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Abstract 

 

Recent advances in processing velocity data from bottom-mounted Acoustic 

Doppler Current Profilers (ADCPs) offer the capability of partitioning directional wave 

spectra of surface wave height in order to separate the locally generated wind waves from 

incoming swells arriving from remote sources.  In the study described here, we have 

partitioned directional wave spectra, derived from bottom-mounted ADCP measurements 

at the Martha’s Vineyard Coastal Observatory (MVCO) south of Martha’s Vineyard, 

MA, into dominant swell and locally generated wind-wave components.  The partitioning 

was carried out following the method of Hanson and Phillips (2001).  Because this is a 

relatively untested method, especially when applied to ADCP data, it was implemented 

by an exploratory, rather than a routine, approach.  As part of this approach, we assessed 

the validity of the ADCP-derived wave spectra by comparing them with one-dimensional 

wave spectra derived from laser altimeter measurements.  As will be shown, this 

comparison identified a frequency range over which the ADCP-derived wave field may 

be suspect.  We also carried out a series of sensitivity tests in which we evaluated how 

the results of wave partitioning according to the Hanson and Phillips (2001) method is 

influenced by varying the parameters required to implement the method.  In this report, 

we describe and assess the data sources used in our study, outline the methods employed 

for wave spectra partitioning and describe partitioning results (focusing on the sensitivity 

of these results to the partitioning parameters). 
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1.  Introduction 

 

A coastal wave field often presents an observer with complex patterns created by the 

interaction of locally generated wind waves with swells from a distant source, or sources.  

Recent advances in processing data from bottom-mounted ADCPs offer the capability of 

partitioning directional wave spectra of surface wave height, separating the locally-generated 

wind waves from incoming swells arriving from remote sources.  In the study described here, we 

have partitioned directional wave spectra derived from bottom-mounted ADCP measurements 

acquired south of Martha’s Vineyard, MA, into dominant swell and locally generated wind-wave 

components.  The partitioning was carried out following the method of Hanson and Phillips 

(2001).  Because this is a relatively untested method, especially when applied to ADCP data, it 

was implemented by an exploratory, rather than a routine, approach.  As part of this approach, 

we assessed the validity of the ADCP-derived wave spectra by comparing them with one-

dimensional wave spectra derived from laser altimeter measurements.  As will be shown, this 

comparison identified a frequency range over which the ADCP-derived wave field may be 

suspect.  We also carried out sensitivity tests in which we evaluated how the results of wave 

partitioning according to the Hanson and Phillips (2001) method is influenced by varying the 

parameters required to implement the method.  In the sections to come, we describe and assess 

the data sources used in our study, outline the methods employed for wave spectra partitioning 

and describe partitioning results (focusing on the sensitivity of these results to the partitioning 

parameters). 

 
 

2.  Data Sources and Processing 

 

Carrying out the wave partitioning by the method of Hanson and Philips (2001) requires 

time series of directional wave height spectra and of wind velocity from the region where the 

spectra were acquired.  For our study, these time series were derived using data from the 

Martha’s Vineyard Coastal Observatory (MVCO).  Sited off the southern coastal of Martha’s 

Vineyard (Figure 1), the MVCO contains a suite of instrumentation acquiring continuous 

atmospheric and oceanic measurements, many of which are available in real time via an Ethernet 

network (see Edson et al., 2000, and Austin et al., 2002, for descriptions of the MVCO).   

 

The analysis period, 30 July to 31 December 2003, was chosen to coincide with the 2003 

Intensive Observing Period of the Coupled Boundary Layers/Air-Sea Transfer (CBLAST) 

research initiative (the low-wind component of CBLAST is described at 

http://www.whoi.edu/science/AOPE/dept/CBLAST/low/cblastlow). Below we briefly describe 

the instrumentation and processing methods used to generate the wind velocity and wave height 

spectra used in our study. 

 

a.  Wind Velocity 

 

The MVCO includes a shore-based and a sea-based meteorological station (Figure 1; 

Table 1).  The shore-based station, the MVCO meteorological mast, is located roughly 60 m 

from the mean low water mark and is equipped with a sonic anemometer at 10 m above mean sea 

level.  The sea-based station, known as the Air-Sea Interaction Tower (ASIT), is located roughly 

3 km south of Martha’s Vineyard in approximately 15 m of water.  The tower extends 23 m 
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above mean sea level. During the analysis period, the ASIT supported 5 sonic anemometers at 

heights of 5, 7, 11, 18 and 20 m above mean sea level.  The ASIT wind record used for the 

partitioning analysis is a synthesized 10-m wind velocity record, computed by J. Edson using the 

available ASIT data from all levels. The winds were averaged to 20 min intervals matching the 

ADCP spectral processing intervals. 

 

 
 

Figure 1.  Locations of data used in this study.  Wind velocity data were acquired at the Air-Sea 

Interaction Tower (C), and the MVCO meteorological mast (A).  ADCP data used to compute wave 

directional spectra were acquired at the MVCO 12-m offshore node (B).  One-dimensional wave 

spectra were derived from the measurements of a Riegl laser altimeter mounted on the Air_Sea 

Interaction Tower (C). 

 
 

Unfortunately, the wind records for both stations contain long gaps, and neither fully 

encompasses the analysis period.  Because the ASIT wind measurements are directly over the 

sea, they are deemed more appropriate for use in the wave partitioning analysis as they represent 

the “local” wind forcing of the wave field.  Accordingly, wind velocities from the MVCO 

meteorological mast are employed only for those periods when ASIT winds are not available. 

 

Fortunately, the winds from the two stations are closely matched at most times.  For the 

44-day wind records shown here (Figure 2), the magnitudes of the vector differences between the 

ASIT and MVCO shore-based wind velocities have an average of 1 m s
-1

 and a standard 
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deviation of 0.6 m s
-1

.  When plotted against one another, the vector components of the ASIT and 

MVCO shore-based winds are tightly clustered about the one-to-one match lines (Figure 3).  

 
                        Table 1.  Locations of measurements used in our study. 

 

Instrument Latitude Longitude Description 

MVCO meteorological mast 41° 20.996' N 70° 31.60' W Shore-based tower with a 

sonic anemometer at 10-m 

ASIT 41° 19.500' N 70° 34.0' W Sea-based tower supporting 5 

sonic anemometers 

ADCP 41° 20.195' N 70° 33.387' W 1200-kHz RD Instruments 

Workhorse ADCP Wave 

gauge deployed at the MVCO 

12-m depth node 

Laser Altimeter 41° 19.500' N 70° 34.0' W Riegl Altimeter mounted on 

the ASIT tower 

 

 

 

 
Figure 2.  Comparison of 10-m wind records from the ASIT offshore tower (red) and the MVCO 

shore mast (blue) (see Figure 1 for locations). Wind directions are in “meteorological convention,” 

so that 180
o
 means a wind from the south. 
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Figure 3. Comparison of the velocities measured at the ASIT offshore tower and the MVCO shore 

mast.  As in Figure 2, the values shown are from year days 200-244 of 2003.  The red line in each 

panel traces a one-to-one match in the velocity component. 

 

 

b.  Laser Altimeter-Derived Wave Spectra  

 

The laser altimeter measurements of sea surface height used in our study are from a Riegl 

altimeter deployed on the ASIT tower (Figure 1, Table 1) and were provided courtesy of J. 

Edson.  The altimeter sampled at a frequency of 20.4 Hz.   

 

In computing sea surface height spectra from the altimeter measurements, we first 

divided the altimeter height time series into 20-minute segments.  A spectrum of each segment 

was computed by averaging spectra from overlapping sub-segments of length 8192 points.  A 

Hamming filter was applied to each sub-segment prior to spectral computation via a fast Fourier 

transform.  The resulting time series of spectra, with a frequency resolution of .0025 Hz and a 

time interval of 20 minutes, was smoothed by applying a 3-point running mean filter over both 

time and frequency.    

 

This time series of sea surface height spectra is not continuous, as the laser data set 

contains frequent gaps, many of which extend for > 1 d.  Nevertheless, the height spectra have 
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proven useful in assessing the wave spectra derived from the ADCP velocity data, as described 

below.  
 

c.  ADCP-Derived Wave Spectra  

 

The directional wave spectra used in the wave partitioning analysis were computed from 

velocity data acquired from an upward-looking ADCP deployed at the MVCO 12-m node 

(Figure 1, Table 1).  Supported by a pedestal base jetted 12 ft into the sea bed, the node is located 

roughly 1.5 km from shore in 12 m of water.  The ADCP acquired data at 2 Hz and determined 

velocities in bins of 0.5-m thickness. The deepest bin is 3.2 m above the bottom. 

 

Directional wave spectra were computed from the ADCP velocity data using the 

Teledyne RD Instruments WavesMon software package.   The principals of operation of this 

software package are described in the RDI Waves Primer (available at: 

http://www.rdinstruments.com/pdfs/waves_primer_0504.pdf) and by Krogstad et al. (1988), 

Terray et al. (1999) and Strong et al. (2000).  In the most basic terms, WavesMon operates by 

assuming that the auto- and cross-spectra of the velocity series determined from the returns of 

the individual acoustic beams are related, through known linear functions, to the directional 

wave distribution.  An iterative maximum likelihood method is employed to determine the 

directional wave field in best agreement with the ADCP velocity auto- and cross-spectra. 

 

For our study, directional wave spectra were determined using WavesMon from 

successive 20-min segments of the ADCP data.  These spectra, each with a resolution of 0.0078 

Hz and 4
o
, were filtered in frequency and direction with a 3x3 median filter and further smoothed 

in frequency with a 3-point running mean filter.  These operations produced a continuous time 

series of wave directional spectra, at 20-min intervals, extending over year-days 211-365 of 2003 

(30 July–31 December in our year-day convention in which noon on 1 January is year-day 1.5). 
 

d.  Comparison of ADCP- and Laser Altimeter-Derived Wave Spectra  

 

Wave properties determined from ADCP data via WavesMon have been evaluated by at least 

two teams of investigators.  RØrbaek and Anderson (2000) compared ADCP-derived wave 

properties with those determined using data from an Inter Ocean S4 bottom-mounted 

electromagnetic current meter.  They found wave statistics (e.g., significant wave height, wave 

peak period) derived from the S4 and ADCP data to be in close agreement (generally differing 

by less than 5%).   Strong et al. (2000) compared wave properties determined from ADCP data 

acquired at a number of locations with data obtained from other instruments, principally an 

Acoustic Doppler Velocimeter (ADV) and a WaveRider buoy.  They also reported close 

agreement between the ADCP-derived wave statistics and those determined from the 

independent measurements. 

 

Although these studies provide confidence in the wave spectra determined by WavesMon, 

the relative youth of the WavesMon application makes it worthwhile to compare WavesMon 

generated wave spectra with wave spectra derived from independent measurements whenever 

possible.  For such a comparison, the laser altimeter data are in many respects ideal, since they 

are direct measurements of surface waves and encompass very high frequencies.   Subsurface 

measurements of wave motions, such as the ADV data used in the comparison by Strong et al. 
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(2000), are limited by a high frequency cutoff in wave detection due to the rapid attenuation of 

high frequency surface waves with depth. 

 

To compare the ADCP-derived wave spectra with the wave spectra computed from the 

laser altimeter measurements, the two-dimensional ADCP-derived spectra were integrated over 

direction.  The resulting 1-dimensional spectra compared well with the spectra derived from the 

laser altimeter measurements in the period band that typically contains most of the surface wave 

energy (2.4-12 s) (Figures 4 and 5).  At most times, the peaks in the spectra derived from the 

laser altimeter data were higher and sharper than the corresponding peaks observed in the spectra 

determined from the ADCP data (Figure 5). Both the lower frequency resolution and the 

additional frequency smoothing of the ADCP spectra contribute to this difference. 

  

 
 

Figure 4.  Comparison of 1-dimensional wave spectra derived from ADCP data (top panel) and 

laser altimeter measurements (bottom panel).  The horizontal line in the upper panel marks the 

high frequency cutoff (at 0.4 Hz) for the spectra passed to the wave partitioning routine. 

 

At frequencies above 0.4 Hz, the wave spectral estimates derived from the ADCP data 

are consistently higher, by roughly a factor of two, than those determined from the altimeter data.  

Close comparison of the high frequency ADCP- and altimeter-derived wave estimates reveal 

differences between the two that cast doubt on the validity of the high frequency ADCP-derived 

estimates.  At frequencies > 0.4 Hz, the laser altimeter-derived spectral magnitudes tend to 
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decline with frequency whereas the ADCP spectral estimates are essentially flat (Figure 5).  In 

this higher frequency band, the ADCP-derived energy levels exhibit temporal modulations, at 

periods of < 1 d, that are not apparent in the altimeter derived spectra (Figure 4).  These 

differences between the ADCP-derived spectra and the presumably reliable laser altimeter-

derived spectra make the high frequency ADCP-derived wave spectral estimates highly suspect.  

For this reason, we truncated the ADCP spectra at a high frequency cutoff of 0.4 Hz, before these 

spectra were used as input to the wave partitioning software. 

 

 
 

Figure 5.  Time averages of the ADCP and laser altimeter-derived spectra shown in Fig. 4. The 

altimeter spectral peak is about 30% higher and also narrower than that of the ADCP. This is due 

in part to the lower frequency resolution and increased frequency smoothing of the ADCP spectra. 

 
 

3. Wave Spectra Partitioning 

 

a.  Wind Sea Identification 

 

Our partitioning of the ADCP-derived directional wave spectra was carried out using the 

software routine APL-WAVES (http://www.subchem.com/waves), which employs the 

methodology described by Hanson and Phillips (2001).  A commercially sold software product 

developed in MATLAB (http://www.mathworks.com) Version 6.5, APL-WAVES is designed to 

identify portions of a directional wave spectra that are due to the locally generated “wind sea” 

and to swells from distant sources.  The program determines the presence, or absence, of a wind 
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sea by imposing an “age criterion” such that the phase speed (cp) of the wind-sea spectral peak 

(or peaks) satisfies the relationship 

 

δcos10UWc Mp ≤  

 

where U10 is the wind speed at 10 m, δ is the angle between the wind and wind sea, and WM is a 

“wind-sea multiplier.”  By applying the deep water wave dispersion relationship, the above 

defines a parabolic region of the directional wave spectrum within which the wind-sea peak is 

required to reside (Figures 6 and 7).  This region is defined by 

 

[ ] 1

10 cos
2

−≥ δ
π

UW
g

f Mp  

 

where fp is the spectral peak of the wind sea and g is the gravitational acceleration.  All other 

spectral peaks are assumed to be produced by swell.  These swell peaks are separated, or 

combined, based on the degree of peak separation and the energy level between peaks. 

 

The conventional limit of applicability for the deep water dispersion relation (~10% error 

in the dispersion relation) is H = L / 4, where H is the water depth and L is the wavelength.  In  

12 m water depth this limit gives a maximum wavelength of 48 m, corresponding to a maximum 

wave period of about 5.8 s. More than 90% of the wind seas identified by APL-WAVES (Section 

4b) have periods less than this limit, indicating that the use of a wind-sea parabola based on 

deep-water dispersion will not significantly affect the results. Furthermore, inspection of the 

APL-WAVES output shows that some fraction of the long-period wind waves (T > 7 s) are in 

fact mis-identified swell (due to short-term increases in U10 that increase fp in the absence of 

significant wind-wave growth). Still, some problems could arise in identifying the rare cases of 

actual long-period wind waves, since the deep-water fp will be too high by the factor tanh(kh), 

which approaches 20% for T = 7 s. However, the relatively generous values of the wind-sea 

multiplier used in this study ( 9.14.1 ≤≤ MW ) tend to mitigate such problems. 

 

b.  APL-WAVES Parameters 

 

The program defines a set of parameters to identify the wind sea and distinguish swell 

spectral peaks.  The user may employ default values or adjust the parameters to suit his/her 

requirements.  The parameters control the program’s function in four broad categories.  These 

parameters are listed and described below together with their default values (in square brackets) 

for ADCP-derived spectra. 

 

Wave Height Thresholds: These parameters are set to minimize the possibility of 

identifying spurious, low-energy peaks in the directional wave spectrum as either a developing 

wind sea or a swell from a distinct source. 

 

• Minimum Wind-Sea Height  [0.1 m] 

• Minimum Swell Height  [0.2 m] 

 



 9

Wind Sea Selection: As described above, the multiplier is used to define the parabolic 

area within which a spectral peak is considered part of the wind sea. 

 

• Wind-Sea Multiplier,  WM [1.9] 

 

Swell Selection: The first parameter defines the maximum number of swell “systems” 

allowed per spectra. The swell systems are sorted based on total energy. The second and third 

parameters are used to determine if spectral peaks belong to the same, or different, swell 

systems.  Adjacent peaks are combined if they are less than the Spread Factor times the “spread 

of either partition.”  Adjacent wave spectral peaks are assigned to different swell systems if they 

differ in direction by more than the Swell Separation Angle. 

 

• Number of Swells Per Record  [3] 

• Spread Factor  [1] 

• Swell Separation Angle  [40
o
] 

 

Wave System Tracking: Wave tracking parameters control the manner in which APL-

WAVES links wave systems through time. The first parameter defines the maximum number of 

consecutive records that may be missing while still attempting to link the wave systems. The 

second parameter specifies the minimum number of consecutive records for a valid swell system 

to be identified. 

 

• Largest Record Gap  [4] 

• Minimum Number of Records [10 m] 

 

Evaluating the effect of these parameters on the operation of APL-WAVES was 

facilitated by the spectral plots generated by the program that distinguish the different wave 

systems identified by the partitioning.  To demonstrate the utility of these plots, we offer here 

two examples of spectra partitioned using the “default” parameters.  In one, the spectral peaks 

are broadly separated, and use of the default parameters clearly distinguishes the wind sea and a 

dominant swell system (Figure 6).  By contrast, the other spectrum has more closely spaced 

peaks that clearly offer more of a challenge to the partitioning routines (Figure 7).  In the next 

section we describe our attempt to hone the parameters for optimal partitioning of the MVCO 

directional wave spectra. 

 
 

4. Results 

 

a.  Parameter Sensitivity Tests 

 

In an attempt to optimize the operation of APL-WAVES, we carried out a series of 

sensitivity tests, exploring how variation of key parameters affects the manner in which the 

program identifies the wind sea and remotely generated swell systems.  The goal was to select a 

parameter set that produced optimal results with regard to wind sea and swell system 

identification.  In carrying out the sensitivity tests, we held certain parameters, deemed least 
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critical, constant at their default values (Section 3b).  These were: the number of swells per 

record, the largest record gap and the minimum number of records. 

 

In exploring the effect of the other parameters, we focused on four periods, 2003 year 

days: 228-232.5 (August 16-20), 240-243 (August 28-31), 280-283 (October 7-10) and 291-294 

(October 18-21).  These periods encompassed a wide variety of wind and wave conditions.   

Here we present and discuss the sensitivity tests from year day 240-243 only.  The spectra of this 

period exhibited a sufficient range of differing wave conditions from which to judge different 

aspects of the partitioning routines. 

 

 

 

 
 

Figure 6.  An example of an ADCP directional wave spectrum partitioned using the default 

parameters of APL-WAVES.  The plot on the left shows the contoured spectrum with the wind-sea 

parabola superimposed.  The plot to the right shows the spectral regions APL-WAVES identified as 

the wind sea (light blue), dominant swell (green) and miscellaneous (dark blue).  The plots were 

generated by APL-WAVES.  
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Figure 7.  Same as Figure 6 except showing the partitioning results of a somewhat more 

complicated spectrum.  Note that the program separated the closely spaced wave peaks at roughly 

0.2 Hz into two swell systems, but also lumped a well separated, lower frequency peak (near 0.07 

Hz) into one of these systems (identified by the light green coloring in the right hand plot). 

 

 

Selection of the “optimal” parameter set was largely a subjective process, and involved 

balancing the positive and negative effects of varying a certain parameter.  Assessments were 

formed from examining the wave partition plots generated by APL-WAVES and by tracking the 

continuity of wave properties (such as averaged wind sea and swell system frequency) over time.  

In all, we compared the results from nine parameter sets (Table 2) which are presented in Figures 

8-16. 

 

The two parameters that control the identification of the wind sea are the minimum wind-

sea height and the wind-sea multiplier.  The former limits the identification of spurious high 

frequency motions as a wind sea.  However, too small a value of minimum wind-sea height may 

preclude the detection of a wind sea during its early development.   Through examination of 

sequences of wave spectra from times of a newly developing wind sea, we found that a threshold 

of 0.075 m allowed APL-WAVES to successfully capture the nascent wind sea with very few 

false identifications of spurious motions as wind sea. 
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Table 2. Parameter sets used in the partitioning sensitivity tests. 

 

Designation  

Letter 

Min. 

Wind Sea 

Height 

Min. 

Swell 

Height 

Wind 

Sea 

Mult. 

Spread 

Factor 

Swell 

Separation 

Angle 

a (default)  0.1 m 0.2 m 1.9 1 40
o
 

b 0.075 m 0.2 m 1.6 1 40
o
 

c 0.075 m 0.1 m 1.6 1 40
o
 

d 0.075 m 0.1 m 1.4 1 40
o
 

e 0.075 m 0.1 m 1.8 1 40
o
 

f 0.075 m 0.1 m 1.6 0.4 40
o
 

g 0.075 m 0.1 m 1.6 0.7 40
o
 

h 0.075 m 0.1 m 1.6 0.7 20
o
 

i 0.075 m 0.1 m 1.6 0.4 20
o
 

 

 

The principal concern governing the selection of the wind-sea multiplier is to capture the 

spectral peak of a developing sea in the wind-sea parabola while excluding spectra peaks due to 

swell from the parabola.  Too small a multiplier may put spectral peaks clearly associated with a 

wave sea outside the reach of the parabola.  However, too large a multiplier may overextend the 

parabola to capture spectral peaks due to remote swell. The assessment of the wind-sea 

multiplier is further complicated by situations in which wind speed and/or direction vary 

dramatically during the generation of a wind sea.  A short-term dip in wind speed, for example, 

can produce a scenario in which a spectral peak due to a developing wind sea is temporally 

outside the scope of the wind-sea parabola. 

 

We tested the program’s operation with wind-sea parameters in the range of 1.4 to 1.9 

(the program’s default value for ADCP-derived spectra).  Values of 1.8 and 1.9 appeared to be 

too large as they often extended the wind-sea parabola to include the spectral peaks clearly 

associated with swell (Figure 17).  

 

The partitioning of the spectra from year days 140-141.5 offer a number of instances of 

this sort of wind-sea parabola overextension.  The spectra from this period contain a high 

frequency swell system with peak energy at roughly 0.18 Hz.  Using wind-sea multipliers of 1.8 

and 1.9 often results in the inclusion of this swell system into the wind-sea domain (Figures 8 

and 12).  The frequency of this overextension of the wind domain is significantly lessened by 

reducing the multiplier to 1.6 (Figure 10) and is virtually eliminated by a further reduction of the 

multiplier to 1.4 (Figure 11).  However, use of a 1.4 multiplier is seen to be problematic for the 

capture of a low level wind sea appearing near 0.42 Hz in the spectra from the year day range 

241-241.5.  The spectral peak of this wind sea is often outside the domain of the wind sea 

defined with a 1.4 multiplier (Figure 11), but is much more often within the wind-sea domain 

defined with a 1.6 multiplier (Figure 10).  Examination of the partitioning results from the other 

periods listed above revealed similar tendencies for an overextension of the wind-sea parabola at 

multipliers ≥ 1.8 and an occasional exclusion of a wind-sea peak from the wind-sea domain 

determined with a multiplier of 1.4.  For this reason, we chose 1.6 as the “compromise” wind-sea 

multiplier that best captured the wind sea under most conditions. 
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The principal parameters controlling the detection and separation of swell systems are the 

minimum swell height, the spread factor and the swell separation angle.  We found that running 

APL-WAVES with the default minimum swell height of 0.2 m often relegated distinct, but low 

energy, spectral peaks to the “miscellaneous” category.  Reducing the minimum swell height to 

0.1 m resulted in the designation of many more of these low energy spectral peaks as swell 

systems.  

 

For most spectra, we found that partitioning with the default parameters for spread factor 

(1) and swell separation angle (40
o
) separated clearly distinct low frequency peaks into different 

swell systems.  However, there were a number of spectra with distinct and closely aligned peaks 

that were lumped into a single swell system with the use of the default parameters (Figure 18).  

These spectra were usually from periods with relatively low wave energy.  For many such 

spectra, reducing the spread factor to 0.7 resulted in the generation of one or more additional 

wave systems to accommodate the distinct spectral peaks (Figure 18, middle panel).  Further 

reduction of the spread factor, however, often caused APL-WAVES to draw too sharp a 

distinction between wave systems, dividing what appeared to be a single spectral peak into 

separate wave systems (Figure 18, bottom panels).  The reduction of the swell separation angle 

from the default value often had the same effect of dissecting an apparently single spectral peak.  

Based on these observations, we conclude that of spread factor/separation angle combinations 

tested, 0.7/40
 o
 produced the best swell system partitioning. 
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Figure 8.  The top panel shows contoured wave energy, on a time-frequency plane, determined by 

integrating the ADCP-derived directional wave spectra over direction.  Superimposed on the 

contours are lines tracing the characteristic frequency (energy-weighted average) of the wind sea 

and dominant swell.  The middle panel shows the ASIT wind speed and wind-sea significant wave 

height.  The bottom panel displays wind direction and energy-weighted mean wind-sea direction.  

All wave properties were determined using parameter set a (Table 2). 
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Figure 9. Same as Figure 8 except computed using parameter set b (Table 2). 
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Figure 10. Same as Figure 8 except computed using parameter set c (Table 2). 
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Figure 11. Same as Figure 8 except computed using parameter set d (Table 2). 
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Figure 12. Same as Figure 8 except computed using parameter set e (Table 2). 
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Figure 13. Same as Figure 8 except computed using parameter set f (Table 2). 
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Figure 14. Same as Figure 8 except computed using parameter set g (Table 2). 
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Figure 15. Same as Figure 8 except computed using parameter set h (Table 2). 
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Figure 16. Same as Figure 8 except computed using parameter set i (Table 2). 
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Figure 17.  Comparison of the wind sea-portions of spectra determined with a wind-sea multiplier 

of 1.8 (top panels, parameter set e) and 1.6 (bottom panels, parameter set c).  Partitioning with the 

larger wave multiplier causes spectral peaks associated with a swell system to be included in the 

wind-sea spectral domain. 

(a) 

(b) 
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Figure 18.  Comparison of a wind spectrum partitioned with three different combinations of spread 

factor and swell separation angle.  Partitioning of the top, middle and bottom panels were carried 

out with spread factor/separation angle combinations of 1/40
o
 (parameter set c), 0.7/40

o
 (set g) and 

0.4/20
o
 (set i), respectively.  For this spectrum, the 0.7/40

o
 spread factor/separation angle 

combination produced a reasonably good separation of swell systems, whereas the 0.4/20
o
 

combination appeared to divide swell systems too finely. 

 

August 29, 2003 10:00
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b.  Output of Spectral Partitioning 

 

To summarize the above, we found that of the parameter sets tested (Table 2), use of set g 

produced the best partitioning results. With this set as input to APL-WAVES, we partitioned all 

spectra derived from the MVCO ADCP for the period July 30–December 31, 2003 (year-days 

211-365). From the program’s output, we generated a MATLAB binary file 

(wave_statistics.mat) with variables describing the statistical properties of the overall wave field, 

the wind sea, and the dominant and secondary swell systems.  All variables were computed as 

defined in Hanson and Phillips (2001). A brief description of each variable is provided in 

Appendix 1. So that the statistical properties of the directional spectra could be easily compared 

with the frequency distribution of wave energy, we also generated a MATLAB file 

(spec_1d.mat) containing a time series of the one-dimensional wave energy spectra (determined 

from integrating the directional spectra over frequency) derived from the ADCP data for the 

period listed above. These data files, together with two routines (contour_spec_1d.m and 

rmfltr.m, written in MATLAB 6.5) to aid in graphically displaying the spectra and wave 

properties (generating plots similar to those of Figures 8-16 and 19-23) are available from the 

authors and from the MVCO web site at http://www.whoi.edu/mvco/data/data.html. 

 

Here we display, for the entire study period, statistical properties of the wind sea and the 

dominant swell system, together with the composite (MVCO and ASIT) wind record and the one 

dimensional form of the ADCP-derived wave spectra (Figures 19-23). 

 

In viewing these graphs, one may partially assess the operation of APL-WAVES with our 

choice of parameters by considering how the wave field partitioning associated with a coastal 

storm changes in the storm’s passage.  In simplest terms, one would expect the coastal wave field 

associated with a storm to develop and decay in two phases.  As the storm winds actively force 

the local wave field, i.e. build a wind sea, one would expect the wind-sea wave height to grow 

with time while its dominant frequency declines.  As the storm winds abate, the wind sea is 

essentially transformed to a swell system, which would be expected to decay in amplitude.  

Because wave group velocity is inversely related to frequency, the frequency of the incoming 

swell should tend to increase with time, as the higher frequency waves arrive later than the more 

rapidly traveling lower frequency waves. 

 

For a “simple” storm, with single periods of growing and abating winds, APL-WAVES 

should then transfer the designation of a wave system from a wind sea to a swell near the point in 

time when the frequency of the wave system is at a minimum and its amplitude is near a 

maximum.  In most, but not all, such “simple” storm examples, APL-WAVES, armed with our 

chosen parameter set, performs well according to this criterion.  Consider, for example, the storm 

events of year-days 228-229 (Figure 19), 246-247 (Figure 20) and 293-294 (Figure 21). The 

building wind sea on day 294 also provides reassurance that use of the deep water dispersion 

relationship does not unduly affect the results. As the wind builds from 8 to 15 m/s on day 294 

the wind sea is consistently identified even as the wind-sea period increases from 4 to 8 s, well 

beyond the deep water limit of about 5.8 s (Section 3a).  

 

Despite the encouraging performance of APL-WAVES partitioning for “simple” storms, 

it is not rare for a building sea (i.e., a sea with increasing wave amplitude and declining average 
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frequency) to be designated for some time of its development as a swell system.  This often 

occurs later during the wave system development and is associated with a broadening rift 

between the directions of the wind and the peak of the wave system.  In most instances, the 

difference between wind and wave peak direction is large enough to put the wind system peak 

out of reach of the wind-sea parabola, even for a wind-sea multiplier of 1.9.  This difference is 

sometimes due to a shift in wind direction not matched by a corresponding shift in peak wave 

direction; and is at other times due principally to a shift in peak wave direction.  Addressing this 

issue is beyond the scope of our project. 

 

There are also frequent instances when the APL-WAVES designation of a wave system 

changes rapidly between wind sea and dominant swell.  This behavior is particularly evident 

when the wind and swell directions are aligned in direction (e.g., Figure 19, days 217–220). This 

may occur due to a brief decline in wind speed, putting the wave system peak outside the wave 

parabola, or may be due to a spike in wind speed extending the parabola to the peak of a swell 

system.  While such rapid redesignation of a wave system complicates the wave property time 

series produced by APL-WAVES, it is not necessarily an indictment of the program.  Certainly, 

a swell can be actively driven by a sufficiently strong wind, and a wind sea can take on the 

properties of a freely propagating swell during a temporary lull in the wind. 

 

Further complicating the interpretation of the MVCO wave observations is the complex 

geography of the MVCO region (Figure 1).  The site is exposed to the open ocean to the south, 

but surrounded by Martha’s Vineyard to the north, Nantucket Island to the east and the New 

England coastline to the west.  As expected, swell was predominantly from the south.  The 

proximity of the site to Martha’s Vineyard results in short fetch (~20 km) for winds from the 

west and very short fetch (3–10 km) for winds from the north to east-northeast.  Overall, the 

island shelters the site (limits wave fetch) for winds from about 260
o
 to 75

o
. 

 

Using the wind-sea properties produced by APL-WAVES for the period of 16–28 August 

2003, during which persistent winds were from 180
o
–270

o
, Plueddemann (2006) found the 

strongest wind seas to be tightly clustered between 180
o
 and 245

o 
T.  The interpretation was that 

a small island and various shoals to the southwest of Martha’s Vineyard significantly limit wave 

development for wind directions between 245
o
 and 270

o
.  The evolution of these fetch-limited 

waves, as well as those for winds from the north and northeast, are a subject for future study. 
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Appendix 1:  Description of Output Variables 

 

The following wave field variables, representing the output of spectral partitioning 

described in Section 4b, are found in the MATLAB Ver. 6.5 file “wave_statistics.mat”.  

 

 

 

Variable  Description    Units 

ydstat   decimal year day of 2003 (noon on Jan 1 is day 1.5) 

parameters character array describing APL-WAVES input parameters 

time   MATLAB serial date number 

windsp  10 m wind speed    [m/s] 

winddir  10-m wind direction     [degrees true] 

sighgt  overall significant wave height  [m] 

peakper  period of overall wave spectrum peak [sec] 

peakdir  direction of overall wave spectrum peak [degrees true] 

windseahgt significant wave height of the wind sea  [m] 

windseaper mean period of the wind sea    [sec] 

windseadir  mean direction of the wind sea   [degrees true] 

domswellhgt sig. wave height of the dominant swell [m] 

domswellper mean period of the dominant swell  [sec] 

domswelldir mean direction of the dominant swell  [degrees true] 

secswellhgt sig. wave height of the secondary swell [m] 

secswellper mean period of the secondary swell  [sec] 

secswelldir mean direction of the secondary swell [degrees true] 
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