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Abstract

Background: Whole Exome Sequencing (WES) is one of the most used and cost-effective next generation

technologies that allows sequencing of all nuclear exons. Off-target regions may be captured if they present

high sequence similarity with baits. Bioinformatics tools have been optimized to retrieve a large amount of

WES off-target mitochondrial DNA (mtDNA), by exploiting the aspecificity of probes, partially overlapping to

Nuclear mitochondrial Sequences (NumtS). The 1000 Genomes project represents one of the widest resources

to extract mtDNA sequences from WES data, considering the large effort the scientific community is

undertaking to reconstruct human population history using mtDNA as marker, and the involvement of mtDNA

in pathology.

Results: A previously published pipeline aimed at assembling mitochondrial genomes from off-target WES reads

and further improved to detect insertions and deletions (indels) and heteroplasmy in a dataset of 1242 samples

from the 1000 Genomes project, enabled to obtain a nearly complete mitochondrial genome from 943 samples

(76% analyzed exomes). The robustness of our computational strategy was highlighted by the reduction of reads

amount recognized as mitochondrial in the original annotation produced by the Consortium, due to NumtS

filtering.

An accurate survey was carried out on 1242 individuals. 215 indels, mostly heteroplasmic, and 3407 single base

variants were mapped. A homogeneous mismatches distribution was observed along the whole mitochondrial

genome, while a lower frequency of indels was found within protein-coding regions, where frameshift mutations

may be deleterious. The majority of indels and mismatches found were not previously annotated in mitochondrial

databases since conventional sequencing methods were limited to homoplasmy or quasi-homoplasmy detection.

Intriguingly, upon filtering out non haplogroup-defining variants, we detected a widespread population occurrence

of rare events predicted to be damaging. Eventually, samples were stratified into blood- and lymphoblastoid-

derived to detect possibly different trends of mutability in the two datasets, an analysis which did not yield

significant discordances.

Conclusions: To the best of our knowledge, this is likely the most extended population-scale mitochondrial

genotyping in humans enriched with the estimation of heteroplasmies.
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Background
Mitochondrial DNA (mtDNA) polyploidy is a physiologic

trait of human cells and implicates the possibility of the

co-existence of different mtDNA genotypes within the

same cell, tissue, or individual, a condition known as het-

eroplasmy. Up to date, quantification of heteroplasmy

remains a challenging task in the characterization of

mitochondrial variants and a limit for conventional

sequencing methods [1]. The advent of Next Generation

Sequencing (NGS) technologies has revolutionized the

field of genomics, providing the possibility of unprece-

dented large-scale and high-throughput analyses. Indeed,

massive-parallel sequencing implies ultra-deep yields,

allowing the quantification of mitochondrial heteroplas-

mic variants [2,3]. One of the recent applications of NGS

is Whole Exome Sequencing (WES), a powerful and

quite cost-effective strategy to perform targeted deep

sequencing of genomic protein coding regions [4]. Even

though the most recent WES protocols include the use of

specific baits targeted to mtDNA, the majority of kits

currently used is devoted to the enrichment of nuclear-

coding DNA, while mtDNA targeting has mostly been

neglected [5]. Nonetheless, it was recently demonstrated

that the precious information of mitochondrial genotype

may be retrieved from off-target DNA in human WES

studies, even when designed for nuclear DNA exclusively

[6]. It was indeed observed that the overlapping of

nuclear probes onto nuclear mitochondrial sequences

(NumtS [7]) determines a cross-hybridization of such

baits with mtDNA, which in turn is brought along as a

‘contaminant’ [6]. The natural abundance of the mito-

chondrial molecules in cells allows to achieve a high read

depth, so that a recovery and assembly of the mtDNA

genome from nuclear WES studies is indeed feasible [6]

together with the quantification of heteroplasmy wher-

ever the mitochondrial genome is sufficiently covered.

The relevance of estimating mitochondrial hetero-

plasmy is further highlighted by the fact that mtDNA

mutations exert their phenotypic effect above a certain

mutation load threshold [8,9], which may vary depending

on the type of change [8,10] and tissue. Indeed, several

studies demonstrated that mtDNA mutations are func-

tionally recessive until the mutant load exceeds a specific

threshold and leads to a biochemical dysfunction [8,9,11].

In fact mitochondrial mutations are largely involved in

various diseases, aging and cancer [12]. In addition, the

finest quantification of heteroplasmy among familiar

lineages is helpful for forensic studies [13] and to better

understand mechanisms of intergenerational segregation,

especially in the case of maternal transmission of muta-

tions predisposing to mtDNA disorders [14].
Even though since 1995 it is known that heteroplasmy

in normal individuals may not be a rare biological status

[15], only recent surveys on mitochondrial genotyping

and heteroplasmy annotation with deep sequencing have

revealed that in normal human cells a widespread hetero-

geneity of mtDNA variants co-existence occurs in healthy

subjects and varies among tissues [1]. Moreover, a condi-

tion of ‘universal heteroplasmy’ was depicted by Chinnery

and colleagues in their recent work [16] in which they

observed, by using high-throughput technologies, the

presence of very low-level heteroplasmic variants in

related and unrelated individuals, likely due to inherited

or somatic events, not predicted to be pathogenic.

So far, consistently with the limited sensitivity of stra-

tegies and with the restricted population sampling avail-

able for mitochondrial genotyping, commonly used

mitochondrial portals and databases [17,18] do not

report heteroplasmy values for the mutations/variants

whose fraction has been reported in literature. However,

while such information is lacking in databases, nucleo-

tide and amino acid sites variability is at least available

within HmtDB [18] as a valuable information that con-

tributes both to the definition of haplogroups and to the

recognition of private variants or mutations with a

potential pathogenic role.

In this work we used a pipeline previously provided [6],

that we further implemented for insertions and deletions

(indels) calling and applied to the in silico extraction and

characterization of mitochondrial DNA from nuclear

WES studies, comprising 1242 exome samples of the

1000 Genomes project [19] belonging to 19 different

human populations. 1000 Genomes Project WES studies

represent one of the widest nuclear genomic resources

available to the scientific community, yet strikingly, up to

now, mtDNA genotyping has been disregarded, despite

the important contribution the small mitochondrial gen-

ome provides to the cell homeostasis. We were able to

recover mtDNA from all WES studies and to assemble

the complete mitochondrial genome for the majority of

analyzed samples. High quality metrics were used to filter

mismatches and indels and related heteroplasmy values

of filtered variants were recorded. We enriched these

data with a functional characterization, firstly detecting

haplogroup and non-haplogroup defining sites. Variabil-

ity estimation reported in the human mitochondrial data-

base and predictions of pathogenicity [20-22] were also

applied to non-haplogroup defining variants, revealing an

intriguingly heterogeneous scenario among populations.

We also performed a comparison between lymphoblas-

toid cell lines (LCLs) and blood-derived mitochondrial

DNA isolated from the group of available samples, in

order to assess the possible presence of genotype differ-

ences among the two different DNA sources, as pre-

viously tested for nuclear DNA [23-25]. Finally, in line

with the recent finding of the widespread distribution of

heteroplasmy among healthy individuals, we found a con-

sistent enrichment, among all 19 human populations
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screened, of very low-levels heteroplasmies, mostly

unshared between subjects and associated with very low

variability values reported in HmtDB, which more likely

represent a bulk of private variants carried by each

individual.

Methods
Exome samples

We surveyed Whole Exome Sequencing (WES) datasets

related to 1242 individuals, available through the 1000

Genomes project site [26]. These individuals included

827 samples of the 1000 Genomes Phase 1 data collec-

tion, while the remaining 415 were additional indivi-

duals (Additional File 1), listed within the 2012-05-22

exome alignment index [27], which comprised all the

exome samples aligned by the Consortium until then.

Our dataset included 625 females and 617 males, from

19 different populations in total (Table 1). The set of

samples was selected considering different criteria:

sequences were all Illumina paired-end reads whose

mates were both mapped onto the references (Genome

Reference Consortium Human Reference 37, GRCh37/

hg19 [GenBank:GCA_000001405.1] for nuclear reads,

and the revised Cambridge Reference Sequence, rCRS

[GenBank:J01415.2] for mitochondrial reads), using the

Burrows-Wheeler Aligner (BWA) [28]. Two different

platforms for whole exome capture were used for the

samples analyzed: SeqCap EZ Human Exome Library

v1.0 and v2.0 from NimbleGen (for 515 samples) and

SureSelect All Exon V2 Target Enrichment from Agilent

(for 723 samples) [19], whereas for four samples it was

not possible to retrieve any information. All the infor-

mation about our 1242 samples was available through

the 1000 Genomes web site [26].

Mitochondrial sequences recovery from 1000 Genomes

WES studies, variant calling and heteroplasmy assessment

We adopted a pipeline previously published [6] in order

to recover mtDNA from off-target sequences of WES

studies, removing reads similar to NumtS (Nuclear

Mitochondrial Sequences) [7] and maintaining only

reads with a univocal mapping onto the mitochondrial

genome. Original mitochondrial BAM (Binary SAM,

Sequence Alignment/Map format) files from the 1000

Genomes Project were first converted in fastq files using

the SamToFastq module of the Picard suite of tools

(v.1.68) [29] to apply the abovementioned pipeline,

which requires the usage of SAMtools (v.0.1.19) [30],

GSNAP (version 2012-01-11) [31] and python 2.7.1 [32].

After read mapping on the mitochondrial genome, using

Table 1 Features of the 19 populations analyzed in this study.

Population
Code

Population N. of
Samples

Mitochondrial Mean
Coverage

Mitochondrial Mean Per Base
Depth

ACB African Caribbean in Barbados 58 47.34 48.15

ASW African Ancestry in Southwest USA 51 99.89 373.39

CDX Chinese Dai in Xishuangbanna, China 78 97.64 47.44

CEU Utah residents with ancestry from northern and
western Europe

67 96.87 311.71

CHB Han Chinese in Beijing, China 73 99.05 142.86

CHS Han Chinese South, China 90 88.16 40.87

CLM Colombian in Medellin, Colombia 48 93.14 234.13

FIN Finnish in Finland 81 85.35 96.45

GBR British From England and Scotland, UK 69 96.12 269.39

GIH Gujarati Indians in Houston, Texas, USA 77 47.3 41.54

IBS Iberian populations in Spain 58 83.67 106.6

JPT Japanese in Tokyo, Japan 74 94.02 217.41

KHV Kinh in Ho Chi Minh City, Vietnam 75 68.05 25.12

LWK Luhya in Webuye, Kenya 25 93.71 256.66

MXL Mexican Ancestry in Los Angeles, California, USA 58 99.91 409.61

PEL Peruvian in Lima, Peru 47 63.61 33.67

PUR Puerto Rican in Puerto Rico 70 82.13 87.29

TSI Toscani in Italia 62 98.36 328.96

YRI Yoruba in Ibadan, Nigeria 81 94.92 214.86

For each population the number of samples we considered and the mean coverage and depth of mitochondrial genomes we extracted from exome data, are

reported. Coverage and depth were estimated as average of scores in each sample belonging to the same population. Mean coverage of assembled

mitochondrial genomes ranges from 99.91 (Mexican Ancestry in Los Angeles, California, USA) to 47.30 (Gujarati Indians in Houston, Texas, USA). Mexicans show

also the highest mean per base depth (409.61), while the minimum depth score is for Kinh (Ho Chi Minh City, Vietnam) mitochondrial genomes (25.12).
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rCRS as reference sequence, the MarkDuplicates module

of the Picard tools was applied on obtained SAM files in

order to remove PCR duplicates. Duplicates filtering was

just recommended in the adopted pipeline, but we con-

sidered this step crucial for a correct allelic quantifica-

tion in our analysis. We extended variant call analysis

also to indels, since they were not completely taken into

account by the pipeline we used. In particular, we

observed that it was targeted only for the detection of

homoplasmic deletions, disregarding heteroplasmic

indels. Moreover, the tool previously developed did not

automatically quantify heteroplasmic fractions (HF) that

we instead implemented in our system. We thus imple-

mented a workflow in python programming language to

parse the SAM file CIGAR string [30] associated to each

pairwise aligned read, holding information on indel

events. Mismatches were instead analyzed directly from

the mtDNAassembly-table.txt output of the adopted

pipeline. Filtering of insertion events was performed

using quality score (QS≥25) and read depth (rd≥5) cut-

off values per position previously adopted [6], whereas

the goodness of a deletion event was evaluated on the

basis of its 5bp-long upstream and downstream flanking

region. Indeed, a median QS≥25 and rd≥5 were required

for the flanking regions to consider such deletion in the

genome assembly. HF was assessed as the fraction of

the variant read depth onto the total mitochondrial read

depth of the same position (for mismatches and dele-

tions) or of the 5’ flanking position (for insertions).

The adopted pipeline allowed also to produce a consen-

sus mitochondrial sequence for each individual, including

only mismatches equal or above a HF threshold of 0.75,

otherwise the corresponding IUPAC character for single

nucleotide variants was reported [6]. This consensus was

used for the haplogroup assignment and for the subse-

quent analysis of pathogenicity linked to non-synonymous

mismatches considering also all those variants under the

fixed threshold annotated with IUPAC code.

All mitochondrial unique variants detected in this

study are reported in a BED (Browser Extensible Data)

table (Additional file 2), generated from a VCF file

which is the output of the python script we developed

for the detection of indels and heteroplasmic fraction of

mitochondrial variants. The python script and the VCF

file (reporting all the detected mitochondrial variants

integrated with the related heteroplasmic fractions) are

available upon request.

Haplogroup assignment

Haplogroup assignment of 943 mitochondrial consensus

sequences was performed using the stand-alone mt-clas-

sifier tool, implemented in HmtDB [33], which uses the

Reconstructed Sapiens Reference Sequence (RSRS) [34]

as mitochondrial reference.

The samples were chosen among the best assembled

mitochondrial genomes within our dataset, harboring less

than 500 gaps in their sequence. The mt-classifier version

used refers to the Phylotree [35] mtDNA tree build 15.

Mitochondrial reference databases

Variants identified within the analyzed dataset were

compared with those already annotated within HmtDB

[18] and Mitomap [17].

Site variability values calculated on mitochondrial

nucleotide multi-aligned sequences from nearly 10,000

healthy individuals, were downloaded from HmtDB web

site [33]. Variability scores contributed to the recognition

of private variants or mutations with a potential patho-

genic role: they ranged from 0 to 1, where low variability

values may be suggestive of a novel haplogroup-defining

variant or a rare disease-linked mutation, while high varia-

bility scores were owned by common alleles within gen-

omes stored in HmtDB.

Mitochondrial coding and control regions point muta-

tions with reports of disease-associations were available

in Mitomap [36].

Pathogenicity predictions

Pathogenicity predictions on variants identified within the

analyzed dataset were estimated using MutPred [20],

Polyphen-2 [21] and SNPs&GO [22] online software, pro-

ducing 6 different scores and related prediction classes for

each variant. Pathogenicity values, ranging from 0 to 1,

allowed discriminating between potentially pathogenic and

neutral mutations. Each of the abovementioned software

presents a specific threshold of pathogenicity. We consid-

ered 0.70 as threshold for high pathogenicity score by

MutPred as suggested by Pereira et al. [37] and “disease”

prediction class by the other ones.

Hierarchical clustering analysis

A hierarchical clustering based on Euclidean distance

estimation was performed to evidence shared classes of

heteroplasmy within individuals with the aim to identify

a possible clusterization of samples belonging to the

same population sharing a similar number of variants

referred to the same heteroplasmic range. The heatmap

representation was used to visualize hierarchical cluster-

ing by rows and columns, using a matrix of numbers of

variants belonging to 11 different classes of hetero-

plasmy, as raw input data. The maPalette function from

the marray R package version 3.0.1 was used to define

heatmap colors, while the heatmap R function was used

to draw the heatmap.

Lymphoblastoid cell lines and blood subsets

We identified 60 potential blood samples among our

943 best assembled mitochondrial genomes and chose
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60 potential LCL samples on the basis of Epstein-Barr

virus (EBV) coverage values provided by the Consortium

[38]. Indeed an EBV coverage equal to 0 might indicate

blood derived DNA, while LCL samples were selected

among those with the highest EBV coverage (in this

case, higher than 400).

Statistical analyses

Spectra of variants (insertions, deletions, mismatches)

within blood and LCL samples were compared with

one-tailed and two-tailed Student t-tests. Fisher’s test

was applied to the distributions of blood and LCL het-

eroplasmic variants within mitochondrial loci and also

to the distributions of variants within the same datasets

per class of heteroplasmic fractions.

Results
Coverage and quality of assembled mitochondrial

genomes

We downloaded aligned exome data (as BAM files) related

to 1242 individuals of the 1000 Genomes Project from the

public repository [39]. Sequence reads were extracted

from the BAM files and re-aligned to the human reference

genomes to assemble mitochondrial genomes for all the

samples by applying Picardi’s pipeline [6].

The first step of our analysis was the assessment of

quality and coverage of the reconstructed mitochondrial

genomes. We found that 76% of them showed a nearly

complete assembly (mitochondrial genome coverage

>97%). The robustness of the computational strategy we

used was highlighted by the reduction of the read count

(an average of 30% per sample) mapped to the reference

mitochondrial genome with respect to the original anno-

tation by the 1000 Genomes Consortium. Two different

factors contributed to the reduction of the original num-

ber of reads, namely PCR duplicates removal and, parti-

cularly, NumtS filtering [7], disregarded in the mapping

step performed by the Consortium.

The mitochondrial assembly showed different mean

coverage values within the 19 analyzed populations

(Table 1): they ranged from 99.91% to 47.30% with

respect to the entire mitochondrial genome. Mean per

base depth was also widely variable, ranging from

409.61 to 25.12. Detailed data about mitochondrial gen-

ome coverage of each sample are reported in Additional

File 1.

Coverage and quality score (QS) statistics were per-

formed for each mitochondrial locus by estimating med-

ian read depth and QS (Additional File 3 and Additional

File 4). As already reported [6], a better efficiency in

mitochondrial reads extraction was obtained with the

Agilent enrichment kit, as suggested by comparing the

highest mitochondrial depth values obtained within the

same locus (MT-ND6) through the Agilent (274.57X)

and the NimbleGen samples (55.67X). Furthermore,

Agilent mitochondrial reads showed slightly higher

mean QS than NimbleGen (34.62 vs 32.22), with the

maximum and the minimum QS observed within the

same loci, MT-TS2 (35.82 vs 33.13) and MT-TR (34.30

vs 31.47) respectively. Intergenic regions within Agilent

and Nimblegen samples presented the same trend of QS

and coverage values as of D-Loop and coding regions

(data not shown).

To verify the robustness of our protocol, we further

selected a subset of 28 samples with a mitochondrial

genome coverage >99%, which were previously analyzed

with both low coverage Whole Genome Sequencing

(WGS) [40] and Exome Sequencing projects by the

Consortium [19]. The dataset included 2 samples for

14/19 populations. None of the analyzed exome samples

was found within the low coverage dataset for the

remaining 5 populations. We considered the subset of

28 samples (indicated as “Low Coverage Control” in

Additional File 1) with the aim of identifying possible

disagreements about variants detected by the Consor-

tium and our pipeline. We were able to detect up to

93.53% of mitochondrial variants per sample reported

within the low coverage Variant Call Format (VCF) file

generated by the Consortium (Additional File 5), while

45/89 were missed with exome samples as they were

not sufficiently covered. Moreover, on average 3 variants

per sample were not identified within exome samples,

although their positions were sufficiently covered,

whereas we were able to find more than 10 variants per

sample not previously annotated with low coverage ana-

lysis by the Consortium. The latter were all heteroplas-

mic and about the 70% presented a HF<0.10, proving

the sensitivity of our pipeline.

Haplogroup assignment of reconstructed mitochondrial

genomes

The haplogroup assignment procedure helped to test the

quality of reconstructed mitochondrial sequences, since

the geographical areas of sampled individuals were

known. To this aim, we selected 943 out of 1242 sam-

ples (Methods section), which were analyzed by applying

the mt-classifier implemented in HmtDB [18]. Generally

the predicted haplogroups seemed to converge with

individual ethnicity.

About 93% of the 943 reconstructed sequences pre-

sented a prediction reliability P_Hg >90%, defined as the

highest fraction of Nph (recognized SNPs in the sequence

which define haplogroup (Hg) according to Phylotree (ph)

classification [35]) over the total number of the hap-

logroup-defining expected sites (Nph_exp) [18]. This high

percentage of true-positive haplogroup-defining variant

sites confirmed the high sensitivity of our method.

Assigned haplogroups are reported in Additional file 1.
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Indels and mismatches recognition, mapping and in silico

validation

An accurate analysis of indels and mismatches was carried

out on our mitochondrial dataset, considering the role

played by these mutation events in healthy and pathologi-

cal samples [41,42]. In considering the values reported

below it is important to take into account that the same

event may be observed in diverse samples in a different

heteroplasmic status. Two hundred and fifteen unique

mtDNA indel events (149 deletions and 66 insertions),

mostly heteroplasmic, were firstly recognized within the

1242 mitochondrial genomes analyzed (Additional File 6),

mapped onto the mitochondrial genome (Figure 1) and

then compared with indels already annotated in mitochon-

drial databases [17,18] (Additional File 6).

About 56% samples harbored at least one deletion and

64% presented an insertion (Additional File 7). The most

common events were single-base insertions (in 69% cases)

and deletions involving up to 3 bases (in 50% cases; data

not shown). However their distribution normalized to the

length of each mitochondrial locus showed high peaks of

indels ratio within the D-loop, while a lower number was

present within coding regions, where frameshift mutations

may be deleterious (Figure 1).

Interestingly, a certain amount of deletions was

detected also within genes for transfer RNA. Intergenic

regions, not shown in Figure 1, included 6 heteroplasmic

insertions, 3 heteroplasmic deletions and 2 homoplasmic

deletions.

The majority of the indels identified (72.09%) occurred

within homopolymeric stretches (Additional file 8),

defined as regions with the same nucleotide in at least

two adjacent positions. The shortest homopolymers har-

bored the highest number of indels, although 5-bases

stretches presented high levels of both deletions and

insertions too, with the exception of G-stretches. This

result was quite expected considering the homopolymeric

nucleotide compositional bias of the mitochondrial gen-

ome, and that almost all of the homopolymers (70%)

within the mitochondrial reference genomes (rCRS and

RSRS) are represented by two-bases stretches. Moreover,

up to 25% of the identified indels mapped within mito-

chondrial tandem repeat regions, where the onset of

mutational events is favored [43,44].

The set of indels found was compared with those

already annotated in mitochondrial databases [17,18],

validated through traditional sequencing methods, discri-

minating those found in healthy individuals from those

in diseased patients. About 20% indels observed in our

samples matched with those reported in HmtDB within

healthy samples dataset and nearly 8% were annotated in

patient genomes (Table 2). As expected based on the

NGS technologies power in detecting also low-level het-

eroplasmy [1,45,46], the remaining 80% highlights that

there was a clear-cut prevalence of novel deletions and

insertions, which mostly spanned non-coding regions,

even though coding regions were not completely devoid

of them. Interestingly, a single base insertion at the

Figure 1 1000 Genomes mitochondrial indels distribution. The analysis of 1242 Illumina samples allowed to identify 149 deleted and 66

inserted mitochondrial positions, mostly heteroplasmic. The ratio between the number of homoplasmic and heteroplasmic indels and the

length of mitochondrial loci is reported (normalized indels). The distribution of insertions and deletions within the mitochondrial genome shows

peaks of indels ratio within the D-loop, while a lower number is present within coding regions.
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position 3229 (the 3’end nucleotide of 16s rRNA), single

base deletions in 5747 (OriL, origin of light-strand repli-

cation) and 11032 (MT-ND4), and the extended deletion

in 303-305 (D-Loop) were present only in patients, but

not yet associated to any disease [18]. With respect to the

18 insertions and 15 deletions reported in Mitomap,

some of them are associated to cancer or other diseases,

i.e. a set of D-loop mutations (m.514insCG found in

head/neck tumor, m.568insC(n) found in multiple tumor

types, m.16189insT found in bladder tumor, m.310delT

found in breast tumor), three indels events in the mito-

chondrial gene encoding 12S rRNA, MT-RNR1,

(m.956insC, m.956delC, m.960delC, which are possibly

DEAF-associated) and one deletion in the gene encoding

for tRNA threonine, MT-TT, (m.15940delT found in

multiple myeloma) [17].

Also 3407 single base mismatches were detected within

our samples, involving 3289 unique positions (Additional

File 9), with an average of about 25 mismatches per sam-

ple. They were discriminated between 2330 heteroplas-

mic and 2204 homoplasmic alleles, whose normalized

distributions are shown in Figure 2. Such distributions

are rather homogeneous among mitochondrial loci, with-

out significant dissimilarities between the two types, with

high peaks into non-coding regions. As well as for indels,

we found about 40% mismatches positions spanning

homopolymeric stretches and only 1% within mitochon-

drial variant nucleotide tandem repeats (data not shown).

The majority of single-base homoplasmic variants

(88.48%) was already described in healthy individuals [18]

and 62.75% heteroplasmic ones were annotated in public

databases in a homoplasmic state (Additional File 9). A

large fraction of hetero/homoplasmic mismatches (more

than 50% and 76%, respectively) was also found in

patients. Statistics related to indels and mismatches are

summarized in Table 2.

Heteroplasmy analysis

We detected on average 20 homoplasmic and 8 hetero-

plasmic variants per sample (Additional File 7). Frequency

of variants was estimated for eleven ranges of heteroplas-

mic fractions (HF) (Figure 3). Considering the mean num-

ber of variants for each range of heteroplasmy and the

mean number of alternative alleles in each sample, homo-

plasmic variants represented the largest slice with respect

to the whole set of alleles in an individual. There was a

substantial preponderance of homoplasmies (HF = 1.00),

quasi-homoplasmies (defined as 0.90<HF<0.99) and low-

level heteroplasmies (0.01<HF<0.10), suggested also by a

hierarchical clustering analysis (Additional File 10). We

did not observe correlation between clusters of heteroplas-

mic variants and sample geographical origin.

Pathogenicity analysis of private mutations

After haplogroup assignment, we isolated more than 2500

variants not defining the individual haplogroup, then func-

tionally annotated. Predictions of pathogenicity were car-

ried out on the subset of 543 non-synonymous variant

positions using MutPred [20], Polyphen-2 [21] and

SNPs&GO [22] tools with the aim of identifying poten-

tially damaging alleles and their spread within the 19

populations (Additional File 11 and Additional File 12).

All the 543 missense mismatches were classified according

to the ranges of heteroplasmy, so that 339 were homoplas-

mic and 309 heteroplasmic. Above all, MT-ND5 appeared

to harbor the highest frequency of non-synonymous

changes. Occurrence of variants in the reconstructed

mitochondrial genomes was not exclusive for a particular

world area, but generally a variable number of samples

belonging to different populations shared the same homo-

plasmic and quasi-homoplasmic/highly heteroplasmic

variants, while low-level heteroplasmies were detected

only in single individuals and may hence be likely consid-

ered personal mutations. For example, the m.13105A>G

event was shared by 106 samples belonging to 14 popula-

tions, with the lowest HF equal to 0.87 (Additional

File 11). We focused only on 289 variant sites (148 found

in a homoplasmic state, 183 as heteroplasmic) predicted as

probably pathogenic by at least one of the above men-

tioned software (Additional File 12) and interestingly they

all showed very low variability (mean value = 0.02 for

homoplasmic mutations, 0.03 for the heteroplasmic ones).

Among potentially damaging events, the lowest HF value

was 0.25 (Additional File 11). The most shared variants

within this subset were all in a homoplasmic/highly het-

eroplasmic state. Only 14 non-shared mismatches were

predicted as damaging mutations by the three software,

and among them the m.3946G>A was also annotated in

Mitomap as associated to MELAS (Mitochondrial Ence-

phalomyopathy, Lactic Acidosis and Stroke-like episodes).

Table 2 Summary related to indels and mismatches detected within the 1242 analyzed mitochondrial genomes

Events %
Homoplasmic

% Annotated in
Healthy

% Annotated in
Patients

%
Heteroplasmic

% Annotated in
Healthy

% Annotated in
Patients

Indels 6.05 15.38 0.00 98.60 21.23 7.91

Mismatches 64.69 88.48 76.36 68.39 62.75 53.65

Statistics about homoplasmic and heteroplasmic mitochondrial events are here reported. Events are discriminated between indels and mismatches. The

percentages of homoplasmic and heteroplasmic observed variants annotated in healthy and patients genomes stored in HmtDB [18] are reported. A fraction of

variant sites was found as homoplasmic in any samples and heteroplasmic in others.
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Figure 2 1000 Genomes mitochondrial mismatches distribution. The ratio between the number of mismatches and the length of

mitochondrial loci (normalized mismatches) is reported. Variant distributions are rather homogeneous among mitochondrial loci, without

significant dissimilarities between the two types, with high peaks into non-coding regions.

Figure 3 Enrichment of heteroplasmic fractions within the dataset. Variants frequency was estimated for eleven ranges of heteroplasmic

fractions (HF). The ratio between the mean number of variants for each cluster and the mean number of variants in each sample highlights that

homoplasmic variants represent the largest slice with respect to the whole set of alleles in an individual. With respect to the degree of

heteroplasmy, there is a substantial preponderance of homoplasmic variants (HF = 1.00), quasi-homoplasmies (0.90-0.99) and low-level

heteroplasmies (0.01-0.10).
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They all presented a low variability value (<0.20) and a HF

ranging from 0.29 to 1.00.

The complete list of mitochondrial unique variants

identified is reported in Additional File 2.

Analysis of LCLs and blood samples

As previously observed for nuclear variants [23-25], we

hypothesized that lymphoblastoid cell lines (LCLs) might

have a higher rate of mitochondrial mutations than

blood. Similarly to what already performed for nuclear

variants [23-25], we attempted to identify relevant quali-

tative and quantitative gaps between variants found in

120 out of our 1242 samples, among which 60 were sup-

posed to be derived from blood and 60 from LCLs

(Methods). Samples were not related in families, except

for one CEU trio (NA12878, NA12891, NA12892), and

were representative of 18/19 populations. We first con-

sidered variants occurrence within the two datasets and

their localization in the mitochondrial genome, discrimi-

nating heteroplasmic and homoplasmic sites (Figure 4).

Frequencies were hence normalized to the length of

mitochondrial loci, in order to eliminate biases related to

length. The distribution of variants along mitochondrial

loci showed that generally heteroplasmic and homoplas-

mic mutations occurred at the same loci, which was veri-

fied in both datasets. A statistical relevant difference

between mitochondrial loci distributions of variants

within the two types of samples was found for

heteroplasmic (p < 0.01), but not for homoplasmic var-

iants (Figure 4). The total number of variants was esti-

mated within the two subsets, discriminating also

between indels and mismatches and considering their

heteroplasmy status (see Additional File 7). Minimal sta-

tistically relevant differences were detected between

LCLs and blood derived DNA especially in relation to

indels (p < 0.05).

Variant sites observed in the two different DNA

sources were associated with variability values esti-

mated on nearly 10,000 complete mitochondrial gen-

ome sequences [33] (Figure 5). The trend was similar

for blood and LCL samples: almost all of the variant

positions displayed a very low variability (<0.20)

(Table 3). Positions showing high variability, i.e. those

which were common in the sequenced genomes avail-

able at HmtDB [18], were few and represented the

25% of total shared variants between the 2 datasets,

while the majority of non-shared variants (about 98%)

displayed low variability. Among low variability sites

(<0.20), we found only a minimal numerical difference

in low-level heteroplasmy variants (HF<0.10) enriched

in LCLs, albeit not supported by statistical significance

(Table 3).

In fact, upon analyzing LCLs/blood heteroplasmy

levels (Table 4), we confirmed a LCLs trend to accumu-

late low-level heteroplasmic variants (69 vs 24 in blood

samples), although a comparable average number of

Figure 4 Distribution of homoplasmic and heteroplasmic variants in LCL and blood subsets. Frequencies of homoplasmic and

heteroplasmic variants were normalized to the length of mitochondrial loci, in order to eliminate length biases. Variants distribution across

mitochondrial loci shows that generally heteroplasmic and homoplasmic mutations occur in the same loci, and this is verified in both datasets.

A statistical relevant difference between the distributions of variants within the two datasets was found for heteroplasmic (p < 0.01), but not for

homoplasmic variants.
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heteroplasmic variants per sample was reported for both

LCL and blood samples (7.42 for LCLs, 7.33 for blood

samples). About 25% variants were shared by both sub-

sets and in 80% cases they were homoplasmic.

Discussion
In this paper we report the results obtained by capturing

human mtDNA sequences starting from 1000 Genomes

Whole Exome Sequencing (WES) data specifically

Figure 5 Variability profile of blood and LCL genomes. Variability values estimated on nearly 10,000 mitochondrial nucleotide multi-aligned

sequences, available in HmtDB web site [33] are reported versus the variant positions observed in both blood and LCL samples. The trend is

similar for both datasets: almost all of the variant positions display a very low variability (<0.20). Positions showing high variability, i.e. those

which were common in the genomes within HmtDB, were few and represented the 25% of total shared variants between the two datasets,

while the majority of non-shared variants (about 98%) displayed low variability.

Table 3 Number of variants within LCL and blood subsets, sorted by heteroplasmic fraction and variability score.

Variability Sample HF<0.10 0.11<HF<0.75 0.76<HF<0.99 HF = 1 F-test

≤0.20 LCL 66 120 214 783 0.90

≤0.20 blood 22 119 260 820 0.90

>0.20 LCL 3 6 74 489 0.39

>0.20 blood 2 8 49 542 0.39

The highest number of positions shows low variability (≤0.20), and although no statistically significant difference was observed between the LCLs/blood overall

distributions of variants, an enrichment in low-level heteroplasmies was detected in LCLs low-variability variants.

Table 4 Number of heteroplasmic and homoplasmic variants within blood and LCL samples, sorted by heteroplasmic

fraction

Heteroplasmic Fraction N. of Variant Positions in Blood Samples N. of Variant Positions in LCL Samples

< 0.10 24 69

0.11-0.20 14 28

0.21-0.30 9 10

0.31-0.40 10 19

0.41-0.50 28 27

0.51-0.60 22 19

0.61-0.70 18 13

0.71-0.80 43 18

0.81-0.90 80 42

0.91-0.99 212 238

1.00 1362 1272

A clear enrichment in very low-level heteroplasmic variant positions within the whole LCL dataset (69 vs 24 in blood samples) may be observed.
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targeted to nuclear genes. WES has been commonly

used with clinical aims since its first application [47],

although this technology has been also implemented in

evolutionary comparison of genomes [48]. Even though

the most recent WES protocols include the use of speci-

fic baits targeted to the whole mitochondrial genome as

well as the MitoCarta set of nuclear genes [49], the

probe sets used in the majority of previously published

WES studies excluded such baits, hence mtDNA

sequences have been considered by-products and

thereby neglected.

For the first time, we here recovered the overlooked

mitochondrial information and reconstructed a large

number of human mitochondrial sequences from off-

target exome data, thanks to the availability of popula-

tion-scale sequence datasets offered by the 1000

Genomes Project [19]. This was possible through the

application of a bioinformatics pipeline aimed at assem-

bling mitochondrial genomes from exome data and then

at annotating insertions, deletions and mismatches,

accompanied by their heteroplasmy fraction, a series of

tasks that were not feasible so far and that are necessary

when dealing with mtDNA data. Overall we managed to

extract 1242 assembled mtDNA, testing the validity of

the protocol on the basis of coverage and quality data of

the mitochondrial genomes that were generated. Further

evidences of the robustness of our method were provided

by the accurate haplogroup assignment, which reflected

individual ethnicity, and by the comparison with the set

of variants within 28 samples selected from the mtDNA

VCF of low-coverage whole genome sequencing data [40]

generated by the Consortium. It has to be underlined

that a fraction of mitochondrial variants (6.47%) anno-

tated in the low coverage report was not identified by our

protocol. This discrepancy may be likely due to variant

artefacts as a consequence of WES probes overlapping

NumtS, which were not filtered out in the 1000 Genomes

project. On the other hand Whole Genome Sequencing

protocols ensure the availability of probes mapping on

the entire mitochondrial genome, therefore some missing

variants derived from the exomes analyzed are linked to

an incomplete covering of any mitochondrial genomes.

Another possible source of discrepancy may be repre-

sented by sequencing errors ruled out by our protocol as

associated to quality scores lower than the minimum

threshold required for variant calling. The analysis of the

reconstructed mitochondrial genomes highlighted a

widespread distribution of polymorphisms in healthy

samples. Noteworthy, a parallelism may be observed

between the enrichment in damaging and probably

damaging rare variants within nuclear low frequency

alleles of the 1000 Genomes Low Coverage [50] and

Exon Pilot Projects [51], and the numerous group of

mitochondrial pathogenic predicted alleles [20-22] and

mutations with a confirmed disease association [17,18],

detected in our dataset.

In fact, Exon Pilot rare variants [51] observed among

continents highlighted a reduction in the degree of allele

sharing, as well as a very low variability was associated

to homoplasmic/heteroplasmic mitochondrial variants

we predicted as damaging, that were mainly observed in

sparse unrelated individuals. Although low variability

may be affected by a bias in the world population sam-

pling, this finding may suggest that, similarly to the

nucleus, negative selection is acting on these mitochon-

drial sites.

Furthermore, similarly to the results on nuclear DNA

reported by Xue et al. [50], a possible explanation of the

presence of pathogenic mitochondrial variants in healthy

samples in a heteroplasmic condition below the specific

threshold for the onset of the disease [8], at least at

the time of recruitment, may be linked to the age of dis-

ease onset or to an incomplete penetrance due to the

absence in the subject of other factors contributing to the

disease; a further explanation may be linked to the pre-

sence of erroneous annotations of disease-associated var-

iants in databases. Indeed only a few variants are currently

annotated as unequivocally disease-causative, i.e. mainly

Leber’s Hereditary Optic Neuropathy (LHON) and Mito-

chondrial Encephalomyopathy, Lactic Acidosis and

Stroke-like episodes (MELAS) mutations [17], while there

is a high degree of uncertainty about the correct disease

association for most of the mitochondrial mutations

reported in literature especially since most of the time

functional studies are lacking. Moreover, no information

about the level of heteroplasmy is reported in mitochon-

drial databases and this is becoming an urgent need, con-

sidering the relationship between heteroplasmy threshold

and clinical manifestation of the disease [8,11] and the

ever increasing power of NGS technology in detecting also

minor alleles in heterogeneous pools of variants

[1,16,45,46]. As recently shown and in line with our find-

ings, a ‘universal heteroplasmy’ of low-level heteroplasmic

variants is present in healthy humans [16], which may not

be disregarded. In this population-scale scenario of variety,

a common event recorded within our dataset is length het-

eroplasmy, that is the coexistence of different lengths of

the same homopolymeric stretch within the same indivi-

dual, mainly occurring within mtDNA control regions and

present at a lower frequency in the coding regions.

Although coding regions are highly populated with homo-

polymeric stretches, the lower occurence of length hetero-

plasmic variants may be due to a negative selection

process acting to avoid function disruption.

As general concerns were expressed about the use of

LCLs-derived DNA for sequencing studies [52], we

further sought differences in LCL versus blood sample

subsets. To the best of our knowledge, no previous study

Diroma et al. BMC Genomics 2014, 15(Suppl 3):S2

http://www.biomedcentral.com/1471-2164/15/S3/S2

Page 11 of 15



showed reports on LCLs and blood mtDNA comparison.

Although in our analyses we lacked paired samples of

blood and LCLs from the same subject, we disposed of

numerous groups of blood and LCL samples from several

unrelated individuals (except for one trio), however suffi-

cient to identify qualitative and quantitative gaps between

the two, considering that EBV transformation may result

in low-level generation of de novo mutations [23-25].

Several works on whole exome/genome sequencing of

LCLs/blood were all in agreement that the great majority

of variants found in paired samples is shared (99% at

least) [23-25], except for a minimal percentage of de novo

variants, also found in low-passages LCLs [24]. A com-

parable result was observed in our mitochondrial blood/

LCL samples: the average number of heteroplasmic var-

iants per type of sample was the same (about 7), even

though we solely observed a difference in the numerical

distribution of heteroplasmic variants along mitochon-

drial loci (Figure 4). However 80% variants shared by

both datasets (25% of all the detected variants) were

homoplasmic and the only numerical, albeit not statisti-

cally significant discrepancy was recorded for very low-

level heteroplasmic alleles (<10%), mostly enriched in

LCLs. Moreover, low variability sites abound among non-

shared variants, which belong to the low-level hetero-

plasmy range of variants observed also in blood samples,

likely a more reliable DNA source than LCLs. This find-

ing is consistent with the general observation among all

19 human populations screened in this study of a specific

enrichment in very low-levels heteroplasmies and, in a

mirrored fashion, quasi-homoplasmies (see Figure 3 and

Additional File 10). As indeed demonstrated for both

pathogenic predicted and LCL/blood variants analyzed,

the majority of low-levels heteroplasmies are unshared

between individuals and also associated with very low

variability, thus more likely represent a bulk of private

variants carried by each individual, as previously sug-

gested [16]. Moreover, in this fashion, our analysis sug-

gests reliability of 1000 Genomes LCL samples and more

generally of early passage EBV-transformed lymphocytes

for mitochondrial genotyping, although validation with

specific molecular methods for the detection of low

heteroplasmies [53] and mtDNA targeted resequencing

of blood-LCL paired-samples would be recommended.

An interesting finding in our analyses concerned the

detection of shared potentially pathogenic variants.

These results raise several questions on the definition of

pathogenicity for an mtDNA change, a debate that has

recently sparked within the mtDNA community and

that calls for an in-depth thinking. The pathogenicity

parameters assigned to nuclear variants may not apply

sic to mitochondrial ones, in the same fashion as the

concept of polymorphism. Because of the peculiarities of

mitochondrial polyplasmic genetics, the assignment of

pathogenicity ought to take into account the degree of

heteroplasmy, the haplogroup/haplotype context, and even

environmental factors. For instance, a report describes a

common European variant as predisposing to breast can-

cer in African women, which puts a red alert sign on the

need for clarification in this field [54]. Overall, unless sup-

ported by clear-cut functional studies, mtDNA variants

ought not to be considered pathogenic independently on

the abovementioned factors. These considerations also

draw attention on the true existence of a variant. On one

side, it appears striking that we detected a large number of

previously unreported variants, in a database that contains

nearly 10,000 mitochondrial genomes, a large number of

which at very low heteroplasmy levels. This may not

appear surprising since they may be detected exclusively if

highly sensitive methods are applied, such as deep sequen-

cing. Nonetheless, one ought to consider that the increas-

ing sensitivity of sequencing strategies allows the detection

of low heteroplasmy degrees, but a limit is reached across

which it becomes impossible to distinguish between a true

low heteroplasmy and errors, intuitively. From a biological

standpoint, extremely low heteroplasmic variants, being

these potentially pathogenic or not, may rarely have a phy-

sio-pathological meaning (unless they may become ampli-

fied during transmission to offspring). We may not

assume that all variants here detected in blood-extracted

samples were germ-line, as blood is indeed a somatic

tissue. With this in mind, one has to ask whether the

occurrence of very low variants in a somatic tissue may be

more than a completely random transient event, and

therefore whether annotation of such variants is a neces-

sary task. Theoretically, every position in the mtDNA may

vary in a single copy and be detected before evolution or

random drift act to amplify it or to revert it, therefore a

consensus must be reached for annotation of very low

heteroplasmic data.

Overall, we believe that the accurate annotation of the

heteroplasmy degree of mitochondrial variants, which is

of paramount importance especially in clinical studies,

should be better implemented in up-to-date mitochon-

drial databases. Indeed, the combined use of several

information, such as the health status of individuals, the

biological source of DNA, the heteroplasmic status of

variants, the prediction of pathogenicity and the hap-

logroup assignment should be a valuable tool for the

definition of general criteria of prioritization of mito-

chondrial disease-associated variants.

Conclusions
To the best of our knowledge, this is likely the most

extended population-scale mitochondrial genotyping in

humans, enriched with the estimation of heteroplasmies.

We used a pipeline to extract and characterize mito-

chondrial genomes from 1000 Genomes Whole Exome
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Sequencing data, previously disregarded in these indivi-

duals. The application of our protocol offers also the

relevant opportunity to further use this information,

coupled with the nuclear genotype, for nuclear/mito-

chondrial coevolution studies both in health and disease.

Additional material

Additional File 1: Samples annotation integrated with haplogroup

assignment, mitochondrial coverage and per base depth.

Information about ethnicity, gender, mitochondrial genome coverage

and the capture technology used for the 1242 samples, is available at

the 1000 Genomes web site [26]. Haplogroup for each sample is also

reported, predicted through the mt-classifier tool in HmtDB [18]. The

1000 Genomes Phase 1 data collection included 827 out of 1242

samples, while the remaining 415 are additional individuals, listed within

the 2012-05-22 exome alignment index [27], which comprised all the

exome samples aligned by the Consortium. Twenty-eight low coverage

samples were used as controls to validate mitochondrial variants

detected in exome samples.

Additional File 2: List of mitochondrial variants identified. All the

mitochondrial variant positions and related reference and variant alleles

identified within 1242 exome samples are listed in a BED format file,

reporting 0-based start and 1-based end coordinates.

Additional File 3: Depth of coverage of 723 Agilent samples and

515 NimbleGen samples. For each analyzed sample the median depth

of coverage was estimated within each mitochondrial locus, starting

from per base depth values. A better efficiency in mitochondrial reads

extraction was obtained with the Agilent (A) kit of enrichment, as

suggested by comparing the highest mitochondrial depth values

obtained through the Agilent (274.57X) protocol with that reached by

the NimbleGen (B, 55.67X) samples within the same locus, MT-ND6. MT-

TS1 (64.99X) and MT-TN (26.44X) show the lowest depth through Agilent

and NimbleGen capturing, respectively.

Additional File 4: Quality score of 723 Agilent samples and 515

NimbleGen samples. Median quality score was estimated for each

analyzed sample within each mitochondrial locus starting from quality

score of single positions. Agilent (A) mitochondrial reads show slightly

higher QS than NimbleGen (B): both capture technologies recorded the

maximum score within the same locus, MT-TS2 (Agilent 35.82,

NimbleGen 33.13), while the lowest value is within MT-TR (34.30 with

Agilent, 31.47 with NimbleGen). Moreover Agilent QSs seem to have a

more uniform trend than Nimblegen ones.

Additional File 5: Variants detected by whole genome low coverage

and exome sequencing. The whole set of variant sites identified within

28 analyzed exome samples is here compared with that detected within

the same samples obtained through whole genome low coverage

sequencing by the 1000 Genomes Consortium. Each mutation identified

by the two methods is reported, integrated with information about

homoplasmic/heteroplasmic state within the samples. For 1282/1376

variants, heteroplasmic fractions (HF) estimated by our pipeline are

shown, while depth of coverage within exome samples is reported for

each position.

Additional File 6: Indels identified in assembled mitochondrial

genomes. The total number of heteroplasmic and homoplasmic indel

events (149 deletions and 66 insertions) recorded within the analyzed

dataset is here reported. The frequency of each event was estimated

considering the dataset size (1242 samples). Fifty-three percent samples

display an insertion in the same position, namely the m.310insC(n). Over

half of the total events was not carried by more than one sample. The

previously reported annotation of these events in healthy and patients

was made after consulting HmtDB [18] and Mitomap [17] databases.

Additional File 7: Spectrum of mitochondrial mutations within the

1242 analyzed samples. The number of mitochondrial variants

identified in each sample is here reported. A sorting was made on the

heteroplasmic/homoplasmic state and mutation type. Average values

and statistical tests results are reported at the end of the table. The

mean number of variants was estimated within the whole dataset and

also within the two subsets (blood and LCLs). P-value of significance

referred to each class of variants (insertions, deletions, mismatches)

compared between blood and LCLs. Minimal differences were detected

between the two types of samples, especially in relation to indels (p <

0.05). The differences between mean values of heteroplasmic variants per

sample in LCLs (7.42) and in blood (7.33) were not statistically significant.

Additional File 8: Indels found within homopolymeric stretches.

Almost all of the identified indels (72.09%) occur within homopolymeric

stretches, defined as regions with the same nucleotide in at least two

adjacent positions. The figure shows how indels are distributed on the

basis of homopolymers length. The shortest homopolymers harbor the

highest number of indels, although 5-bases stretches present high levels

of both deletions and insertions too. Low frequency of indel events was

observed within G-stretches.

Additional File 9: Mismatches identified in assembled mitochondrial

genomes. The total number of heteroplasmic (2330) and homoplasmic

(2204) mismatches events recorded within the analyzed dataset is here

reported. The number of samples harboring a specific mismatch in a

heteroplasmic or homoplasmic state is also shown. About 84% samples

display a mismatch in the same position (m.263A>G), explained by the

fact that this event is defined as one of the seven rare rCRS

polymorphisms. Over half of the total events was not harbored by more

than 1 sample. The annotation of these events in healthy subjects and

patients was made using data annotated in HmtDB [18] and Mitomap

[17] databases.

Additional File 10: Hierarchical clustering of heteroplasmic fractions.

A hierarchical clustering based on Euclidean distance was performed to

evidence shared classes of heteroplasmy within individuals with the aim

to identify a possible clusterization of samples belonging to the same

population sharing a similar number of variants referred to the same

heteroplasmic range. There is a substantial preponderance of

homoplasmic variants (1.00), quasi-homoplasmies (0.90-0.99) and low-

level heteroplasmies (0.01-0.10). The white area corresponds to samples

carrying at most 1 variant, due to a poor mitochondrial genome

coverage. The crowding of “leaves” in the lowest levels of the tree

highlights lack of correlation among heteroplasmic clusters and the

sample geographical origin.

Additional File 11: Non-synonymous changes within analyzed

samples. After the haplogroup assignment, 543 non-synonymous variant

positions were detected, which do not define the individual haplogroup.

Among them, 339 were found as homoplasmic and 309 as

heteroplasmic. Heteroplasmic fraction (HF) of missense mismatches and

samples ethnicity are reported.

Additional File 12: Functional annotation of non-synonymous

mismatches in 943 samples. Predictions of pathogenicity were carried

out on 543 non-synonymous mismatches previously filtered, using

MutPred [20], Polyphen-2 [21] and SNPs&GO [22] tools. Localization of

mismatches, the homoplasmic/heteroplasmic state, the corresponding

aminoacid change and nucleotide variability values estimated on nearly

10,000 mitochondrial nucleotide multi-aligned sequences, downloaded

from [33], are reported. Above all, MT-ND5 appeared to harbor the

highest frequency of non-synonymous changes. All the variants

predicted as probably pathogenic by at least one of the

abovementioned software (148 homoplasmic and 183 heteroplasmic)

show very low variability (mean value = 0.02 for homoplasmic mutations,

0.03 for the heteroplasmic ones). Only 14 non-shared mismatches were

predicted as damaging mutations by the three software, and among

them the m.3946G>A was also annotated in Mitomap [17] as associated

to MELAS.
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version 19; rCRS: revised Cambridge Reference Sequence; BWA: Burrows-

Wheeler Alignment; SAM: Sequence Alignment/Map; QS: quality score; rd:

read depth; RSRS: Reconstructed Sapiens Reference Sequence; EBV: Epstein-

Barr Virus; BAM: Binary Sequence Alignment/Map; WGS: Whole Genome

Sequencing; VCF: Variant Call Format; OriL: origin of light-strand replication;

HF: Heteroplasmic Fraction; MELAS: Mitochondrial Encephalomyopathy,

Lactic Acidosis and Stroke-like episodes; LHON: Leber’s Hereditary Optic

Neuropathy.
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