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Nebojša Nenadović, Student Member, IEEE, Slobodan Mijalković, Senior Member, IEEE,
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Abstract—A measurement system comprised of an ultra-low-dis-
tortion function generator, lock-in amplifier, and semiconductor
parameter analyzer is used for sensitive extraction of the small-
signal thermal impedance network of bipolar devices and circuits.
The extraction procedure is demonstrated through measurements
on several silicon-on-glass NPN test structures. Behavioral mod-
eling of the mutual thermal coupling obtained by fitting a multi-
pole rational complex function to measured data is presented.

Index Terms—Bipolar transistor, electrothermal modeling, self-
heating, silicon-on-glass, thermal coupling, thermal impedance.

I. INTRODUCTION

E LECTROTHERMAL effects play a major role in the
performance of modern semiconductor devices and in-

tegrated circuits. Thermal issues are especially important for
radio frequency (RF) bipolar technologies for several reasons.
First, RF bipolar transistors operate at very large current den-
sities in order to push the high-frequency performance to the
limits [1]. Second, there is a positive feedback between the
collector current and temperature of a bipolar transistor that
can induce thermal instabilities [2]–[7]. Third, reduction of the
parasitic capacitances of the active devices and increase in the
level of integration in RF systems is achieved by decreasing
the parasitic coupling to the Si substrate. This is often done
by introducing silicon-on-insulator (SOI) substrates and deep
trench isolation. Unfortunately, such solutions entail a tremen-
dous reduction in the heat spreading from the active device
regions [8]–[12]. Furthermore, emerging technologies based on
three-dimensional (3-D) integration [13] and substrate transfer
[14], [15], despite being electrically very attractive, continue
degrading the heat spreading, influence self-heating and mutual
thermal coupling, and increase the circuit operating temper-
ature. It is, therefore, very important to accurately describe
electrothermal feedback within a single device, and equally
important to understand and describe electrothermal coupling
within a circuit composed of such devices.
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N. Nenadović, L. K. Nanver, H. Schellevis, and J. W. Slotboom are with the
Laboratory of ECTM, DIMES, Delft University of Technology, 2600 GB Delft,
The Netherlands (e-mail: n.nenadovic@dimes.tudelft.nl).
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Various dc measurement techniques for extraction of the
self-heatingthermalresistance areproposedin theliterature
[7], [16]–[19]. When steady-state thermal models are utilized
for characterization of RF devices and circuits, the tempera-
ture instantaneously follows the power dissipation signal, and
dynamic thermal behavior is disregarded. To describe dynamic
behavior, thermal impedance rather than thermal resistance
must be characterized. In general, transient [20]–[24] and ac
measurement techniques [25]–[27] are used for extraction of
the self-heating thermal impedance, . It has been shown
that thermal response is always limited to low frequencies
with a thermal cutoff frequency in the range from a few
kilohertz to about 1 MHz. Therefore, single-tone RF signals
are unaffected by dynamic electrothermal effects. However,
in the case of narrow-band signals, like EDGE GSM where
channel separation can be as small as 25 kHz, modulated
signals can completely fall into the region below [28].
Even for wider channels, signals below the thermal cutoff
frequency appear in the spectrum [29], [30], and it has been
demonstrated that the value of the third-order intermodulation
coefficient IMD3 is dependent on the tone spacing. Therefore,
the standard IM3 characterization technique based on wide tone
spacing may not fully represent the linearity performance of
PAs [29]. Thermal impedance data is thus needed for complete
electrothermal characterization of RF amplifiers. For example,
the thermal memory effect caused by the dynamic thermal
behavior seriously limits the maximum achievable cancellation
performance of the predistortion linearization method [28],
[31]. Moreover, when designing circuits, it is very important
to perform an overall electrothermal analysis, in which not
only self-heating but also mutual thermal coupling impedance
is taken into account. A few techniques for extraction of the
thermal coupling resistance [32] and impedance [21] have
been reported.

In this paper, a novel ac measurement technique is presented,
with which an accurate extraction of both the small-signal
self-heating and mutual thermal coupling impedance is made
possible. To achieve a very high sensitivity measurement, an
ultra-low distortion function generator and parameter analyzer
are used for accurate biasing of the devices under test, while a
lock-in amplifier and base-emitter thermometer are combined
to measure small-signal temperature variation at a given ref-
erence frequency. A wide range of bipolar technologies can
be electrothermally characterized by this method. Here, the
accuracy of the system is demonstrated by measurements of
different silicon-on-glass test structures [15].
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The measured frequency-sampled thermal impedance data is
obtained in a wide frequency range. To model this for circuit de-
sign purposes, a general behavioral modeling approach based on
a rational transfer function is adopted in this paper. As indicated
above, such thermal models are needed for accurate characteri-
zation of RF devices and circuits. Moreover, they are necessary
for analysis of devices used in power switching applications, dif-
ferential amplifier stages, and current mirrors [33]. Also, they
are useful for studying the device thermal structure including
thin-film interfaces, die attachments, and heat sinks [34], and
for sensor applications [35], [36].

II. SMALL-SIGNAL THERMAL IMPEDANCE NETWORK

In this section, the small-signal thermal impedance network,
which will be extracted in Sections III–V, is introduced and the
individual components are defined. In a multiport system shown
in Fig. 1, each port represents either a single transistor as a part
of a complex circuit or a cell in a multicellular device. In both
cases, the number of ports can be very large. For the sake of
simplicity, however, a two-port system is considered in the fol-
lowing.

The small-signal two-port thermal impedance network in the
complex domain is defined as

(1)

where and are the self-heating thermal im-
pedances, and the mutual thermal coupling
impedances, and the power dissipations, and and
the temperature variations at ports 1 and 2, respectively. It is
assumed that the temperatures and are small in magnitude,
and thus a linear relationship between the power and temper-
ature is adopted in (1). Moreover, in a linear approximation,
the superposition principle holds and therefore the temperature

consists of the self-heating term and mutual
thermal coupling term . However, since the systems
of devices under consideration are composed of silicon and/or
other semiconductor and dielectric materials, which have tem-
perature-dependent thermal conductivities [37], the thermal
impedance coefficients are not constant with temperature [38].
Thus, the linearity principles used in (1) do not hold in general,
but even in the case of large-signal excitations, for which large
temperature changes can be generated within the system, it
is often still useful to adopt the small-signal compact models
of the thermal impedance network, and this is done in almost
all practical cases. A few attempts to include nonlinearity
in the analytical thermal resistance/impedance models have
been reported in the literature [38], [39], but such models
are very complex and even for bulk technologies they have
much less practical value than linear models. An alternative
approach in nonlinear thermal impedance modeling is the data-
base (or look-up table) modeling method based on measured
small-signal thermal impedance data. Such a thermal database
model coupled with an electrical model (compact or database
[40]) can then be used for accurate large-signal electrothermal
analysis of devices and circuits. With the lock-in measurement
technique presented here, the small-signal thermal impedance

Fig. 1. Schematic of coupled thermal interaction in a multiport system.

data at constant temperature can be extracted versus frequency
and used to create thermal impedance models.

III. MEASUREMENT SYSTEM AND EXTRACTION PROCEDURE

The measurement system is shown in Fig. 2. In the present
experiments, two identical neighboring devices, D1 and D2, are
probed on-wafer using a Cascade probing station equipped with
a thermal chuck. The setups in Fig. 2(a) and (b) are used for

and extraction, respectively. By exchanging D1
with D2 in the same setups, the other two thermal impedance
coefficients, and , can be extracted.

A. Biasing Setup

In Fig. 2(a) and (b), the device D1 is biased in a common-
base configuration. The constant emitter current is forced
through the transistor by an HP 4156B Parameter Analyzer.
A SR-DS360 ultra-low-distortion function generator is used to
bias the collector of this device: an offset dc voltage
is applied along with the ac signal at frequency .

The transistor is biased in forward active mode where the cur-
rent gain is much larger than 1, and thus . The tran-
sistor dissipates a dc power , and an ac power at
frequency expressed in the complex domain as

(2)

where is the Early voltage. The term can be
readily calculated from the low-frequency small-signal hy-
brid-pi equivalent circuit of a bipolar transistor biased in a
common-base configuration with a forced dc emitter current.
Since , can be neglected with respect
to .

Due to the generated power dissipation, the temperature of the
chip changes with respect to ambient. In a linear approximation,
only those frequencies that are present in the power excitation
are induced in the temperature spectrum. This means that in-
duces dc temperature components and in de-
vices D1 and D2, respectively, while induces ac temperatures
at frequency , and and at devices D1 and D2, respec-
tively. Thus, the temperatures of devices D1 and D2, expressed
in time domain, are

(3)
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Fig. 2. Schematic of the measurement setup: configuration for (a) z

measurement and (b) z measurement.

where is the thermal chuck temperature, and the
small-signal temperatures in time domain at D1 and D2, respec-
tively, and the time.

For the purpose of detecting the temperature , the device D2
is biased as shown in Fig. 2(b): a constant current is forced
through the emitter, while the collector is shorted to the base.

B. Base-Emitter Voltage Thermometer

The temperature variations of a transistor can be measured
by monitoring the base-emitter voltage. In the forward active
regime with the collector (or emitter) current kept constant, the
base-emitter voltage decreases as the device temperature in-
creases. From the characteristics at the collector cur-
rents of interest, the base-emitter voltage temperature coefficient

(4)

can be extracted. It is demonstrated in [7] that the coefficient is
temperature independent and therefore the measured changes in
the base-emitter voltage divided by will give the temperature
change with respect to ambient.

Under forward active operation for a fixed and a small-
signal excitation , as in the setups from Fig. 2(a) and (b),
two concurrent mechanisms influence : one is the Early ef-
fect (electrical feedback) and the other is the self-heating effect
(thermal feedback) [41]. At the low frequencies of interest, only
thermal feedback influences for a fixed since D1 and
D2 are electrically isolated. The compensation for the Early ef-
fect will be treated in Section III-C.

C. Extraction of the Thermal Impedance Network Coefficients

In Fig. 2(a), an SR830 DSP lock-in amplifier is connected to
device D1 so that is measured through channel A and
through A–B. This instrument isolates the magnitude and phase
of the input signals at a given reference frequency even when the
signals are obscured by noise sources that are orders of mag-
nitude larger. The TTL signal at frequency is taken from
the function generator and used as the reference input for the
SR830 DSP. Thus, the lock-in amplifier detects the signals
and that have the same frequency as the excitation .
Since and can be translated into and , respec-
tively, this combination of ultra-low-distortion function gener-
ator and lock-in amplifier gives a sensitive means of determining
the small-signal self-heating thermal impedance.

The thermal component of the - electrothermal
feedback is extracted after compensating the measured for
the Early effect, as follows:

(5)

where mV is the thermal voltage. The Early voltage
can be extracted from the isothermal (measured in pulsed mode)
device characteristics. The calculated is converted
into the temperature as follows:

(6)

where is given by (4) with . Using (2), the
measured is converted into and thus, the self-
heating thermal impedance in complex domain is determined as

(7)

To determine , the device D2 is biased and the lock-in am-
plifier is reconnected as shown in Fig. 2(b). As is explained
in Section II, only thermal feedback influences , and thus

. The measured is then con-
verted into the temperature :

(8)
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TABLE I
LIST OF TEST STRUCTURES AND CORRESPONDING THERMAL IMPEDANCES EXTRACTED AT f = 1 Hz

Fig. 3. Schematics of the test structures fabricated in silicon-on-glass bipolar
technology: back-wafer views where D1 and D2 are separated by (a) junction
isolation and (b) trench isolation. (c) The cross section along A-A axis in (a).

where is given by (4) with . The complex
mutual thermal coupling impedance is then found to be

(9)

IV. MEASUREMENT EXAMPLES

A. Silicon-on-Glass NPN Test Structures

The silicon-on-glass NPN test structures were designed and
fabricated as shown in Fig. 3. They are comprised of a pair of
identical silicon-on-glass bipolar NPNs each with an emitter
area m [15]. During silicon-on-glass device
and circuit fabrication, the silicon substrate is replaced by a glass
wafer. Pure electrically, this results in the elimination of the sub-
strate losses and a reduction of the active device parasitic ca-
pacitances and resistances. However, the thermal impedance of
a silicon-on-glass transistor is much higher than that of the cor-
responding bulk-silicon device, mainly due to very low thermal

conductivity of glass (more than 100 times lower than that of
silicon).

The transistor pairs forming the test structures are placed in
a trenched silicon island, while the region between them is ei-
ther junction or trench isolated, as shown in Fig. 3(a) and (b),
respectively. The distance between D1 and D2 is either 6, 36,
or 56 m. The details of the test structures are listed in Table I.
In the junction isolated test structures (J-6, J-36, and J-56), D1
and D2 are thermally connected by a silicon region, which has
a good thermal conductivity. On the other hand, the trench be-
tween the trench isolated devices (T-6, T-36, and T-56) is filled
with poor thermal conductors: silicon nitride and silicon oxide.
For these devices, is the trench width between D1 and D2. The
trenches are etched all the way to the buried oxide to give a per-
fect electrical isolation of each silicon island that have a size of
0.64 10 23 m .

B. Thermometer Calibration

All the transistors in the test structures are electrically
identical. A transistor with the lowest thermal resistance was
therefore chosen to calibrate the thermometer. Gummel
plots were measured at different substrate temperatures ranging
from 300 K to 380 K, which amply cover the temperature
range of interest. The measurements were performed in
isothermal (pulsed) mode and for V. Fig. 4 shows the
base-emitter voltage as a function of temperature for different
fixed current densities. The base-emitter voltage temperature
coefficient is given by the differential of each curve, the abso-
lute value of which increases as the current density decreases.

C. Device Biasing

After the calibration was performed, the test structures were
connected according to the measurement setup as shown in
Fig. 2. The following voltages and currents were applied at the
devices’ terminals: V, V, mA,
and A. The emitter current of D2 is set to be very
low, for the first, to minimize the self-heating and second, to
maximize the sensitivity for detection. Using the calibration
curves from Fig. 4, and were found to be 1.5 mV/K
and 2.1 mV/K, respectively. was varied from 1 Hz up
to 100 kHz, which is almost the full frequency range of the
available equipment.
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Fig. 4. Base-emitter voltage as a function of temperature for various values of collector-current density. The base-emitter voltage temperature coefficient ' is
extracted as the slope of measurement results (squares). For comparison, curves having the same slope as the one with the lowest current density are also included
(dotted lines).

D. Measurement Results and Discussion

The thermal resistance of the present transistors is known to
be at most about 1.5 K/W [15], so the small-signal power

mW, calculated by (2), does not introduce a tempera-
ture swing larger than 1.5 K over the measured frequency
range. This is so low that a temperature-induced nonlinearity in
the heat propagation can be neglected.

The magnitude of can be much smaller than that of . For
instance, for a given power mW and at high ,
the magnitude of can be as low as a few milliKelvins. Even
though the sensitivity of the base-emitter thermometer is maxi-
mized mV/K by setting to only 1 A, is
still very low, in the microvolt range for the frequencies where

is in order of 1 mK. Therefore, an extremely sensitive mea-
surement technique, as is achieved here with the lock-in ampli-
fier, is imperative for this type of measurement.

The thermal impedances and of the test struc-
ture T-6 are extracted and the magnitudes are shown in log-log
scale in Fig. 5. No variations in the extracted thermal impedance
values were detected for ranging from 0.05 mW to 0.3 mW.
The frequency range provided by the available instruments is
seen to be adequate to fully cover the spectrum of . Nev-
ertheless, as displayed in Fig. 5, only low-frequency values of

can be measured. To fully cover the spectrum of
for this particular device, as well as for a wide range of de-
vices made in other technologies including bulk-silicon [21],
the upper frequency limit has to be raised. This can be done
by using a lock-in amplifier that can measure the signals up to
10 MHz. Alternatively, the presented measurement technique
could be combined with other, faster ac techniques, such as the
one given in [27]. Fig. 6 shows the extracted magnitude and real
and imaginary part of for the trench isolated test struc-
tures. The thermal chuck temperature was set to C.
Thermal coupling between transistors D1 and D2 is seen to be
strongly influenced by the distance between them. Compared
to T-6, the coupling in T-36 and T-56 is reduced by 65% and
80%, respectively. For the junction isolated structures, which
have a stronger thermal coupling, the reduction with distance
is lower: compared to J-6, the thermal coupling in J-36 and

Fig. 5. Extracted magnitude of z and z for the test structure T-6.

J-56 is reduced by 55% and 70%, respectively. Fig. 7 compares
the magnitudes of for the test structures of both types.
The extraction results show that the electrically isolated devices
from T-6 are only 20% less thermally coupled than the corre-
sponding J-6 devices. The difference grows higher if the trench
width increases: it becomes 36% for m and 43%
for m. This means that good thermal isolation of the
trenched devices can only be achieved with trenches of the order
of 100 m or wider, even though the pure electrical isolation is
perfect for all distances. Table I summarizes the magnitudes of
extracted and at 1 Hz for the devices analyzed.
The increase in as a result of introducing trench isola-
tion is much smaller than what has been observed in bulk-silicon
processes [8]. This is because the glass substrate is placing the
greatest restriction on the heat transfer.

Fig. 8 shows the magnitude of that is extracted for the
test structure J-36 at three different thermal chuck temperatures

: 22 C, 70 C, and 110 C. Since the thermal conductivity
of silicon decreases as the temperature increases, and the
thermal conductivity of glass and other dielectric materials
surrounding the test structure increases as the temperature
increases [37], it is plausible that the extracted mutual thermal
coupling impedance of J-36 is lower at higher temperatures.
Nevertheless, the change in is not dramatic and the
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Fig. 6. Extracted (a) magnitude, (b) real and (c) imaginary part of z for
the test structures T-6, T-36, and T-56.

room temperature thermal impedance value can be utilized
to a very good approximation over a wide temperature range.
Likewise, a weak temperature dependence is measured for the
self-heating thermal impedance . The thermal imped-
ances have also been measured at different bias points and only
minor changes are detected. Under normal operating regimes,
the small changes of the thermal impedance can be attributed
to modification in the operating temperature and not to the
size modulation of the heat source [42], [43]. This means that
experimental small-signal thermal impedance data can be used
with sufficient accuracy also for the large-signal modeling of
the silicon-on-glass transistors. For other technologies and op-
erating conditions this may not always be the case. In the most
general situation, small-signal thermal impedance data should
be measured versus bias, temperature and frequency, and used
to create a look-up table thermal impedance model suitable

Fig. 7. Comparison between magnitudes of the mutual thermal coupling
impedance z for the trench and junction isolated test structures.

Fig. 8. Temperature dependence of the extracted magnitude of z for the
test structure J-36.

for large-signal analysis. Nevertheless, for many purposes it is
often enough to adopt a linear approximation and thus measure
the thermal impedance versus frequency at a single bias point
and temperature.

V. MODELING THE SMALL-SIGNAL THERMAL

IMPEDANCE NETWORK

All the presented experimental results illustrate the capability
of the proposed measurement system to accurately measure
small-signal thermal impedances and detect changes in the
self-heating and mutual thermal coupling caused by even very
small changes in the device surrounding. In order to predict
electrothermal circuit behavior, an accurate thermal model and
the associated procedures for parameter extraction should be
formulated. This section presents an approach to generating
linear time-invariant (LTI) thermal models from the measured
complex thermal impedance data in a wide-band frequency
range.

The continuous LTI model has several equivalent represen-
tations that can be converted to each other through a straight-
forward procedure. The most important LTI model formula-
tions are: time domain state-space equations, frequency domain
rational transfer functions, or passive electrical analog circuits.
The last formulation is particularly appealing from the imple-
mentation point of view due to its compatibility with standard
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circuit simulation techniques. However, it should be emphasized
that modern circuit simulators also accept frequency domain
transfer functions as a model formulation either directly or via
analog (and mixed-signal) hardware description languages like
Verilog-AMS [44] or VHDL-AMS [45].

In simple cases of self-heating modeling, it is often possible
to directly identify the lumped thermal resistors and capaci-
tors in the equivalent thermal network from time [9] or fre-
quency response data [27]. However, for the multiport thermal
problems, with mutual thermal coupling, it is not evident how
to a priori construct a lumped network topology with an op-
timal number of lumped elements. Moreover, in the circuits
of higher complexity the extraction procedure can be seriously
complicated by the high correlation between large numbers of
resistance and capacitance parameters. An effective alternative
modeling methodology is to identify the thermal multiport LTI
model in the rational transfer function representation. In the case
of a -port network, the rational transfer function of order is

(10)

where with and
, and represents the complex frequency. The order

of the rational transfer function from (10) also defines the
number of poles in the network description. The total number of
model parameters that should be extracted is . Without
any loss of generality in the sequel, only the modeling of a
nondiagonal thermal impedance matrix element, , will be
considered as an example.

A variety of methods have been proposed for the parametric
identification of transfer functions in the real frequency domain.
A survey of such methods is given in [46]. Here, we have em-
ployed a robust method based on the nonlinear least square
method minimizing the quadratic cost function

(11)

where is the number of sampled real frequencies .
In order to minimize the condition number of the Jacobian ma-
trices underlying the governing Gauss–Newton optimization al-
gorithm, the frequency range is appropriately scaled. Before the
rational function model with extracted parameters is used in
circuit simulations, it is important to check its passivity by in-
specting the eigenvalues of the full impedance matrix. In prin-
ciple, the parameter extraction procedure can be enhanced to
become a constrained optimization procedure that automatically
enforces the thermal network passivity [47].

Fig. 9(a) and (b) gives a comparison of extracted and mod-
eled real and imaginary parts of the mutual thermal coupling
impedance as a function of frequency for the test struc-
ture J-36. Similar results are achieved for all the other test
structures. A high degree of complexity of the transfer function
(rational function of order ) is needed to achieve suffi-
ciently accurate fitting across the whole measured frequency
range from 1 Hz to 100 kHz.

Fig. 9. Extracted and modeled (a) real part and (b) imaginary part of z
for the test structure J-36.

VI. CONCLUSION

With the presented measurement technique, both the diag-
onal and nondiagonal elements of the small-signal thermal
impedance matrix, which originate from the self-heating and
mutual thermal coupling, respectively, can be extracted. To
achieve a very high sensitivity measurement, an ultra-low
distortion function generator, parameter analyzer, and lock-in
amplifier are combined to bias the devices under test and
measure small-signal temperature variation at a given reference
frequency. The accuracy of the measurement system and the
extraction procedure are demonstrated by measurements on
silicon-on-glass NPN test structures, where small differences in
the device surroundings are clearly detected as correspondingly
small changes in the thermal impedances. The results show that
this technique can be a powerful tool for the electrothermal
optimization of device and circuit process technology.

Moreover, the presented measurement method can supply
data for establishing accurate thermal impedance models.
Here, a linear modeling approach is adopted based on fitting
a multipole rational complex function to the measured data.
The generated behavioral models can be directly used by
circuit simulators and thus enable electrothermal analysis of
semiconductor devices and circuits. Alternatively, for very
accurate nonlinear thermal modeling, look-up table models
have been proposed, which can be created from the small-signal
experimental data measured by the presented lock-in technique.
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