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This paper has two objectives. First, it reformulates the theory of
optimal use of an exhaustible resource with more attention to the
costs of extraction than has been customary in the literature. The
output and shadow-price implications of optimal extraction are studied
under these broader assumptions. Second, the paper provides some
numerical solutions of a simple two-grade case, to give some feeling
for the quantitative importance of changes in the supply of exhausti-
ble resources. Our most striking result is, in fact, the suggestion that
relatively large changes in resource availability generate very small
changes in the sustainable level of final consumption.

l The newer aggregative literature on the socially optimal manage-
ment of a given pool of exhaustible resources has ignored one impor-
tant characteristic of natural resources: the differential quality of
mineral deposits. This note is intended to fill the gap by offering a
treatment of differential extraction costs in the context of an aggrega-
tive model. We embed the analysis of differential quality in one
particular formulation of the macroeconomic problem of the optimal
exploitation of exhaustible resources; but we think it would carry
over straightforwardly to other ways of setting up the problem.

l The basic economic model is that of Solow (1974), so it need only
be sketched here. There is a single produced commodity, whose
output (Q) can be either consumed directly (C) or accumulated as a
stock of reproducible capital (K). Output is produced under constant
returns to scale according to a well-behaved production function
Q = F(K,R,L), whose inputs are the services of capital and labor and
the using-up of resources. Population and employment (L) are con-
stant, so-given constant returns to scale-we might as well nor-
malize to L = 1, after which Q, K, C, and R can be thought of as
output, capital, consumption, and resource use per head. R, as men-
tioned, is the flow of the single natural resource into production. For
reasons given in Solow (1974), we take F(K,R,L) to be the Cobb-
Douglas:

R is therefore indispensable to production, but there is no limit to the
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output that can be produced from a given flow of resource input, if
only there are enough labor and capital available. l There is no techno-
logical progress. (Many of these assumptions are made just to pose
the problem of resource exhaustion starkly but not hopelessly.)

The natural resource appears in the production function as a ho-
mogeneous flow extracted from a given, nonaugmentable, preexisting
stock. If all resource deposits were of the same quality, one would

constrain the time-path of the economy by m R(t)dt S R. But re-10

source deposits differ i n  quality. The differences are summed up in 0,
defined as the number of units of producible output used up in extract-
ing one unit of the resource for use in production; 8 is a natural
measure of cost associated with the use of a particular resource
deposit. The resource endowment of the economy at the start of the
planning period is described by a density function f(e): f(e)de is the
amount of the resource available at a unit cost between B and 8 + de.2
The finiteness of resources at time zero is now expressed by

1 ‘f(e)de = I?, (2)

where 8 is the leanest, ‘highest-cost, ore available. (Actually it
might not do violence to the concept of exhaustibility to let both i?
and 8 go to infinity. One could perhaps imagine infinite resource
availability at infinite cost. But we do not pursue that line here.)

Now let O(t) be the quality of the resource actually mined at time t .
(For the time being we shall simply assume that the economy exploits
its low-cost deposits first, then high-cost, then higher-cost, and so on.
Thus W(t) > 0. We shall come back to this question explicitly later
on.) Then the connection between R(t) and O(t) is given by

which says that the total use of resources in production between the
initial time and now is simply that part of the initial resource endow-
ment with quality no worse than what is now being mined. Since this
holds for every t, we can differentiate with respect to time to get

This equation can be substituted into the production function, so that
the whole problem can be analyzed in terms of 8 rather than R, if that’
should be convenient.

The depreciation of reproducible capital is of no particular interest
here, so we might as well think of Q as already net of depreciation.
The alternative uses of output are then consumption, net investment
in reproducible capital, and the cost of extracting the natural re-
source; thus

Q=C+K+eR. (5)

The operation of the economy is now described by (1), (4), and
(5).3 At any instant the economy is characterized by its (constant)

l We assume a > b for reasons explained in Solow (1974).
2 No difficulty of principle would be involved in allowing the distribution of

resources by quality to be discrete or mixed. Later on, we do sample computations
with a two-point distribution.

3 From the form of (3) and (5), one can see that the model will bear an alternative



population, the stock of capital it has inherited from the past, the cost
parameter describing its cheapest remaining resource deposit, and the
distribution of its remaining resource deposits by quality. The econ-
omy must choose how much of the natural resource to mine and use
currently: so R(t) is a decision variable. Once it is decided, current
output is determined by (1). According to (5), an amount of output
equal to Q - OR is available for consumption and investment. The
economy must then decide the allocation of output between those two
uses. The allocation of net investment determines the stock of capital
for the next instant. Equation (4) shows how far this instant’s mining
activity pushes forward the cost parameter of the best deposit avail-
able for the next instant’s mining. The data have then been com-
pletely regenerated for repeating the process just described. The
optimum problem for society is to make its decisions on the rate of
resource depletion and on the division of net output between con-
sumption and investment so that the resulting path through time is the
best possible. The possible paths are limited by the finiteness of
resources (2), the initial stock of capital goods KO, and the fact that
the stock of capital can not become negative (though it could be run
down toward zero).

To complete the statement of the problem we need a criterion
for choosing among possible paths. The conventional choice is,
of course, the maximization of a discounted time-additive concave
utility function depending only on consumption per head, i.e.,

1 ae-p%JC(t)]dt. Solow (1974) analyzed such a criterion, but con-
0

centrated on what amounts to an interesting limiting case of it:
maximization of the permanently sustainable constant level of con-
sumption per head. (This is a direct application of the Rawls max-min
criterion to the intertemporal context.) That is to say, one puts
C = constant in (5) and seeks the largest such constant associated
with a possible path. The discount rate is zero. We continue with that
criterion here, not because it is clearly superior, but because it will
suffice for showing what we want to show, namely the implications of
the differential quality of resource deposits.

One could make a case for including in the choice criterion a
‘ ‘ conservative motive , ’ ’ according to which society would draw direct
satisfaction from the remaining stock of the resource, as well as from
current consumption. But that too would be a diversion from the main
theme. The sort of natural resource to which this model applies is
thus a productive input, a mineral fuel like coal or oil, or a metallic
mineral like bauxite or zinc, to which the conservation motive does
not seem to apply. Under uncertainty about future demands and
technology, the current reserve might provide a kind of security-
satisfaction, but even that is derived from an underlying valuation
defined over realizations of an uncertain consumption process.

interpretation, in which the resource is homogeneous, but the unit cost of extraction is
an increasing function of the cumulative amount already extracted. To be precise, let F

be the cumulative function corresponding to the density f. Let S(t) = /‘R(U)&

i.e., S(t) is cumulative extraction up to t. Then (3) reads S(t) = F@(l)) and, since F is
nondecreasing, O(l) = P@(Q), with jumps where F is horizontal. Thus, the cost of
extracting R at time I is tlR = RP(S(t)). So (5) covers a class of cases in which unit
cost of extraction is an increasing function of cumulative extraction to date, but
independent of the current flow rate of extraction. SOLOW AND WAN I 361
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l I n
ment

arriving at (4) we have assumed
of natural resources strictly in

that society uses up its endow-
order of increasing extraction

cost, so that 8 is an increasing function of time. This could come
about for strictly physical reasons. The richer ores might be nearer
the surface and have to be removed before the lower-lying leaner ores
can be used at all. Or else nearness to the surface might be precisely
what generates the cost differential in the first place. To recognize
that, however, is to recognize that the situation might happen to be
reversed, with the richer ores lying beneath the leaner ones. In that
case the assumption would be wrong and have to be reversed. In this
paper, we want to suppose that the whole endowment of resources
can be used in any order-and then argue that it is rational to use the
rich ores first, under very weak assumptions.

We are going to make this argument in a simpler version of the
model already proposed. We shall take it in discrete time; indeed, to
start with we assume there are only two periods of time involved.
Secondly 9 we shall temporarily interpret Q as gross output, and re-
gard reproducible capital as circulating capital, so the whole of the
capital used in production in period 1 is used up and the whole of the
capital to be used in production in period 2 has to be provided out of
Q1, the output of period 1. This temporary change in assumptions is
only for simplicity’s sake.

So the situation is this. The economy has a constant population L.
It starts with an endowment of reproducible capital &. It also has a
quantity R1 of the natural resource with cost parameter & and an
amount RZ at cost &, where & > &. Designate by RI1 and Rzl the
consumption of low-cost and high-cost resource in period 1 and by RI2
and Rz2 the analogous quantities in period 2. We then have

and

Q2 = F(K2, L, RI2 + R22) = C + &RI2 + 02R22.

The resource constraints are

RI1 d- RI2 = i&

and

R21 + R22 = E2.

We now show that if RI2 and R21 are both positive, the situation
cannot be optimal. That is to say, it cannot be optimal to use any of
the high-cost resource in period 1 unless the low-cost resource has
been exhausted in period 1. The only additional condition needed is
that the net marginal product of reproducible capital in period 2 be
positive.

Suppose that RI2 and R21 are both positive. Then there is a posi-
tive number x sufficiently small that the intertemporal allocation of
resources can be changed to RI1 + x and R21 - x in period 1 and &2 -

x and R2Z + x in period 2. That is to say, the use of low-cost ore is
increased by x in period 1 and decreased by x in period 2, while the
use of high-cost ore is reduced by x in period 1 and increased by x in
period 2. This clearly leaves the resource constraints satisfied and



and add the output thus saved to & , making it & + (& - &)x. Now
in period 2 gross output can be increased, to first order, by (& -
t3JxFK2 where FK2 is the marginal product of capital in period 2. On
the other hand, extraction costs in period 2 are increased by (& - 0&
because of the substitution of lean for rich ore. The change in the
output available for consumption in period 2 is (FK2 - l)(& - &)x and
this is strictly positive provided that FK2 exceeds one. Since this is a
circulating-capital model, the condition is only that the net marginal
product of reproducible capital be positive. But now it is obvious that
the initial allocation was not optimal, because some. of the excess
consumption capacity in period 2 could be transferred backwards to
period 1 (by reducing slightly the increased carry-forward of capital,
for instance) so that consumption could be increased in both periods.

Thus, if the economy is not saturated with reproducible capital, it
is not optimal to use any high-cost resource until the low-cost re-
source is exhausted, which is what we set out to prove. Now the
argument could proceed in exactly the same way if period 2 were
required to leave a fixed terminal capital K3 out of its gross output.
But this means that the same argument would work if periods 1 and 2
were any neighboring periods in a much longer process. So the con-
clusion is not confined to two-period histories. Indeed, one can see
how a trivial but laborious extension of the same reasoning would
work if the periods in question were not neighboring. Finally, there
can be more than two grades of the resource; the argument says that
no higher-cost resource can be used in an optimal program until all
lower-cost grades have been exhausted. This conclusion has to be
modified, of course, if there are topographical constraints on the
pattern of resource use. But within the model, it is safe to take e’(f) >
0.

l We now return to the main thread, and the model as originally 4. Necessary
formulated. The problem for society is to find the largest permanently conditions for
sustainable level of consumption. That means: to find the largest optimality
constant consumption with which there can be associated a technolog-
ically feasible pattern of resource use and investment over infinite
time that will neither use up more than the available stock of re-
sources nor drive the stock of reproducible capital into negative
numbers. More tersely: to find the largest constant C such that (1),
(2), (4), and (5) have a solution for given & with nonnegative K(t) .

This problem can be restated in an equivalent, but more conven-
tional form. Choose a trial constant for C, and find the feasible
pattern of resource use and investment that minimizes the cumulative
use of resources over all time. Then adjust the value of C until the
minimized cumulative resource use is just equal to i? . More formally,
the transformed problem is to

minimize *R( t)dt
0

subject to

dk = KaRb- OR- C
I

R = fm% SOLOW AND WAN I 363



with the initial conditions K(O) = K0 and e(O) = 0, and the tacit
requirement that all the unknown time functions be nonnegative.
(Remember that L = 1.) Necessary conditions for this problem are
clearly also necessary for the original consumption-maximization
problem. The Lagrangean function, in a form that will make the
multipliers p(t) and q(l) nonnegative, is

L = R + p(k- KaRb + I~R + C) + q[R- f(6)6].

The Euler-Lagrange
are

first-order conditions with respect to K, R, and 8

1 -I- q = p(bKaRb+- e), (9)

and

which, upon carrying out of the differentiation, becomes

pR =-j’(0)cj~ (10)

These three equations and the two constraints (6) and (7) are
available to determine the five time-functions K, R, 6, p, and q. Four
of the five are first-order differential equations, so that the general
solution will contain four arbitrary constants. Two of them are used
up in making K(O) = K. and o(O) = 0; the other two are available to fix
the initial values of any two among p, q, and R (the remaining one
following from (9) so that the resulting path is actually optimal).4

As one might have expected, this is a rather more complicated set
of first-order conditions than those that arise in the same problem
when the resource pool is taken as homogeneous and extraction costs
are neglected. That special case can be reproduced by deleting (7) and
(10) and setting q and 8 both equal to zero in (6) and (9). The point of
the present note is to ask what difference it makes to the solution of
the resource-management problem to allow for differential extraction
costs. To this end we have to interpret the first-order conditions and
the dual variables they introduce.

To begin with,p functions as the shadow-price of produced output
in terms of the natural resource, so l/p is the shadow-price of re-
sources in terms of output? Then (8) says that, along an optimal path,
the shadow-price of resources must increase at a rate equal to the
marginal product of reproducible capital in producing output (i.e.,
itself). This condition is the same whether or not there are differential
extraction costs. Its interpretation is direct: -b/p is the rate of return
from owning and keeping a stockpile of one unit of the resource, in
the ground, and the marginal product of capital is the competitive
return from owning (and using or renting) reproducible capital, so that
along an optimal path an investor must be indifferent between the two
forms of holding wealth. One obvious implication is that the shadow-%
price of the natural resource is always rising.

T H E  B E L L  J O U R N A L
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4 These five equations can be reduced to a pair of equations, one second-order and
one first-order, in K and 8 alone. The initial conditions fix two of the constants of
integration and the third has to be chosen, as usual, ‘to pick out the trajectory in the (K,
6) plane.

s To be more precise, it is the value of unmined ore.



Equations (9) and (10) do provide something different, however. If
there are no extraction costs, q = θ = 0, and (9) simply says that the
shadow-price of resources should equal the (shadow-) value of the
marginal product of resources in producing output. In the case of
differential extraction costs, (9) has to be amended in two ways. First,
the relevant marginal product of the resource is its net marginal
product, net of extraction costs. That amendment would hold even if
all resource deposits were identical; it comes from taking explicit
account of the costs of extraction. The second amendment is that the
net marginal product of resources must be larger than the shadow-
price of resources by the factor (1 +q). To put it differently, it is as if
an additional cost of q/p units of output per unit of resource con-
sumed were deducted from the net marginal product of resources, and
then the result set equal to the shadow-price of the resource. Either
way, the effect of this amendment is to call for a reduced consump-
tion of resources at any given level of the shadow-price and other
things, because there is a shadow-surcharge for the use of the re-
source over and above its shadow-price.

The interpretation of the surcharge is presumably to be found in
(10). Use of (7) to substitute for R leads to

and, therefore, to

q(t) = q(m) + r pbdt.
I

Evidently, then, q is the shadow-cost of an increase in Wj A marginal
addition to current resource use, apart from using up resources per
se, uses up the cheapest available resources. At every time in the
future 8 will be a little larger than it would otherwise have been, and
therefore costs a little higher. All those additional costs have to be
charged to current resource use and q does that. Dimensionally, q is a
pure number measuring cost in resources per unit of resources; q/p is
in units of output per unit of resources.

The shadow-cost q is an extension of the “user cost” concept
familiar from the literature on exhaustible resources. Bradley (1973),
to take a recent example, shows how mere finiteness of a resource
implies a shadow-rent to take account of the fact that what is used
now will be unavailable for use later. The surcharge q might be called
a “degradation cost.” It takes account of the fact that the use of the
cheapest available source now implies higher costs for every unit
extracted in the future.

W To get a feel for the implications of extraction-cost differentials, we
now examine at length the simplest variation on the model just pre-
sented. Suppose that the resource endowment consists of two grades
only, a low-cost grade in amount R1 with cost-parameter & and a
high-cost grade in amount R2 with cost-parameter &. It is clear from
our earlier analysis that the best plan is to exhaust the low-cost

5. A two-grade
case

6 A necessary transversality condition is that qj@) go to zero as t --+ m. Ifj@) > 0,
&) = 0, and perhaps otherwise. In any case, since 8 increases in time, q decreases.
Geoffrey Heal’s closely-related paper (1976) analyzes this very phenomenon under
somewhat different technological assumptions. SOLOW AND WAN / 365



T H E  BELL  J O U R N A L

36 6   OF E C O N O M I C S

deposit first, in finite time, and then to spread the high-cost deposit
over the infinite remaining future. Call the first part Phase I and the
infinite tail Phase II. The switch-over time T must, of course, be
chosen according to the criterion of maximizing the permanently-
sustainable constant level of consumption per head. We begin by
discussing the solution schematically, then give some details, and
then some sample computations.

Suppose the low-cost deposit is exhausted at time T: what are the
prospects for Phase II? Beginning at time T, the economy has only a
homogeneous single grade of the resource left. It must solve an
infinite-time maximum-sustainable-consumption problem. (This is
exactly the problem solved in Solow (1974), only there it is assumed
that & = 0. We return to this problem later.) The highest level of
consumption sustainable in Phase II will obviously be an increasing
concave function of &, the stock of reproducible capital inherited at
time T as a result of the investment decisions made in the first phase
of the plan. That function is plotted in Figure 1. Notice that the shape

FIGURE 1

SCHEMATIZATION OF THE TWO-GRADE PROBLEM

PHASE II

PHASE I ENVELOPE

of this curve does not depend on T; only the initial stocks of capital
and resources matter, not calendar time. This is the usual dynamic-
programming bonus from an infinite horizon.

Now turn to the first phase of the plan. Beginning at time zero, we
can imagine the economy solving a homogeneous-resource problem
(using only the low-cost deposit) and extending only to an arbitrary
time-horizon T, at which time the low-cost deposit is to be exhausted.
Given KO, the highest level of consumption sustainable during Phase I
will be a decreasing function of &, the terminal capital stock. There
will be one such curve for each T; in principle, we can draw them all
in Figure 1 and their outer envelope will also be a decreasing function
of &. When & is small, the highest achievable level of consumption



will be attained when T is short and production is resource-intensive.
If a large KT has to be accumulated, the highest achievable level of
consumption will be attained when T is stretched out to be longer; if
the required investment were concentrated in a short interval, even
using up the resource quickly would permit only a low level of
consumption. (In the extreme case, for any & there will be a T so
small that even plowing all output back into investment will not
succeed in achieving the target.)

Now the intersection of the curve for Phase II with the envelope
for Phase I gives the highest permanently-sustainable level of con-
sumption for the combined program, and the stock of reproducible
capital to be handed over when society shifts from the low-cost to the
high-cost resource. The optimal time of change-over can be read off
from the Phase I curve that touches the envelope at the point of
intersection. Inspection of Figure 1 is enough to answer some simple
questions about the process. For example, a fresh discovery of high-
cost resource will rotate the Phase II curve upward and leave the
Phase I envelope unchanged; the new optimal program will have
higher C, lower &, and smaller T.  A find of the low-cost resource will
shift the Phase I envelope upward, leading to higher C and higher &
(and, intuition suggests, larger T, but the diagram is silent about that).
The computational scheme used later builds on this schematization of
the two-grade problem. The details are rather complicated, and are
therefore omitted here.

l The point of oversimplified models like this is, of course, to give 6 .  Some numerical
some feel for the character of solutions and their sensitivity to varying examples
assumptions. We have done a few calculations with this goal in mind.
The first task is to choose the parameters in a “plausible” way.

In all cases we took & = 0.03 and & = 0.09. Thus the low-grade
source is three times as costly to mine as the high-grade source. The
particular numbers were chosen so that aggregate extraction costs
would amount to some 3-5 percent of aggregate consumption when
the high-grade source is being mined, proportionately more when the
low-grade source is in use. It is hard to get any empirical grip on the
bulk of aggregate extraction costs of productive minerals in a modern
industrial economy; in retrospect, we think we should also have
experimented with some higher values of 6, to see what happens
when very high-cost sources have to be called into use.

In all cases we chose a = 0.2; we have some experiments with b =
0.05, some with b = 0.1, and one with b = 0.15. If b represents the
share of net national product imputed competitively to “land” or
natural resources, then 0.05 seems about right. We tried the higher
values as well to give some insight into the possible consequences of
drastic scarcity of natural resources.

The fixing of initial conditions requires some discussion. Take t =
0 to be roughly the present, and write the production function as Q =
AK”Rb. Choose units temporarily so that R = 1; then current reserves
are measured in years of supply at the current rate of extraction, and
Q. = A.Kou. Now, i f  the current capital-output ratio is taken as 2, then
&)+a = 2A. If we want to set A = 1 for convenience, then we should
choose the initial value K0 equal to 21’lma = 25’4 = 2.38. Rounding up,
we have set K0 = 2.4 most of the time, with a couple of tries with K,, SOLOW AND WAN I 367



TABLE 1

RESULTS

CASE

I. b = 0.05
K. = 2.4

Rl =lO,R*=50

II. b=am &It?
K. = 2.4

Rl =10,Rz=50

III. b = 0.15
K. = 2.4

Rl =lO,R*=50

IV. b = 0.05
K. = 2.4

Rl =10,Rz=25

V. b = 0.10
K. = 2.4
R,=lO,Rz =25

VI. b = 0.05
K. = 2.4
R,=50,Rz=50

VII. b = 0.05
K. = 4.8
RI =50,Rz=50

VIII. b = 0.1
K. = 4.8
5 = lO,R*=50

C T KT RO RT

1.1405 11 2.76 1.17 0.665

1.1385 6.67 2.945 1.825 1.212

1.0677 9.8 3.946 1.4238 0.734

1.1390 11.48 2.79 1.14 0.626

1.108 9.8 3.30 1.39 0.734

1.1692 36 3.13 1.9175 0.684

1.3035 11.04 5.278 1.075 0.723

1.2675 8.96 5.76 1.335 0.926

= 4.8, just to see what doubling the initial capital stock might do.
(Perhaps this is a good place to reiterate that we have assumed away
population growth and technical progress.)

The only remaining data are the reserves. In most cases, we set RI
= 10 and R2 = 50. Thus, high-grade reserves amount to about ten
years’ supply at the current rate of use, and low-grade reserves
provide another 50 years’ worth. It should be realized that the optimal
Phase I path does not necessarily start at R(O) = 1; in fact in all our
examples it starts out using up the low-cost resource faster than that,
but then reduces resource-use as capital accumulates. And, of course,
the problem is set up precisely so as to stretch out the whole resource
endowment over infinite time. We have also experimented with some
examples in which R2 is reduced to 25, and one in which RI = 50,
R2 = 50.

The results are arranged in Table 1. Each “case” is specified by
the values of the four parameters that vary from case to case: b, RI,
R2, and &. The successive columns for each case list C (the
maximum sustainable constant level of consumption), 7’ (the date of
changeover from low-cost to high-cost resource), & (the stock of
capital at time of changeover), Ro, and RT (the rate of use of the
resource at the beginning of the optimal program, and at the date of
changeover).

The most striking result of these computations is undoubtedly the
relative insensitivity of the maintainable consumption level to the size
of the resource endowment. Look, for instance, at Cases I, IV, and
VI. There b is always set at 0.05, and the initial stock of reproducible

THE BELL JOURNAL capital at 2.4. In I and IV there are 10 units of high-grade reserves;
368 I OF ECONOMICS cutting the supply of low-grade resource in half, from 50 to 25,



reduces C by only 0.15 percent. The changeover from low-cost to
high-cost reserves occurs only half a year later in Case IV, and the
loss of half the stock of high-cost natural resource is made up by the
accumulation of an extra one percent of reproducible capital. As
between I and VI, Case VI has an endowment of high-grade resource
five times as large as that of Case I. But this windfall buys only a
3-percent increase in the permanent level of consumption. The five-
fold larger endowment of low-cost resource is stretched out over 36
years in Case VI as compared with 11 years in Case I, and the stock
of capital is almost 15 percent larger at the time of changeover.’

By contrast, differences in the size of the initial stock of capital
make for more substantial differences in the sustainable level of
consumption. Case VII is exactly like Case I except that the initial
stock of capital is doubled. This allows a level of consumption 15
percent higher. Similarly, Case VIII is like Case II: both have b =
0.10, but Case VIII has twice the initial stock of capital. This allows
a level of consumption 12 percent higher.

This property of the optimal programs is a consequence of the fact
that b, the elasticity of aggregate output with respect to the flow of
resource input, is quite small. The flow of resources is a relatively
“unimportant” input. Cases I, II, and III are alike, except that b is
0.05, 0.10, and 0.15, respectively. Case II uses up the high-grade
resource in less than 7 years, as compared with 11 years in Case I,
but accumulates 7 percent more capital in the shorter period. The end
result is a trivial reduction in the consumption level. By the time b =
0.15, as in Case III, the changeover time is back to 10 years, but in
that short period the stock of capital must be increased by 60 percent,
compared with 15 percent in Case I and just under 25 percent in Case
II. The level of consumption in Case III is 7 percent lower than in I
and II, a relatively large difference as Table 1 goes. If b were higher
than 0.15, the effect on the maintainable level of consumption would
be very dramatic-re member that

consumptionno positive level of

.
if b
wo

were as high as a, namely 0.2,
uld be sustainable for infinite

time. An analogous story can be read from a comparison of Case IV
with Case V, or Case VII with Case VIII; there b varies only from
0.05 to 0.10.

The importance of this point shows up in a comparison of Cases I
and IV on one hand, and Cases II and V on the other. Cases I and
IV have b = 0.05, but Case IV has its low-grade resource endowment
cut in half. As mentioned earlier, there is a trivial reduction i
level of consumption. Cases II and V have b = 0.10 , and again

n the
Case

V has its low-grade resource endowment cut in half. This time, by
contrast, the maintainable level of consumption falls by 3 percent.
That is still small, but it is vastly larger than the minute drop when b
= 0.05. Unfortunately, we do not have a case to compare with III,
where b = 0.15, but there is no doubt that cutting the low-grade
resource endowment in half would then generate a much more sub-
stantial penalty in sustainable consumption. So also the contrast be-
tween Case VI and Case I would be magnified if b were larger.

7 This insensitivity of consumption possibilities to resource endowment probably
reflects the fact that our model economy is fairly rich in reproducible capital to begin
with. If we were exploring nearer the origin in Figure 1, a change in RI (i.e., a shift of
the Phase I envelope) would generate a bigger effect on C, by virtue of the concavity of
the Phase II curve. SOLOW AND WAN I369



In these infinite-time allocation problems, the significance of
exhaustible resources turns in an important way on fine properties of
the technology. In this paper, we have confined ourselves to the
Cobb-Douglas framework. Within that framework, the output elas-
ticities with respect to resource inputs are the crucial parameters.
They are relatively “observable” and casual observation suggests
that they are small. From earlier work we know that different elas-
ticities of substitution will generate even more dramatic differences in
consumption possibilities. We know, for instance, that if the elasticity
of substitution between resource inputs and others is bounded below
unity (when the resource input is small), then no positive level of
consumption is sustainable forever, whereas if that elasticity of sub-
stitution is bounded above unity, then resource flows are not even
essential to production. The trouble is that such second-order proper-
ties of the technology are not easily “observable” and so we have
very little even to guide our intuition. Even more important, at this
level of delicacy the aggregative approach becomes insupportable;
and so does the assumption that there is no technological progress in
production, in extraction, or in the invention of new fuels and mate-
rials (and thus, effectively, in the “creation” of new reserves). Nev-
ertheless, a limited guide to our intuition is better than no guide at all.

References

BRADLEY, P. “Increasing Scarcity: The Case of Energy Resources.” The American
Economic Review, Vol. 63, No. 2 (May 1973), p. 119.

HEAL, G. “The Relationship Between Price and Extraction Cost for a Resource with a
Backstop Technology.” The Bell Journal of Economics, Vol. 7, No. 2 (Autumn
1976).

SOLOW, R. “Intergenerational Equity and Exhaustible Resources.” Review of Eco-
nomic Studies (Symposium issue) (1974), pp. 29-46.

THE BELL JOURNAL

370 I OF ECONOMICS


