detection [42] to quantify these
errors. Precision is de�ned as the accuracy of predicting true
positives from among all of the detected samples as in (2),
and recall is the number of true positives detected among
all the ground-truth locations of vehicles, as in (3). 	e F-
measure is the trade-o� between recall and precision, which
have equal importance as in (4). When the detected area and
the ground-truth area along the road were overlapped by
more than 50% of their combined area, we considered this to
be a true positive (TP). We computed the F-measure having
same precision and recall to compare the detection methods
in the following sections.

��������� = ��
�� + ��

(2)

������ = ��
�� + � (3)

� − ������� = 2 ∙ ������ ∙ ���������
������ + ���������

(4)

We evaluated the vehicle tracking performance using
the multiobject-tracking accuracy (MOTA) and multiobject-
tracking precision (MOTP) metrics [43]. MOTA generates
three error ratios with respect to ground truth ( �) over
time �, i.e., the ratio of misses (��), false positives (!
�),
and mismatches (����), as shown in (5). Summing these
three errors produces the total error. MOTP is the total
position error for the overall frame (∑�,� "�,�) of matched
object–hypothesis pairs (i.e., detected true positives and
ground-truth locations of vehicles) averaged by the total
number of matches made (∑� ��), as shown in (6).

#$�% = 1 − ∑� (�� + !
� + ����)
∑�  �

�ℎ� ����� �! ������ = ∑���
∑�  �
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Table 1: Description of video datasets.

Video Site Locations
Number of

Lanes
Spatial Range Size of Vehicles Tra
c Density Mean Speed

Lighting
Condition

Test-Video 1
Korea

Expressway No. 1

Four Lanes +
Bus Exclusive

Lane
188 m 40×91 pixels 50.2 veh/km/

lane
22.3 km/h

Cloudy A�er
Sunrise

Test-Video 2
Korea Expressway

No. 120

Four Lanes +
Entry and Exit

Lane
137 m 60×132 pixels 56.1 veh/km/

lane
20.8 km/h

Clear Before
Sunrise

Table 2: Training and test sets for detection and tracking.

Video Training Set
Test Set for Detected

Vehicles
Test Set for Vehicle

Trajectories

Test-video 1
4,000 labeled vehicles
(one image every 6 sec)

1,000 labeled vehicles
(one image every 6 sec)

32,800 labeled trajectories
of 61 vehicles for two
consecutive minutes
(25 images every 1 sec)

Test-video 2
4,000 labeled vehicles
(one image every 6 sec)

1,000 labeled vehicles
(one image every 6 sec)

-

�ℎ� ����� �! !���� 
�����V�� = ∑� !
�
∑�  �

�ℎ� ����� �! �������ℎ�� = ∑�����
∑�  �

(5)

#$�� =
∑�,� "�,�
∑� ��

(6)

To evaluate the applicability of tra
c-�ow analysis, the
�ve kinds of tra
c data such as space-mean speed, density,
�ow, spacing, and the number of lane changes are calculated
using the extracted trajectories from vehicle tracking and
postprocessing. 	e space-mean speed, density, and �ow are
calculated by Edie’s de�nition [44] as in (7).

�
��� ���� �
��" = ∑� &�
∑� ��

"�����' = ∑� &�
|%|

!��* = ∑� ��
|%|

(7)

where &� is the distance traveled by the �th vehicle in the time-

space region, �� is the time spent by the �th vehicle in the time-
space region, and |%| is the area of the time-space region.
We also calculate the spacing of adjacent vehicles and the
number of lane changes. All of these data except the number
of lane change are aggregated by space-time resolution of
30m × 10s. A mean absolute percent error (MAPE) is used to
evaluate these aggregated data. 	e number of lane changes
is evaluated using a percent error (PE) a�er counting in total
time and space.

4. Experiment and Results

4.1. Datasets. To verify the proposed frameworks, we
recorded highway tra
c videos in the vertical direction using
a DJI Inspire Pro 1 equipped with a Zenmuse X5 camera,
which is a quadcopter drone with 4K video and 3-axis gimbal
stabilizers. 	e resolution of the video was 3,840 × 2,160
(25 fps). Table 1 shows details regarding the video data sets.
We conducted the experiments in congested tra
c with
respect to two di�erent conditions: lighting and the size of
the vehicles. 	ose conditions have a signi�cant impact on
the vision-based approach even when using the learning-
based method, which generally has the merit of generalized
performance. We took the �rst test-video over a 188-m range
of the four-lane Korea Expressway No. 1, which includes one
exclusive bus lane, from 8:12 A.M. to 8:24 A.M on July 15,
2016. 	is was a cloudy morning at peak tra
c a�er sunrise.
	e average tra
c density was 50.2 vehicles/km/lane, and the
average speed was 22.3 km/h. 	e average vehicle size was
40 × 91 image pixels. We took the second test-video on a
137-m section of Korea’s four-lane Expressway No. 120, which
includes entry and exit lanes, from 7:09 A.M. to 7:20 A.M.
on September 20, 2016. 	is was a clear morning at peak
tra
c before sunrise, with a shadow covering the entire road.
	e average tra
c density was 56.1 vehicles/km/lane, and the
average speed was 20.8 km/h. 	e average vehicle size was
60 × 132 image pixels, which is approximately 1.5 times larger
than that in the �rst video.

To train the detector, we used manually labeled training
sets. We set the positive samples to include only vehicles,
and the negative samples to include the background as well.
As presented in Table 2, we constructed training sets with
4,000 positive samples in each test-video. We labeled these
vehicles in more than 100 images at 6-second intervals to
prevent one vehicle from being labeled more than twice.
We tested the vehicle detection performance using images
with 6-second intervals containing 1,000 labeled vehicles. In



Journal of Advanced Transportation 9

vehicle tracking performance, we focused on evaluation of
the proposed postprocessing with simple tracking algorithm,
and, in particular, analyzing how tracking performance is
improved by the postprocessing according to variation in
detection performance. To reduce the large labeling e�ort, a
detailed performance of tracking was evaluated using 2,880
images at 0.04-second intervals (two consecutive minutes)
containing 32,800 carefully labeled trajectories of 61 vehicles
only in test-video 1. We used a user-friendly labeling tool
that utilizes cubic interpolation to perform this large-scale
labeling task [37]. To implement the ACF, vehicle tracking,
and postprocessing, we used the single-threaded MATLAB
toolbox for computer vision [45] and an Intel i7-6700HQ
CPU@2.6 GHz processor with 16 GB of memory, and Python
programming language to implement only the Faster R-CNN,
based on the tensor �ow object detection API [46] with an
Nvidia Geforce GTX 1050 TI, 4GB GDDR5.

4.2. Results of Vehicle Detection. A�er the simpli�ed prepro-
cessing of the UAV images, the vehicle classi�er was trained
using theACF and Faster R-CNNon the labeled training data.
To determine the e
ciency of the training, we conducted a
sensitivity analysis to identify the variation in the detection
accuracy with the number of positive samples. To do so,
we divided the training sets into sample subsets of 500,
1,000, 2,000, 3,000, and 4,000.	en, we randomly resampled
each of these subsets ten times to re�ect the performance
variations. Figure 5 shows the F-measures of the ACF and
Faster R-CNN with error bars for the two test videos. We
calculated the F-measures of the error bars by adjusting the
threshold for true positive to obtain the same precision and
recall values. 	e error bar indicates the standard deviation
of the measures.

In test-video 2, the performance of the Faster R-CNNwas
overwhelmingly superior to that of the ACF. 	e mean F-
measure for the ACFwas 84.7% for 500 samples and it peaked
at 91.0% for 4,000 samples, with a standard deviation (SD) of
0.3%. 	e mean F-measure of the Faster R-CNN was 95.8%
for 1,000 samples and it peaked at 97.1% for 4,000 samples,
with an SD of 1.3%. 	ese results indicate that the Faster R-
CNN can capture richer vehicle features in images during
clear weather. On the other hand, in test-video 1, the mean
F-measure of the ACF was 80.9% for 500 training samples
and it peaked at 93.0% for only 3,000 training samples, with
an SD of 1.9%. It subsequently decreased slightly to 91.5%
for 4,000 samples. 	e mean F-measure of the Faster R-
CNN was 50.2% for 500 training samples and it gradually
increased to 91.6% for 4,000 training samples, which was
slightly lower than that of the ACF. Although using more
training samples improves the performance of the Faster R-
CNN in test-video 1, it shows comparable performance with
the ACF for a small sample size. Performance degradation
of the Faster R-CNN in lower-resolution images has been
reported in previous studies [23, 47], and vehicles in UAV
images can also su�er from these problems. 	is is because
only the plain features that cannot be used to distinguish
between vehicles are extracted from the ROI pooling layers
due to the low-resolution feature map [47]. 	erefore, if the

image resolution is not high enough to identify sophisticated
features of vehicle, the use of ACFs, i.e., intuitive human-
made features, may be more e�ective in detecting vehicles
than the Faster R-CNN. Also, the results from two videos
show the relation between model complexity and saturation.
	e complexity of themodel determineswhether the detector
continues to improve as the number of training samples
increases. When the model complexity is close to saturation,
their accuracy does not increase with additional training data
and can even lead to over�tting [48]. ACFsmight be saturated
with about 3,000 samples in test-video 1, whereas the Faster
R-CNN, which is more structurally complex, was not yet
saturated with 4,000 samples. In test-video 2, which contains
more information in the vehicle images, neither model was
saturated with 4,000 samples, and their performances could
be improved with more training data.

Figure 6 shows the false positives of the best-performing
detectors trained by the ACF and Faster R-CNN for each
test-video. In test-video 1, the false positives of both of the
detectors were caused by duplicated detections of vehicles.
	ese errors can generate the false track and mismatch in
tracking process, which is main factor reducing accuracy of
vehicle trajectory. On the other hand, in test-video 2, the
ACF su�ered from the false positives caused by truck as
well as other road environments whereas the Faster R-CNN
successfully copedwith those false positives.	is explains the
performance di�erence between twodetectors in test-video 2.

4.3. Results of Vehicle Tracking and Postprocessing. In our
framework, since we performed vehicle tracking based on
the detection results, the tracking accuracy increased with
increases in the detection accuracy. To present the sensitivity
of the tracking accuracy based on the detection results,
we performed vehicle tracking using four di�erent vehicle
classi�ers with F-measures of 86.0%, 90.1%, 94.5%, and 97.4%
in test-set for vehicle tracking. We also used postprocessing
with motion constraints to remove the expected errors in the
tracking process.	en, we conducted a detailed performance
analysis using the large-scale labeled trajectories in test-video
1 where the duplicated detections were frequently observed.
	ose false positives signi�cantly decrease accuracy of vehicle
trajectory by generating the false track and mismatch in
tracking process. Also, the detection results of ACF, which
showed better performance than Faster R-CNN in test-video
1, was used for vehicle tracking and postprocessing because
both of the detectors shared a similar cause of the false
positives. We selected lane 3 (Figure 4(a)) as the target, where
lane changes occur frequently. Table 3 presents the variation
in tracking performance based on the detection accuracy and
postprocessing. Each row shows the four di�erent classi�ers
and whether or not postprocessing was performed, and each
column shows the corresponding detection and tracking
performances. Figures 7(a) and 7(b) show the changes in
the trajectories before and a�er postprocessing. 	e numbers
in Figures 7(c) and 7(d) are the start and end points of
each identi�ed vehicle, respectively. 	e shaded regions of
Figure 7(c) are the false positives that showed a di�erent
pattern from the typical tracks and the mismatches divided
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Figure 4: Images of the studied congested freeway from the UAV: (a) Korea Expressway No. 1 with cloudy a�er sunrise and (b) Korea
Expressway No. 120 with clear before sunrise.
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Figure 5: Variation in detection performance with the number of training samples. (a) Test-video 1 shows the best F-measure of 93.0% with
a standard deviation of 1.9% using ACF with 3,000 samples, and (b) test-video 2 shows the best F-measure of 97.1% with a 1.3% standard
deviation using Faster R-CNN with 4,000 samples.
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Figure 6: False positives from the two di�erent detectors for each test-video.

into two di�erent IDs. While postprocessing e�ectively
removes the mismatched trajectories and false positives, it
slightly increases the ratio of misses by removing some true
positives. 	e postprocessing worked well for F-measures
of 90.1%, 94.5%, and 97.4%, but it was less able to remove
mismatches for an F-measure of 86.0%. 	is reduction was
caused by di
culties in attaching mismatching trajectories
when missed detection occurred to a greater extent in
several consecutive frames. 	e MOTP was about 0.5–0.6 m
regardless of the F-measure, which means that true positives
provide reliable trajectories regardless of overall accuracy.
In the best performance, the vehicle trajectories achieved
location errors as low as 0.6 m with a MOTA of 89.9%.
	is suggests that the tracking process has a large impact on
the overall quality of the vehicle trajectories as well as their
detection.

4.4. Computation Time. 	e training and processing time is
an important factor for extracting trajectories if a massive
video dataset can be collected by UAVs. Table 4 shows the
training times for detectors and the processing times for each
step. In the table, we can see that the ACF and Faster R-
CNN took about 31 minutes and 45 minutes, respectively,
for 4,000 training samples using both the CPU and GPU.
	e training time of the Faster R-CNN is in�uenced by
the hyperparameters, image sizes, and number of training
samples. 	erefore, the much shorter training time than that
of a previous study [22] using a similar image size indicates
the e
ciency of the proposed method.

	e total processing times of the ACF were 1.02 seconds
and 1.34 seconds per image in the respective test videos,

whereas those of the Faster R-CNN were 0.61 seconds and
0.71 seconds per image, respectively. 	ese results show that
our model can be conducted with reasonable computation
times to construct a dataset, although these times cannot be
applied to a real-time approach.When we extracted one hour
of trajectories (25 fps) using the Faster R-CNN from test-
video 1, it took about 15 hours, and more powerful GPUs
could signi�cantly accelerate these overall processes.

4.5. Comparison of Methods to Obtain Aggregated Tra
c
Data. For application to the tra
c-�ow analysis, it is nec-
essary to evaluate the reliability of aggregated tra
c data
obtained from vehicle trajectories such as space-mean speed,
density, �ow, spacing, and the number of lane changes. We
compare the eight combinations of detection and tracking
method including the four detectors and the two trackers.
	e original V-J detector [30] and Single Shot Multibox
Detector (SSD) [49], which are two well-known object
detectors using a human-made feature and a data-driven
feature each, are used for comparison with the proposed
methods, i.e., ACF and Faster R-CNN. 	e Kanade-Lucas-
Tomasi (KLT) feature tracker [50] is also used for comparison
with the proposed Kalman �lter-based tracking method
(KF).

	e evaluation is performed on the same dataset which
was used to evaluate the vehicle tracking and postprocessing.
Excluding the number of lane changes, each value of the
tra
c data is calculated by space-time resolution of 30m
× 10s in lane 3. On the other hand, the number of lane
changes is calculated in all the lanes over the entire period of
time. Table 5 shows the testing results of eight combinations
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Table 3: Variation in tracking performance based on the detection performance and postprocessing.

Detection, Tracking, and Postprocessing Performance

Vehicle Classi�er F-measure Postprocessing Ratio of Miss Ratio of False Positive Ratio of Mismatch MOTA MOTP

Classi�er 1 86.0%
13.4% 6.8% 10.3% 69.5% 0.54m

✓ 16.6% 4.8% 8.3% 70.3% 0.52m

Classi�er 2 90.1%
9.0% 7.7% 8.5% 74.8% 0.51m

✓ 11.2% 3.9% 3.0% 81.9% 0.52m

Classi�er 3 94.5%
4.7% 8.6% 6.8% 79.9% 0.54m

✓ 6.7% 7.4% 0.1% 85.8% 0.60m

Classi�er 4 97.4%
5.5% 3.7% 3.3% 87.5% 0.59m

✓ 5.8% 3.2% 0.1% 89.9% 0.60m

Table 4: Computation time of detection, tracking, and postprocessing.

Test-Video 1 Test-Video 2

ACF Faster R-CNN ACF Faster R-CNN

Training Time for 4,000 samples 31 minutes 45 minutes 34 minutes 40 minutes

Processing Time per Frames

Vehicle Detection 0.83 seconds 0.41 seconds 1.15 seconds 0.52 seconds

Vehicle Tracking 0.19 seconds 0.18 seconds

Postprocessing 0.01 seconds 0.01 seconds

Total 1.03 seconds 0.61 seconds 1.34 seconds 0.71 seconds

Table 5: Performance evaluation for obtaining aggregated tra
c data.

Metric
Proposed Kalman Filter-BasedMethod (KF) 	e Kanade-Lucas-Tomasi Tracker (KLT)

VJ SSD ACF
Faster
R-CNN

VJ SSD ACF
Faster
R-CNN

Processing Time
(fps)

2.0 3.3 1.0 1.7 1.3 1.8 0.8 1.2

	e Number of Lane
Changes
(PE, %)

+8.3% +4.2% +4.2% +8.3% +12.5% +4.2% +8.3% +4.2%

Space-Mean Speed
(MAPE, %)

3.0% 1.1% 2.3% 3.2% 3.5% 2.3% 3.4% 1.9%

Density
(MAPE, %)

5.0% 6.7% 3.1% 5.8% 7.5% 2.7% 8.2% 2.3%

Flow
(MAPE, %)

6.1% 6.8% 3.2% 7.1% 7.1% 2.8% 8.2% 2.2%

Spacing
(MAPE, %)

7.4% 4.8% 5.1% 6.1% 10.1% 6.0% 11.1% 5.7%

Average
(MAPE, %)

5.4% 4.9% 3.4% 5.6% 7.1% 3.5% 7.7% 3.0%

of detection and tracking method. With the proposed KF-
based method, the ACF shows the best overall performance
(3.4%) and the Faster R-CNN shows the lowest overall
performance (5.6%). 	is is because the Faster R-CNN
showed lower detection accuracy than ACF in test-video
1 although the detection accuracy is the critical factor for
the KF-based method as shown in the prior section. 	e
average performance of the SSD (4.9%) and the VJ (5.4%) is
better than those of the Faster R-CNN, and the SSD achieved
the fastest processing time (3.3 f/s). With the KLT feature
tracker, however, the Faster R-CNN shows the best average
performance (3.0%) with slightly slow speed (1.2 f/s) among

all combinations. 	is is because the tracking precision is
more important for collecting the aggregated data than the
tracking accuracy, and the Faster R-CNN has the advantage
of precision through the bounding box regression [33]. Also,
the KLT tracker, which extracts features from the detected
bounding box, can e�ectively supplement the low tracking
accuracy. 	e averaged performance of SSD, which uses the
bounding box regression, is also improved from 4.9% to 3.5%
with e
cient speed (1.8 f/s) while the average performance of
ACF and VJ decreases with KLT.	ese results indicate that it
is important to �nd an optimal combination of detector and
tracker depending on the data to be collected.
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Figure 7: Extracted vehicle trajectories (a) before postprocessing by detectionwith 94.5%F-measure and (b) a�er postprocessing by detection
with 94.5% F-measure. (c) Tracking errors including false positives andmismatches in trajectory data. (d) Results of postprocessing to remove
tracking errors. 	e numbers in �gures indicate the start and end points of each identi�ed vehicle.

Within the test data, vehicle lane change occurred 24
times in total. 	e best-performed combinations of detectors
and trackers, which are theACFwithKF, the SSDwithKF, the
SSD with KLT, and the Faster R-CNN with KLT, have 4.2%
percent error (i.e., only one false positive). 	ese results show
that the lane changes can be well detected by the extracted
trajectories.

5. Discussion and Conclusions

In this paper, we proposed an e
cient and accurate frame-
work for extracting vehicle trajectories recorded by UAVs
to overcome the limitations reported in previous studies,
i.e., low accuracy in congested tra
c, lack of guideline for
selecting proper detection method, and lack of detailed
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performance analysis. We extended learning-based vehicle
detection to tracking by combining postprocessing for vehicle
trajectories in congested tra
c. By evaluating the perfor-
mance of the proposed framework on data from a highly con-
gested highway, we found the Faster R-CNN to outperform
the ACF in images with large objects and in images with small
objects if su
cient data is provided. We note that the ACF
showed comparable performance with the Faster R-CNN
for small objects with a small sample size. Furthermore, we
calculated and evaluated the various aggregated tra
c data
obtained from extracted vehicle trajectories to examine the
applicability of tra
c-�ow analysis. 	e results of this study
provide a practical guideline for building a framework to
extract vehicle trajectories according to the given conditions.

	e detection results indicate that the vehicle trajectories
achieved as low as a 0.6-m location error with a MOTA of
89.9%, when using 97.4% of the detection results. False pos-
itives regarding vehicle detections, caused by road facilities,
road signs, shadows, and trucks, were the main reason for
errors in the extracted trajectories. In the tracking process,
these not only became the false positives of trajectories
but also caused mismatches with other trajectories. 	eir
impacts are much greater in congested tra
c, because there
are so many interactions with other trajectories. In our
postprocessing, we removed many of the false positives and
mismatches, but some remained. Nevertheless, compared to
the results of other studies, our study showed promising
performance for extracting trajectories even in a tra
c jam
[13]. If we have a public dataset on congested tra
c, we can
readily compare the performance of our methods with those
of other studies in future work.

Based on our detailed performance analysis, we discussed
the usability and acceptability of the proposed framework
for tra
c-�ow analysis. 	e sensitivity analysis, in which we
varied the number of positive samples used to train a vehicle
classi�er, showed that it required only 1,000–4,000 positive
samples to obtain a detector that performed well. 	is is a
relatively small number of training samples compared with
the number used in a previous study [13, 22].	e trajectories
extracted based on the vehicle detections had acceptable
accuracy. 	is indicates that the proposed framework may
be used easily and e
ciently in �eld studies without needing
a vast amount of training data. Also, we showed that the
MOTP, which indicates the position error of true positives,
was about 0.5–0.6 m, regardless of the detection accuracy.
	is shows that our framework provided reliable results for
true positives, even though it generated false positives, false
negatives, andmismatches. In particular, theMOTP values in
this study were acceptable for tra
c-�ow analysis. Consid-
ering that the average distance headway (i.e., the reciprocal
of density) in this study was about 20 m, the location error
was only about 2–3% of the headway. 	is value is lower
than that of the GPS. When a vehicle equipped with a GPS
travels, the location error ranges between 3–5 m if the vehicle
had a di�erential GPS (DGPS), and the error is less than 1
m if the vehicle is equipped with a real-time kinetic GPS
(RTK-GPS) [51]. Furthermore, we obtained more accurate
vehicle trajectories by performing postprocessing to remove
both the false positives and mismatches. 	e high precision

of macro- and microscopic tra
c data obtained by extracted
trajectories also supports that this framework is e
cient for
practical use and can also provide accurate trajectories for
tra
c-�ow analysis. Also, our comparison results show that
�nding the appropriate combination of detector and tracker
is a more e
cient way to improve performance than �nding
the best detector and tracker, respectively. 	erefore, it is
necessary to study the detector and tracker with various
characteristics to �nd the optimal combination for tracking
vehicles.

Since the overall process of extracting vehicle trajectories
is very extensive, we have not addressed all aspects of it
in detail, so there is scope for improvement. As shown by
the tracking accuracy based on the detection results, the
tracking process is also an important factor for improving
the quality of vehicle trajectories. We used simple motion
constraints in congested tra
c to remove the expected error
of the tracking process, and this could be improved further by
the use of a more sophisticated appearance or motion model,
which we plan to do in future research. Details about recently
developed models are described in other studies [28, 52]. As
mentioned earlier, automated road extraction and camera
calibration should replace our simpli�ed preprocessing to
realize a fully automated approach when tra
c surveil-
lance based on UAVs becomes practical. Also, although
we presented a binary classi�cation that distinguishes only
whether or not a vehicle is present, multiclass detection
and tracking could improve the tracking performance by
reducing the number of false positives caused by trucks.
	is would also extend the relevance of this framework for
future tra
c dynamics research. A vision-based framework
can be a�ected by weather and the geometric road features.
Although we tested our method for two di�erent lighting
conditions, in future research, the generality of a UAV-based
framework must be veri�ed for use in harsh conditions, such
as night-time, fog, and roads that are partially occluded by
shadows.
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