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Abstract: Flax is a commercial crop grown in many parts of the world both for its seeds and for
its fibers. The seed-based flax variety (linseed) is considered less for its fiber after the seed is
extracted. In this study, linseed straw was utilized and processed to extract fiber and cellulose
through optimization of retting time and a multi-step alkaline peroxide extraction process using the
Taguchi design of experiment (DOE). Effects of retting duration on fiber properties as well as effects of
solvent concentration, reaction temperature, and time on removal of non-cellulosic fiber components
were studied using the gravimetric technique, Fourier transform infrared (FTIR) spectroscopy and
thermal studies. Based on these findings, retting for 216 h at room temperature should offer adequate
retting efficiency and fiber characteristics; 70% cellulose yield was extracted successfully from linseed
straw fiber using 75% ethanol–toluene at 98 ◦C for 4 h, 6% NaOH at 75 ◦C for 30 min, and 6% H2O2

at 90 ◦C for 120 min.

Keywords: linseed straw; fiber; cellulose; retting; extraction; optimization

1. Introduction

Agricultural crop by-products are considered inexpensive, abundant, annually re-
newable, and sustainable sources of fiber and cellulose. Finding alternate sources for
present natural and synthetic fibers is critical for ensuring sufficient supply of fibers at
reasonable rates in the future. Limitations in availability of land, water, and other resources
required to grow natural fibers such as cotton, bamboo, sisal, hemp, and kenaf could limit
availability and/or raise prices of those fibers, rendering them unaffordable for commodity
applications. As a result, attempts to identify alternate fiber sources, particularly from
cheap, copious, and renewable lignocellulose wastes, are considered extremely useful [1].

Flax (Linum usitatissimum) is a fibrous plant that is used as a commercial crop in milder
climate regions [2]. Flax is produced for both its seeds and its fiber, although it is mostly
farmed for its seeds, leading to its diversification into oilseed (linseed) and fibrous plant
types [3]. The phenotypes and physiology of both types differ significantly from each other.
Linseed may reach a height of 40–60 cm and has a highly branched stem, whereas the
fibrous plant can reach a height of 80–120 cm and has a less branched stem [4]. Linseed
and fibrous flax generate different amounts of stalks (30 and 85 dt ha−1, respectively),
seeds (20 and 5 dt ha−1, respectively), and fiber (15 and 30%, respectively) [5]. In Ethiopia,
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flax is cultivated only for its seeds, which are used for oil, and the production capacity
is on average 100,000 tons/year from around a 200,000 ha This ranked Ethiopia seventh
among the top linseed producer countries in the world [6]. Many studies focus on flax
fibers that are grown for textile applications and used to strengthen polymeric matrices [7].
However, fiber obtained from linseed straw every year has not been studied or promoted
widely, even though properties of individual oilseed flax fibers [7–9], fiber extraction
methods [10–12], and fiber and seed yields [5] are described comparatively in some studies.
Subsequently, after seed harvest, linseed straw left in open fields is abandoned and/or
burned, causing significant environmental harm. Many nations are now dealing with the
problem of utilizing linseed straw [12].

Appropriate natural fiber extraction represents a major test faced during processing of
plant fibers. Extraction methods to separate plant fibers include retting and mechanical
extraction processes [13,14]. Common retting methods are water, dew, chemical, and
enzyme retting [15,16]. Water retting is the most common method to extract high-quality
fibers. In the retting process, existence of bacteria and moisture in the plants allows them
to break down large parts from cellular tissues and adhesive substances that surround
fibers, enabling separation of individual fibers from the plant. Depending on the fiber
category, this process requires approximately 7 to 14 days [17,18]. Water retting is critical
to processing of fibers; it influences qualities of generated fibers, and retting quality is
a primary issue for industries that use natural fibers in their products [17]. Therefore,
reaction time must be carefully evaluated when water retting is used, because under- or
excessive retting can cause difficulties in separation of individual fibers, or may weaken
fiber strength [19,20].

Cellulose is the most prevalent substance on the planet and the major component of
plant-cell walls. The principal components of plant fibers include cellulose, hemicellulose,
lignin, pectin, and wax [21,22]. However, cellulose is dependent on plant type and the
geographical area in which it is cultivated [23]. As a result, suggests development of novel
cellulose-based materials and demands detailed examination of their physical and chemical
properties [24]. In this context, there has been a surge in interest in extracting cellulose
from natural fibers in recent years. Several experiments have been conducted, utilizing
natural fibers, including sisal, rice husk, sugarcane bagasse, cotton, hemp, jute, bamboo,
and kenaf, among others, as sources of cellulose [23,25–27].

Extraction processes and methods for extracting cellulose vary and may include
acid and alkaline media; each process yields unique properties for each type of cellulose
produced. Because amount of cellulose and extraction process vary from plant to plant,
it is crucial to note that cellulose tests and investigations are carried out separately [23].
The purpose of the extraction process is to obtain cellulose with a high yield and purity
through elimination of non-cellulosic components—mainly extractives, hemicellulose, and
lignin—using different solvents with various concentrations, reaction temperatures, and
times for each step of extraction. This allows for extraction-process variable adjustments
that lead to optimization strategies [23]. Therefore, in this study, the retting-time duration
endpoint and influence of retting-time duration on fibers’ physical, tensile, and thermal
properties were investigated. Chemical compositions of fiber retted at optimal water-retting
duration were analyzed, and cellulose was extracted and characterized using optimized
multistep cellulose-extraction-process parameters.

2. Materials and Methods
2.1. Materials

Chemicals utilized were ethanol LR (96%; Wasse Pharma PLC, Addis Ababa, Ethiopia),
toluene AR (99.9%; Blulux Laboratories Pvt. Ltd., Faridabad, India), sulfuric acid AR
(98%; Loba Chemie Pvt. Ltd., Mumbai, India), sodium hydroxide pellets LR (98%; Blulux
Laboratories Pvt. Ltd., India), and hydrogen peroxide solution LR (30%; Fine Chemical
General Trading PLC, Addis Ababa, Ethiopia).
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Processing and characterization equipment used were a Soxhlet apparatus (M500-
mL flask, Soxhlet tube, 300 mm condenser, medium-porosity cellulose thimbles, heating
mantle, chiller, pH meter (AD8000 pH/mV/EC/TDS/Temperature); Adwa Instruments,
Inc., Szeged, Hungary), an electronic balance (JF-2004; Tsingtao Unicom-Optics Instruments
Co., Ltd., Laixi, China), a Clifton drying oven (NE9-56S; Nickel-Electro Ltd., Weston-Super-
Mare, UK), a box-type resistance furnace (SX-2.5-12; Taisite Lab science INC., New York, NY,
USA), a shaking water bath (GFL 1083; GFL Water Baths, Hamburg, Germany), a vertical
autoclave (AVI-017B; Avishkar International Pvt. Ltd., Mumbai, India), a single-fiber
electronic strength tester (Fiber Tenso-Lab-331A; Mesdan-Lab, Raffa, Italy), a FTIR-6600
spectrometer (JASCO Inc. Ltd., Easton, MD, USA), and a thermogravimetric and differential
thermal analyzer (TG-DTA, HCT-3; Beijing Henven Instruments, Beijing, China).

2.2. Fiber Extraction and Characterization Methods

A 50 g linseed straw bundle with a 20 cm length and a 3 mm mean stalk diameter
was cut from the center section of the stems for uniformity of samples. Next, the bundled
stalks were immersed in transparent plastic bottles, each filled with the same amount of
water, with a 1:33 solid-to-liquid ratio [28]. After immersion, the bottles were stored at
room temperature for 48–264 h, without lids, for retting, as shown in Table 1 [29,30].

Table 1. Sample names and corresponding retting-time durations.

Sample RT0 RT1 RT2 RT3 RT4 RT5 RT6 RT7 RT8

Retting Time (h) 0 48 96 144 168 192 216 240 264

About 275 mL of retted water was taken from all samples and tested every 24 h using
a calibrated pH meter to find pH measurement [31,32]. Increase in weight of wetted linseed
stalks (mw) from initial dry linseed stalk weight (md) due to water absorption from each
retting time was recorded, and stalk water-absorption percentage (wa%) was estimated
based on Equation (1) [33,34].

wa% =

(
mw − md

md

)
× 100 (1)

The percentage of mass change between dry non-retted (w1) and dry retted (w2) linseed
stalks was used to calculate stalk weight loss (wl%) using Equation (2) [29,35].

wl% =

(
w1 − w2

w1

)
× 100 (2)

Weight of linseed fiber extracted (mo) from the initial linseed stalk weight (mi) was
recorded for each retting time, and the fiber yield percentage (Y%) was determined using
Equation (3) [28,36].

Y% =

(
mo

mi

)
× 100 (3)

Density of oven-dried stalks amounted to a constant weight [34,37,38]; non-, under-,
optimally, and over-retted linseed fiber bundles were measured for distilled water den-
sity (ρw) using the liquid pycnometer technique. Mass of an empty pycnometer (m1), a
pycnometer filled with chopped fibers (m2), a pycnometer filled with water (m3), and
a pycnometer filled with water and chopped fibers (m4) was measured and calculated.
Density of fibers (ρf) was estimated based on Equation (4) [38,39].

ρf =

(
m2 − m1

(m3 − m1)− (m4 − m2)

)
× ρw (4)
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Diameter of linseed fibers was measured using an optical microscope. Three samples,
from under-, optimally, and over-retted fibers, were prepared; then three equidistant points
were marked on a single fiber, and the diameters of these points were measured with two
replications. The average diameter was then calculated; this could be considered the mean
diameter of the fibers [40].

Fiber samples with different degrees of water retting were kept in the open air at room
temperature and 55–65% RH for one week. Then, after drying in an oven to a constant
weight, weights of wetted (Ww) and oven-dried (Wd) samples were measured. Moisture
content percentage (MC%) of the fiber was calculated using Equation (5) [33,34].

MC % =

(
Ww − Wd

Ww

)
× 100 (5)

A tensile test of single fibers with different retting durations was performed according
to ASTM D 3822–07, using a single-fiber electronic strength tester. The test was carried out
at room temperature and 65% RH, with a gauge length of 100 mm, a load range of 5 N, and
a test speed of 100 mm/min [41].

A chemical composition analysis (dry-weight basis) of the fiber was conducted to
quantify mainly the percentage amounts of cellulose, hemicellulose, lignin, and extractives.
This analysis used 1:2 ethanol–toluene for 6 h at 98 ◦C in a Soxhlet apparatus to determine
extractive content [42–45], 17.5% NaOH at 95 ◦C for 60 min in a reciprocating water bath to
quantify hemicellulose content [46,47], and 72% H2SO4 at room temperature for 120 min;
hydrolyzed samples were diluted with distilled water to a 3% acid concentration (adapted
from TAPPI T-222 om-02) [48]. Samples were autoclaved for 1 h at 121 ◦C and cooled for
about 20 min at room temperature; the diluted suspensions were centrifuged at 5000 rpm
for 15 min and vacuum-filtered. The residues were burned in a muffle furnace at 550 °C for
3 h to quantify the amount of ash in the acid-insoluble lignin [41,49], as shown in Figure 1.
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Percentage amounts of non-cellulosic constituents (wt.%) were calculated from the
difference between initial (wi) and final (wf) fiber weights, using the gravimetric method
based on Equation (6) [50,51].

wt.% =

(
wi − wf

wi

)
× 100 (6)

The ash content of dry, chopped raw fiber was determined via burning in a 550 ◦C
furnace for 4 h [48], allowance to cool to room temperature in a desiccator, and weighing
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(adapted from TAPPI (T 211 om-02)). Finally, the cellulose percentage in wt.% of biomass
was calculated using Equation (7), assuming that extractives, hemicellulose, lignin, ash,
and cellulose were the main chemical compositions of the linseed fiber [52–54].

Cellulose% = 100% − (Extractives + Hemicellulose + Lignin + Ash)% (7)

2.3. Cellulose Extraction and Characterization Methods

Cellulose was extracted from linseed straw through sequential chemical treatments to
remove extractives, hemicellulose, and lignin, as shown in Figure 2.
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Removal percentage of non-cellulosic components (R%) of linseed fiber in each step of
the cellulose extraction process was calculated via taking the weight difference between
initial (mi) and final (mf) fiber weights, using the gravimetric method based on Equation (8).

R% =

(
mi − mf

mi

)
× 100 (8)

2.4. Fourier Transform Infrared (FTIR)

In the FTIR analysis, FTIR spectra of the fibers (non-retted, retted, extracted, alkalized,
and bleached) were recorded using a FT–IR spectrometer with a 2 mm/s scanning speed
and a 4 cm−1 resolution in a range of 400–4000 cm−1 wavenumbers [48,55–57].

2.5. Thermogravimetric Analysis (TGA)

In the thermal study, thermal degradation characteristics of fibers (non-retted, retted,
extracted, alkalized, and bleached) were analyzed using a thermogravimetric and differen-
tial thermal analyzer, from room temperature to 700 ◦C, at a heating rate of 20 ◦C min−1 in
N2 atmospheres, and using an 8 mg sample weight [1,58–60].

2.6. Statistical Method for Optimization

The selected factors (concentration, temperature, and time) and levels (low, medium
and high) for the extraction processes are shown in Table 2. The Taguchi L9 Orthogonal
Array (OA) design of experiments was employed to investigate contribution of selected
extraction conditions (concentration of solvents, reaction temperature, and time) to yield
removal of extractives, hemicellulose, and lignin, as shown in Table S1.
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Table 2. Factors and levels of solvents for extraction processes.

Solvent

Factors (Parameters)

Concentration (%) Temp. (◦C) Time (h)

Level Level Level

−1 0 +1 −1 0 +1 −1 0 +1

C2H5OH:C7H8 50 75 100 78 88 98 4 6 8
NaOH 2 6 10 50 62.5 75 1/2 1 1 & 1/2
H2O2 2 6 10 80 90 100 1 1 & 1/2 2

−1, 0, and +1 are levels related to low, medium, and high values of the selected extraction process variables,
respectively.

3. Results and Discussion
3.1. Retted Water pH, Stalk Water Absorption and Stalk Weight Loss Analysis

Figure 3a,b illustrate the effect of water-retting time on pH value of retting water, stalk
water absorption, and stalk weight loss. When the pH value of the retted water dropped
from 7.00 to 4.86, after 216 h, it remained steady and then increased again.
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Many bacteria isolated from bast fibers are capable of promoting retting. The most
important phase of this process is hydrolysis of pectic matter that surrounds and cements
fibers, thereby loosening fibers from the stem and helping to extract those fibers [31]. Due
to absence of pectic matter to be hydrolyzed and utilization of D-galacturonic acid (GA) by
bacteria, concentration of GA, which is the end product of bacterial hydrolysis in retting
water, began to fall [31,32].

The effect of retting-time duration on the water absorption percentage of linseed stalks
showed that water absorption increased rapidly to 172.47% during the first 48 h, then
increased slowly to the equilibrium water-absorption percentage of 187.21% at 168 h. After
this immersion-time duration had passed, percentage of water absorption became stable,
which means less than 1% of variations were observed, and no more weight gain of the
wetted linseed stalk was observed during retting-time increments, as shown in Figure 3b.
Forty-eight hours after equilibrium water absorption was the optimum retting time for
successful fiber extraction.

Water retting occurs when water penetrates the center-stalk section of the plant,
swelling the interior cells and shattering the outermost layer to enhance absorption of water
and produce bacteria that promotes retting [61,62]. Therefore, retting up to equilibrium
water absorption helps with removal of pectin and successful fiber extraction during
water retting.

Extending duration of water retting resulted in a considerable increase in weight loss,
as can be shown in Figure 3a. When the duration was extended from 48 to 168 h, the weight
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loss increased from 5.74 to 12.3% due to removal of impurities and pectin components of
the fiber. From 168 to 216 h, weight-loss variations were nearly stable or less than 1%, and at
the end of this time, 12.67% fiber yield was obtained. However, after 216 h of retting, weight
loss was slightly increased due to removal of other non-cellulosic constituents [35,63,64]. As
a result, the retted water pH, stalk water absorption, and stalk weight loss values obtained
can be used to predict optimal retting time.

3.2. Effect of Retting Duration on Fiber Properties

Effects of retting duration on physical and tensile properties of fibers that were ex-
tracted under different retting durations, shown in Figure 4, were investigated.
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3.2.1. Physical Properties

Table 3 demonstrates effects of retting duration on physical properties—mainly diame-
ter, density, and moisture—of (R0) non-retted, (R1) under-retted, (R2) optimally retted, and
(R3) over-retted fibers.

Table 3. Summary of the mean values of tensile and physical properties of fibers.

Sample
Tensile Properties Physical Properties

Breaking
Force (cN)

Breaking
Elongation (%)

Tenacity
(cN/tex)

Diameter
(µm)

Density
(g/cm3)

Moisture
(%)

R0 - - - - 1.33 9.34
R1 219.9 2.17 41.7 128.22 1.43 8.57
R2 278.4 2.06 59.1 104.65 1.52 8.32
R3 193.4 1.73 54.6 90.36 1.41 7.72

These results revealed that as degree of retting increased, average diameter of the fiber
reduced due to removal of surface components via retting [65,66]. Initially, an increment in
density values was observed, with increasing retting degree due to removal of less-dense
constituents and impurities such as pectin [67,68], but over-retted fibers showed a relative
reduction in density as a result of cell-wall decompression [69,70].

The mean density of optimal retted fiber was 1.52 g/cm3 and the density values of
flax fiber reported in previous works of the literature were from 1.40 to 1.55 g/cm3 [71,72].
These values were obtained with different methods, such as a helium pycnometer
(1.54 g/cm3) [73], a gas pycnometer (1.49 to 1.52 g/cm3) [74], and immersion in water
(1.54 g/cm3) [75]. Moisture content was reduced with increasing retting degree due to the
high amount of cortical parenchyma components remaining on the surface of non-retted
and under-retted fibers; these fibers may have high water interaction [76].

3.2.2. Tensile Properties

The effect of retting duration on tensile properties—specifically breaking force; break-
ing elongation; and tenacity of (R1) under-retted, (R2) optimally retted, and (R3) over-retted
fibers—were tested as shown in Table 3. Initially, mean breaking force and tenacity of each
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single fiber were enhanced due to removal of a larger amounts of weak substances, such
as pectin and other impurities; results were reduced with further increments of retting
duration due to cellulose-component degradation resulting in presence of more weak spots
and reduction in diameter of the fibers [65,77,78].

These results showed that mean elongation values decreased with an increasing
degree of retting due to removal of non-cellulosic components; this tends to result in fiber
brittleness [30,79].

3.3. Chemical Composition Analysis

The primary chemical compositions of linseed straw are cellulose, hemicellulose,
lignin, and extractives. The chemical constituents of linseed fiber are 68, 20, 5, 4, and 3%
of cellulose, hemicellulose, lignin, extractives, and ash, respectively. Cellulose content is
comparatively higher than are different lignocellulose biomasses from agricultural wastes,
as shown in Table 4.

Table 4. Chemical composition of lignocellulose biomasses from agricultural wastes.

Lignocellulose
Biomass

Cellulose
(%)

Hemicellulose
(%)

Lignin
(%)

Extractives
(%) References

Linseed Straw 68 20 5 4 This study
Oleaginous Flax 47 24 21 - [9]
Sugar Bagasse 43.6 33.5 18.1 3.1 [80]

Corn Cob 45 35 15 5 [81]
Corn Stover 40 25 17 18 [81]
Rice Straw 38.3 31.6 18.8 11.3 [82]

These variations may be due to the type of agricultural crop and the geographic
area where the plants were cultivated; the amount of these constituents might vary even
among the same plants. Uniquely, all fibers contain the same constituents, but in different
percentages, which results in different behaviors [83].

3.4. Cellulose Extraction, Characterization and Optimization

The cellulose extraction process was conducted in multi-step extraction processes via
optimization of extraction-process conditions, including solvent concentration, reaction
temperature, and time. The extraction steps mainly focused on removal of extractives,
hemicellulose, and lignin using ethanol–toluene, sodium hydroxide, and hydrogen perox-
ide solvents, respectively, under different extraction-process conditions. The results for a
fiber after each step of extraction are shown in Figure 5.
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3.4.1. Statistical Analysis

The experimental results showed that the maximum removal values of extractives,
hemicellulose, and lignin were 4.90, 18.10, and 4.00% respectively; these results were
observed at extraction-variable combinations of 75% at 98 ◦C for 4 h, 6% at 75 ◦C for 30 min,
and 6% at 90 ◦C for 120 min, respectively. However, the predicted mean removal (%) of
extractives, hemicellulose, and lignin tested under optimum values from the signal to
noise ratio (SNR) graph was calculated as 4.88, 18.25, and 4.19% at extraction-variable
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combinations of 75% at 98 ◦C for 8 h, 6% at 75 ◦C for 90 min, and 10% at 90 ◦C for 120 min,
with error values of 0.40, 0.82, and 4.53%, respectively. This indicates that the experimental
and predicted results were in good agreement, as shown in Table 5.

Table 5. Experimental and predicted removals of non-cellulosic components of fiber.

Run

Variables Response (%)

C (%) T (◦C) t (h)
Extractive Removal Hemicellulose Removal Lignin Removal

EXP PRED ERR EXP PRED ERR EXP PRED ERR

1 −1 −1 −1 2.52 2.40 0.12 10.0 9.81 0.19 1.6 1.45 0.15
2 −1 0 0 2.67 3.88 −1.21 11.9 13.72 −1.82 2.0 2.46 −0.46
3 −1 +1 +1 2.85 2.73 0.12 13.7 13.42 0.28 2.6 2.63 −0.03
4 0 −1 0 4.54 3.98 0.56 14.5 13.40 1.10 3.0 3.12 −0.12
5 0 0 +1 4.69 4.15 0.54 16.2 15.46 0.74 4.0 3.40 0.60
6 0 +1 −1 4.90 4.35 0.55 18.1 17.18 0.92 3.2 2.96 0.24
7 +1 −1 +1 3.50 3.86 −0.36 14.4 14.85 −0.45 3.6 3.71 −0.11
8 +1 0 −1 3.65 4.00 −0.35 15.3 15.84 −0.54 3.8 3.73 0.07
9 +1 +1 0 3.83 4.18 −0.35 17.8 18.16 −0.36 3.4 3.69 −0.29

The ANOVA results shown in Tables S2–S4 explain the significant level, contribution
percentage, and rank of each factor in removal of extractives, hemicellulose, and lignin,
respectively. The concentrations of the solvents in removal of extractives, hemicellulose,
and lignin were statistically significant (p ≤ 0.05), contributing 97.25, 64.5, and 81.47%
to the response, respectively. The reaction temperatures in removal of extractives and
hemicellulose were statistically significant, contributing 2.74 and 35.09%, respectively. This
value, however, was not significant in removal of lignin (p ≥ 0.05), contributing only 7.48%.
The reaction time in removal of extractives, hemicellulose, and lignin was not significant,
with no contribution, 0.29%, and 9.26%, respectively.

The ANOVA findings of the linear model equations shown in Equations (S1)–(S4)
can appropriately explain removal of extractives, hemicellulose, and lignin within a wide
range of operating circumstances, with coefficients of determination (R2) of 0.569, 0.879,
and 0.8974 at a 95% level of confidence. The response models examined in this study can
explain removal of extractives, hemicellulose and lignin; they contributed 56.95, 87.92, and
89.74% to the response, respectively.

3.4.2. Fourier Transform Infrared (FTIR) Analysis

The FTIR spectra of the non-retted, retted, extracted, alkalized, and bleached linseed
fibers shown in Figure 6 were interpreted and discussed according to reported studies
regarding the sources of FTIR peaks and their assignments, as shown in Table 6. For every
stage of the extraction procedure, FTIR analysis was carried out to identify presence of chem-
ical functional group changes [84]. All samples presented two main absorbance regions:
the fingerprint region (700–1800 cm−1) and the functional group region (2700–3500 cm−1).
However, specific absorption peaks can be identified for each particular component [42].
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Figure 6. The FTIR spectra of (a) non-retted, (b) retted, (c) dewaxed, (d) alkalized, and (e) bleached
fibers.

The presence of nearly similar functional groups at 3425, 2917, 1636, 1114, and
617 cm−1 in all fibers justified preservation of the basic chemical structure of cellulose
fiber and water, even after all treatments during the extraction process. It was expected
that during the extraction process, non-cellulosic components of the fiber—hemicellulose,
lignin, and extractive (pectin, wax) contents—could be completely or partially removed.
Therefore, corresponding absorption peaks to these components disappeared or diminished
in intensity value. The treatments, on the other hand, increased intensity of bands that
corresponded to cellulose [85].

Table 6. Sources of FTIR peaks and their assignments [1,84,86,87].

Wavenumber
(cm−1) Bond Vibration Sources

3425 O-H Stretching Cellulose, hemicellulose, lignin, and pectin
2917 C-H, C-H2 Stretching Cellulose, hemicellulose, lignin, pectin, wax, and fat
2853 C-H2 Symmetric Stretching Wax
1731 C=O Unconjugated Hemicellulose and lignin
1636 O-H Stretching Absorbed water
1426 O-H, C-H Bending Cellulose, hemicellulose, and lignin
1383 COO- Stretching Hemicellulose
1157 C-O-C Asymmetric Stretching Cellulose, hemicellulose, and lignin
1114 C-O Stretching Cellulose, hemicellulose, and pectin
1032 C-O-C Bending Cellulose, hemicellulose, pectin, wax, and fat
901 C-O-C Stretching Cellulose and hemicellulose
617 C-OH Out-of-Plane Bending Cellulose

The absorption peaks that corresponded to the extractives were 2917, 2853, 1114, and
1032 cm−1. The absorbance peak at 2853 cm−1 disappeared, and others were reduced after
retting and extraction due to removal or reduction of pectin and wax. The absorption
peaks at 3425, 2917, 1732, 1426, 1383, 1114, 1032 and 901 cm−1 are related to hemicellulose.
The absorption peak at 1731 cm−1 disappeared, and the others were diminished in peak
intensity because of hemicellulose removal during the alkalization process. Absorption
peaks observed at 3425, 2917, 1731 and 1426 cm−1 are associated with lignin. The absorption
peak at 1731 cm−1 disappeared, and the others diminished in peak intensity because of
lignin removal during the bleaching process.



Polymers 2023, 15, 469 11 of 16

3.4.3. Thermogravimetric Analysis (TGA)

Decomposition of lignocellulose materials mainly shows three stages of degradation;
due to differences in chemical structures between extractives, hemicellulose, cellulose, and
lignin, they usually decompose at different temperatures [77,88]. Degradation of linseed
straw fiber went through three phases, as shown in Figure 7: light-component drying
and evaporation, hemicellulose and amorphous cellulose decomposition, and crystalline
cellulose and lignin decomposition.
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Weight loss, decomposition temperature ranges, and residue contents of fibers in each
degradation stage are summarized in Table 7.

Table 7. Thermogravimetric analysis of fibers at different extraction steps.

Sample
1st Stage 2nd Stage 3rd Stage

Ash (%)
Wt. Loss (%) T (◦C) Wt. Loss (%) T (◦C) Wt. Loss (%) T (◦C)

Raw Fiber 11.36 26–145 56.26 179–426 28.46 426–609 3.00
Extracted Fiber 7.51 37–139 70.45 205–438 18.79 430–510 2.25
Alkalized Fiber 7.44 38–121 57.20 250–440 30.69 440–591 1.72
Bleached Fiber 23.50 37–110 49.89 269–427 22.55 427–510 1.13

The thermal stability of the raw, extracted, alkalized, and bleached fibers was 179, 205,
250, and 269 ◦C, respectively. All extraction steps resulted in thermal stability improvement
of the fiber due to retention and improvement of the structural order, as well as reduction
in amorphous content [89].

Each fiber showed dissimilar weight losses and temperature ranges in all degradation
stages. Weight loss (%) in the first stage was higher for raw fiber compared to that of
extracted and alkalized fibers due to presence of extractives and higher moisture content.
It was reduced after removal of extractives and hemicellulose, which are responsible for
moisture absorption of fibers, and on the other hand, the bleached fiber showed the highest
weight loss (%) due to more moisture-absorption properties of the fiber after removal of
lignin, which is naturally hydrophobic [90].

An increase in weight loss was observed in the second degradation stage after the
extraction process due to the removal of extractives, which increased the proportions of
cellulose and hemicellulose [77]. However, weight loss decreased after the alkalization
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and bleaching processes due to removal of hemicellulose and lignin. The decomposition
temperature range decreased after each extraction step in all stages, since degradation of
non-cellulosic components occurred over a low, broad temperature range due to presence of
low molecular weight components [91]. Finally, residues that corresponded to ash content
decreased during the extraction steps as a result of removal of non-cellulosic matter, which
is responsible for ash content [92,93].

4. Conclusions

The linseed plant is a dual-purpose crop. Even if it is first and foremost cultivated
for its seeds, its straw can be also useful, possibly contributing to an additional source
of income for farmers as a source of fiber and cellulose due to its comparable bast-fiber
and cellulose contents. This study reported optimum extraction of fiber and cellulose, as
well as characterization from linseed straw. According to the experiments and analyses
performed, pH, stalk water absorption, and weight loss were found to be good indicators
for termination time of the water-retting process and optimum retting time. Effects of
retting-time duration on tensile and physical properties of the fibers were tested, analyzed,
and discussed. At the recommended optimum retting time (216 h), fibers with a density of
1.52 g/cm3, a diameter of 104.65 µm, and a moisture content of 8.32% had a mean breaking
force of 278.4 cN, a breaking elongation of 2.06%, and a tenacity value of 59.1 cN/tex.
The chemical composition of the optimum retted fiber had content of 68% cellulose, 20%
hemicellulose, 5% lignin, 4% extractives, and 3% ash. Cellulose was present at the highest
levels; therefore, extraction of cellulose from linseed straw is feasible and a promising
sustainable cellulose source for different applications, such as packaging, filtration, com-
posites, implants, paper, and pulp. Cellulose is extracted through successful optimization
of multi-step extraction-process parameters for linseed straw. The recommended optimum
cellulose extraction conditions for linseed fiber were identified as 75% ethanol–toluene
at 98 ◦C for 4 h, 6% NaOH at 75 ◦C for 30 min, and 6% H2O2 at 90 ◦C for 120 min, for
successful removal of non-cellulosic constituents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15020469/s1. Table S1: Taguchi L9 orthogonal array layout
for cellulose extraction. Table S2: ANOVA results for removal of extractives (%) under different
extraction conditions. Table S3: ANOVA for removal of hemicellulose (%) under different extraction
conditions. Table S4: ANOVA for removal of lignin (%) under different extraction conditions.
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