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Abstract

LC/MS is an analytical technique that, due to its high sensitivity, has become increasingly popular 

for the generation of metabolic signatures in biological samples and for the building of metabolic 

data bases. However, to be able to create robust and interpretable (transparent) multivariate models 

for the comparison of many samples, the data must fulfil certain specific criteria: (i) that each 

sample is characterized by the same number of variables, (ii) that each of these variables is 

represented across all observations, and (iii) that a variable in one sample has the same biological 

meaning or represents the same metabolite in all other samples. In addition, the obtained models 

must have the ability to make predictions of, e.g. related and independent samples characterized 

accordingly to the model samples. This method involves the construction of a representative data 

set, including automatic peak detection, alignment, setting of retention time windows, summing in 

the chromatographic dimension and data compression by means of alternating regression, where 

the relevant metabolic variation is retained for further modelling using multivariate analysis. This 

approach has the advantage of allowing the comparison of large numbers of samples based on 

their LC/MS metabolic profiles, but also of creating a means for the interpretation of the 

investigated biological system. This includes finding relevant systematic patterns among samples, 

identifying influential variables, verifying the findings in the raw data, and finally using the 

models for predictions. The presented strategy was here applied to a population study using urine 

samples from two cohorts, Shanxi (People’s Republic of China) and Honolulu (USA). The results 

showed that the evaluation of the extracted information data using partial least square discriminant 

analysis (PLS-DA) provided a robust, predictive and transparent model for the metabolic 
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differences between the two populations. The presented findings suggest that this is a general 

approach for data handling, analysis, and evaluation of large metabolic LC/MS data sets.

Introduction

Recent analytical advances within the area of system biology1–3 (e.g. DNA microarrays, 

NMR, GC/MS and LC/MS) have allowed the collection of large-scale multivariate data sets 

describing complex biological systems and events. These extremely information-rich data 

sets potentially provide great possibilities for the understanding of the development and 

treatment of human diseases, toxic responses and genetic modification. From a statistical 

modelling point of view such data sets pose a great challenge, given that organized and 

robust approaches will be crucial in order to handle the vast amounts of data generated as 

well as to extract the relevant information in the data by applying reliable and interpretable 

mathematical algorithms and models.

Within the areas of metabolomics and metabonomics, metabolite analysis in biofluids and 

tissues has been carried out using mainly NMR4–6 or GC/MS.7,8 However, due to recent 

instrumental advances, LC/MS has established itself as a powerful means for metabolite 

analysis,9–11 and should be regarded as an information-rich technique, complementary to 

NMR and GC/MS for research in the fields of metabolomics and metabonomics.

LC/MS is an analytical technique that, due to its high sensitivity, has become increasingly 

popular for the generation of metabolic signatures in biological samples and for the building 

of metabolic data bases. However, in order to characterize these multiparametric metabolic 

signatures and relate them to specific pathophysiological conditions or pathways, systematic 

interactions between different metabolites have to be considered and understood. 

Multivariate statistical projection methods (e.g. principal component analysis (PCA)12,13 

and partial least squares (PLS)14,15) have proven to be valuable tools for the analysis of 

metabolic and related biological data in many applications.16,17 This is mainly due to the 

ability to handle many and correlated variables but also to the robustness and high 

interpretability (transparency) of the obtained models.

Critical issues when analysing LC/MS data are alignment and resolution. As a prerequisite 

for multivariate techniques to work, and hence to be able to compare samples in large data 

bases, a data table must be constructed where each sample is characterized by the same 

number of variables and each of these variables is represented across all observations. 

Additionally, it is vital that a variable in one sample is the same for all the other samples (i.e. 
has the same biological meaning or represents the same metabolite) otherwise the whole 

idea of comparing samples based on the systematic changes in metabolite patterns fails.

Another important issue when modelling complex biological data sets is the ability of an 

existing model to predict the outcome of new samples. This poses high demands both on the 

analytical procedures, in terms of robustness and reproducibility, and on the existing model, 

in terms of providing a good characterisation of the model samples, which is valid and 

robust over the whole variation space expected for future samples. For these purposes 

multivariate projection based methods are suitable provided that the sample characterisation 
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(data presentation) is done uniformly over all samples in the model and that the variables 

used to describe new samples are consistent with the variables for the model samples. 

However, it is important to clarify that chemometric or multivariate tools should not be 

regarded as a replacement of the analytical chemists’ knowledge in interpreting the LC/MS 

data or the biologists/toxicologists/clinicians’ interpretation of the interactions and 

mechanisms occurring in the studied biological systems. Instead, these methods should be 

seen as the means for creating robust and highly interpretable multivariate models with the 

aim of finding and understanding patterns and trends among samples and variables in large 

and complex data sets, e.g. as generated by LC/MS of biofluids. These models will highlight 

important areas in the spectral and chromatographic data where further effort on 

interpretation and metabolite identification should be put in.

Unbiased extraction of information from LC/MS data prior to multivariate analysis can be 

done using different approaches. Examples of the most common approaches found in the 

literature are:

i. Peak detection: a peak detection algorithm detects all peaks in the data above 

some defined noise threshold. The area under the peak or the peak height is then 

used as a quantitative measure and the retention time and m/z are used for 

identification. Identical peaks from different samples should hence end up in the 

same column in the data table.9

ii. Curve resolution or deconvolution: the spectral and the chromatographic profiles 

for each compound are resolved. The areas under the chromatographic profiles 

are used as a quantitative measure of the compound and the spectral profile and 

the retention time are used for identification. Identical compounds from different 

samples should hence end up in the same column in the data table.10

iii. Summing of the data to obtain a total mass spectrum for each sample: this can be 

done by combining the whole chromatograms or by first dividing the 

chromatograms into segments and then combining all the segments prior to 

multivariate analysis.11

Although these approaches have shown very promising results, there is still a lot of work to 

be done before LC/MS can be considered a robust and efficient tool for metabolite analysis 

of biofluids.

Here we present a strategy for screening of large-scale LC/ MS data sets applied to a 

population study analysing urine samples from two cohorts, Shanxi (People’s Republic of 

China) and Honolulu (USA). This comprises approaches to optimize the information 

extraction from metabonomic data bases in an organized and consistent fashion. In 

particular, the presented strategy is aimed at coping with analytical variation and at reducing 

the number of variables, by bi-linear compression, to a smaller subset of information-rich 

variables prior to multivariate data analysis. The presented results show that the evaluation 

of the “information optimized” data by means of multivariate projections provided robust, 

predictive and highly interpretable (transparent) models for screening of large metabonomic 

LC/MS data sets. The advantages with the presented method compared to already existing 

methods for handling metabolic LC/MS data are three-fold. (i) The model transparency: it is 
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easy and straightforward to trace the model results back to the informative parts of the raw 

data (time points and important m/z values). This is also a feature obtained using the peak 

detection or the curve resolution approaches described above. (ii) All samples are treated 

equally throughout the whole data set, meaning that each sample is described by the same 

number of variables. This is only achieved by the summing data approach mentioned above. 

(iii) This is the first method, to our knowledge, that has shown that the model used for 

information extraction from LC/MS data is also valid for extraction of the relevant 

information in new independent samples (here represented by separate well plates). This has 

important implications for the building and evaluation of large metabonomic LC/MS data 

bases, where there is a requirement for the comparison of samples measured over time 

and/or at different laboratories (instruments) by means of a robust and reliable modelling 

framework based on an organised and information dense data format.

In summary the presented method takes advantage of and combines the positive features 

from the common existing approaches for handling and analysing metabolic LC/MS data. In 

addition, this approach is unique in the sense that it is a method dealing with the problem of 

coping with analytical variations or drifts while still maintaining the important biological 

variation in the data, which in turn will be highlighted by the multivariate modelling.

The presented population data is a part of INTERMAP (international study of macro- and 

micro-nutrients and blood pressure), which is a large epidemiological study estabilished in 

1996 by Northwestern University, Chicago, USA. Information was collected from people 

within USA, Japan, UK, and the People’s Republic of China, with the aim to investigate 

whether there is a correlation between dietary intake and changes in blood pressure. It has 

already been demonstrated through the use of 1D 1H NMR that profiles of inter- and intra-

population differences can be produced, with variations being noted from people with health 

conditions and unusual dietary intakes.18,19 Being a more sensitive technique than NMR, 

LC/MS has the potential to become a powerful tool in metabolic profiling. However, it is of 

great importance that a strong and organised statistical strategy is applied to the complex 

data sets that are being generated.

Materials and methods

Chemicals

All aqueous solutions were prepared using purified distilled water (18.2 MΩ) from a 

Millipore MilliQ system (MA, USA). HPLC grade acetonitrile was purchased from JT 

Baker (NJ, USA). Formic acid, extra pure grade (98–100%), was purchased from Fluka (WI, 

USA). All other materials were purchased from Sigma-Aldrich (MO, USA).

Sample preparation

Aliquots of the urine samples stored at −40 °C were allowed to completely thaw at room 

temperature. 50 μL of urine from each sample were placed in a 96 well plate, and diluted 

with 150 μL of distilled water (1 : 4 sample dilutions).
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LC/MS analysis

Chromatography was performed on a Waters Metabonomics System comprising of an 

Alliance® 2795XC, equipped with a column oven and a 2996 PDA detector, coupled to a 

Micromass® Q-Tof micro™ mass spectrometer equipped with an electrospray source 

operating in positive ion mode and a Lockspray™ interface for accurate mass 

measurements. The source temperature was set at 120 °C with a cone gas flow of 50 L h−1, a 

desolvation gas temperature of 250 °C and a nebulization gas flow of 450 L h−1. The 

capillary voltage was set at 3.2 kV for positive ion mode with a cone voltage of 40 V, a scan 

time of 1.0 s and an interscan delay of 0.10 s. A collision energy of 10 V was employed with 

a collision gas pressure of 5.3 × 10−5 Torr. Leucine enkephalin was employed as the 

lockmass at a concentration of 50 fmol μL−1 (in 50 : 50 ACN : H2O, 0.1% formic acid) at a 

flow rate of 30 μL via a lock spray interface. All mass spectral data were collected in 

centroid mode.

A 10 μL aliquot of diluted urine was injected onto a 2.1 × 100 mm Symmetry® C18 3.5 μm 

column. The column was eluted with a linear gradient of 0–20% of 0.1% formic acid in 

acetonitrile (B) over 0.5–4 min, and 20–95% of B over 4–8 min; the composition was held at 

95% of B for 0.1 minute then returned to 100% of 0.1% formic acid (aq) (A) at 9.1 min at an 

eluent flow rate of 600 μL min−1. “Purge–wash–purge” cycle was employed on the 

autosampler, with 75% aqueous methanol used as the wash solvent and 0.1% aqueous 

formic acid used as the purge solvent; this ensured that the carry-over between injections 

was minimized. The mass spectrometric data were collected in full scan mode 100 to 850 

m/z from 0–12 min.

Peak detection and alignment

Prior to any data analysis, the mass resolution was reduced to unit resolution. In addition 

linear interpolation was used to make each scan number correspond to the same time point 

across all samples. To define the number of chromatographic peaks an average ion 

chromatogram from all samples was calculated for each m/z channel and then each averaged 

m/z channel was searched individually. The criteria used was that a peak had to have an 

intensity above a certain specified “noise threshold level” and additionally, the first 

derivative had to be positive before and negative after a peak. A search for peaks was then 

carried out on all sample chromatograms. The search was limited to regions near the peaks 

detected in the average ion chromatogram. Detected peaks were represented with the 

maximum peak intensity and were also aligned to the corresponding peak found in the 

average ion chromatogram. This procedure was repeated for all m/z channels. The use of the 

maximum intensity for peak representation may not be the optimal way of using the 

information, but alignment of the chromatograms becomes easier since the peak shape does 

not need to be considered. Recent results presented by Torgrip et al.20 suggest that this 

approach works well for the alignment of metabolic GC and NMR data.

Data reduction and compression

The next step in the proposed strategy was data reduction. This was done by dividing the 

chromatographic dimension into a number of narrow, equally sized time windows (2 scans), 

(step a in Fig. 1). The use of a narrow window size was allowed due to the fact that the data 
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were already aligned in the previous step. The data in each time window hence held a three 

dimensional data structure defined by the sample dimension, the chromatographic time 

dimension and the mass spectral dimension. Summing of these three dimensional “data 

cubes” in the chromatographic dimension produced a two dimensional data table (XSUM) 

defined by the sample dimension and the summed spectral dimension. Compression of the 

information in the two dimensional data table down to a small number of latent variables 

was then performed for each sample by means of alternating regression (AR;21 step b in Fig. 

1). The choice of AR as the preferred method for data compression, instead of e.g. PCA, was 

based on the fact that AR does not have an orthogonality constraint, which is reasonable 

when the mass spectra for the different compounds do not have to be orthogonal to each 

other. The same also applies to the concentrations of the metabolites. Ideally the AR results 

will be easier to relate back to the raw data since the spectral profiles need not to be mixed in 

the AR components. Compression of the data provided a data table with fewer variables and 

also aided in the identification of metabolites since the m/z values correlated with each other 

between the samples, which probably originated from the same metabolite. Thus, correlated 

m/z values will end up in the same spectral profile. AR is an iterative method that alternates 

between two operations until conversion (see eqns. (1) and (2)). Both the “concentration” 

(intensity vectors) (C) and the mass spectrum (S) were given a non-negative constraint, 

meaning that neither of the two could ever include negative values. This constraint was 

applied after each operation in the AR algorithm.

C = XSUMS(STS)−1
(1)

where C = intensity vector, S = mass spectral profile, and the superscript T denotes 

transposition and −1 matrix inversion.

S = XSUM
T C(CTC)−1

(2)

The number of AR components to extract for each time window was decided by means of a 

PCA prior to the AR procedure. The chosen number of AR components was equal to the 

number of principal components needed to describe 95% of the variation in a specific time 

window. The AR procedure was performed for each time window individually, with the 

samples used for model validation (test set) excluded during the calculations. The spectral 

profiles (S) were then used to predict the intensity vectors (C) for the test set samples (see 

eqns. (1) and (2)).

By combining the concentration profiles from all the time windows the final “reduced” data 

table (X) was obtained, which was then subjected to further multivariate analysis (MVA; step 

c in Fig. 1).

Multivariate data analysis

Partial least square discriminant analysis (PLS-DA)22 was used as the classification method 

for modelling the discrimination between the urine samples collected from the two different 
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populations (Shanxi (People’s Republic of China) and Honolulu (USA)). The number of 

significant components for the PLS-DA classification models was estimated by seven-fold, 

component-wise cross-validation.23 For validation purposes an independent test set was 

selected including 253 samples (3 separate well plates) out of the total 600 samples (7 well 

plates). The remaining 347 samples (4 separate well plates) were used for the model 

building. The peak detection and data compression processes were carried out using the 347 

model samples and the 253 test samples were then treated accordingly. A PLS-DA model 

was calculated using the 347 model samples and the predictive ability of independent 

samples (well plates) was evaluated applying the model to the selected 253 test set samples. 

For all the multivariate analyses the variables in the data (X) were log transformed (X = log 

(X + 1)), mean centered and scaled to unit variance.

Non-processed LC/MS files were exported to MATLAB software 6.5 (Mathworks, Natick, 

MA), where all data pre-treatment procedures, such as peak detection, alignment, data 

reduction and compression were carried out.

Multivariate analysis was performed using the SIMCA-P + 10.5 software (Umetrics AB, 

Umeå, Sweden).

Results

The peak detection process applied to the 347 model samples rendered in 5680 detected 

chromatographic peaks. After the AR compression step the number of variables in the final 

data table (X) was reduced to 597 latent variables summarizing the metabolite 

concentrations in the selected model samples.

The calculated PLS-DA model based on the 347 model samples gave six significant 

components, according to crossvalidation, describing 46.4% of the variation in X (R2X = 
0.464), 90.5% of the variation in the response Y (class) (R2Y = 0.905), and predicting 81.9% 

of the variation in the response Y (class), according to cross-validation (Q2Y = 0.819). 343 

out of the 347 model samples (98.8%) were correctly classified with regards to population, 

as visualized in the PLS score plot for the two first components (Fig. 2). Using the model to 

predict the class identity of the 253 independent test samples gave a correct classification in 

221 out of the 253 cases (87.4%), and by examining the distributions of the prediction 

results a clear picture of the high predictive ability of the model was obtained (Figs. 3a and 

b).

Lately, the understanding of the “mechanisms” of PLS, including PLS-DA, estimation has 

increased substantially. We now know that PLS (and similar methods) are affected by the 

presence of systematic variation in X that is not related to Y. Examples of such variation are 

the variation of baseline, unknown constituents, or effects of changing instrumental 

equipment. This results in an increase in the number of PLS components and complicates 

the model interpretation. It is now known that there exists only one Y-related component for 

a single Y-variable and that the interpretation of PLS models, in the single Y case, should be 

based on the first loading vector w1.24 Interpretation of the PLS loadings (component 1 

versus component 2) (Fig. 4), identified the variable “P250_C04” (time window 250, AR 
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component 4) to be positively correlated to the Honolulu population and the variable 

“P284_C01” (time window 284, AR component 1) to be positively correlated to the Shanxi 
population in the first loading vector w1. The variable “P250_C04” refers to the 5.72 min 

time point where the most intense m/z in the corresponding m/z profile was m/z 288 (Fig. 

5a). Inspection of the ion chromatogram for m/z 288 around the time point 5.72 min 

revealed generally higher intensities for the Honolulu population compared to the Shanxi 
population (Fig. 5b and c). Similarly, for the variable “P284_C01”, referring to time point 

6.50 min, where the most intense m/z is m/z 355 (Fig. 6a). The corresponding ion 

chromatogram for m/z 355 around time point 6.50 min clearly showed higher intensities for 

the majority of the Shanxi population in comparison to the Honolulu population (Fig. 6b and 

c). The same interpretation can be carried out for all the variables contributing to the 

separation between the two populations, giving a simple and straight forward explanation of 

the differences between the cohorts.

Discussion

LC/MS has the potential to become a powerful tool in metabolic research (metabolomics/

metabonomics). However in order to accomplish this there are still a few hurdles to 

overcome. A lot of work still remains to be done on the analytical side to develop procedures 

that give robust and reproducible results between samples and studies for these extremely 

complex investigations. Another crucial issue lies in the interface between the instrumental 

analysis and the statistical modelling and evaluation. In order to analyse and interpret these 

extremely complex data, organised statistical approaches that can handle many and 

correlated variables are a requirement. Multivariate projection methods (e.g. PCA and PLS) 

have proved to be suitable for these purposes. However, to be able to create robust and 

interpretable (transparent) models for comparison of many samples, the data produced by 

the analytical technique (e.g. LC/MS) must fulfil certain criteria. Such criteria are that each 

sample (observation) is characterized by the same number of variables and each of these 

variables is represented across all observations. In addition, it is vital that a variable in one 

sample is the same for all the other samples (i.e. has the same biological meaning or 

represents the same metabolite). If these criteria are fulfilled the odds for obtaining accurate 

and reliable statistical models are considerably lowered, enabling facilitated interpretation 

and improved understanding of complex relationships deciding various biological events. 

Nevertheless, if these criteria are not perfectly matched, which can often be the case for 

these types of samples/studies, it must still be possible to create organised strategies for the 

analysis and interpretation of the generated data. With the presented method a representative 

data set is obtained where the relevant metabolic variation is retained for further analysis e.g. 
multivariate statistical analysis. This organised approach allows the comparison of a large 

number of samples based on their LC/MS metabolic profiles, which has implications for 

data base construction and comparisons, but also, importantly, offers a robust and 

transparent framework for the interpretation of the investigated biological system. This 

includes finding relevant systematic patterns among samples, identifying influential 

variables, verifying the findings by tracing the results back to the raw data (both mass 

spectral and chromatographic), and finally using the models for prediction of new 

independent samples.
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As for any model describing any biological system the main focus has to be directed towards 

the interpretation of the relevant systematic changes associated with specific physiological 

or pathological events, and thereby create a means for improved understanding of the 

complex mechanisms causing these events to take place. Hence, it is of utmost importance to 

create what we here define as transparent models where the relevant variation can be 

extracted, visualised and then verified going back to the parts of the original data highlighted 

by the model. This transparency will have at least two important implications. Firstly, it will 

provide a platform for experienced expertise within the biological/medical community to 

base their interpretations on by highlighting e.g metabolites or correlations among 

metabolites that are responsible for the detected patterns. This will work to establish a 

connection between statistical and biological significance (meaning), which is crucial for 

these types of applications. Secondly, this transparency also allows the user to investigate 

and interpret the variation on which the prediction of new samples is based, to make sure 

that prediction results are not obtained from spurious changes or irrelevant systematic 

changes within the data. Another important topic addressed in this work is the importance of 

creating models giving accurate predictions of independent samples and how to validate this 

predictive ability. It is obvious that a model describing a biological system in relation to e.g. 
diseases or other metabolic events must be able to provide reliable predictions of future 

samples, to be considered as a potential tool for diagnosis or prognosis. Here this was 

investigated by constructing the data table (X) and building the model from a set of four well 

plates, all including samples from both populations. An independent set consisting of three 

well plates was then used for validating the models predictive ability, and hence described 

according to the model sample parameters. Proofs of the presented methods ability were the 

accurate predictions of independent samples together with an appropriate interpretation of 

the urinary metabolic signatures associated with the difference between the cohorts.

Conclusion

The presented approach shows how it is possible to optimize the information extraction from 

metabonomic LC/MS data sets in an organized and consistent fashion, and hence 

accomplish a means for the efficient analysis and evaluation of these complex data. In 

particular, the strategy focuses on coping with analytical variation and at reducing the 

number of variables, by bi-linear compression, to a smaller subset of information-rich 

variables prior to multivariate data analysis. The presented results showed that evaluation of 

the “information optimized” data by multivariate projection methods (PLS-DA) provided 

robust, predictive and highly interpretable (transparent) models for screening of large 

metabonomic LC/MS data sets, here exemplified by a metabonomic population study. It was 

clearly shown that the classification of the two sample populations (Shanxi (People’s 

Republic of China) and Honolulu (USA)) based on urine LC/MS data was successful with a 

high predictive ability. Furthermore, the high transparency of the obtained model allowed a 

total interpretation of the metabolic patterns associated with the population differences, 

which could be traced back to the raw data for verification.

The suggested method is a general approach for the data handling, analysis, and evaluation 

of large metabolic LC/MS data sets and should be regarded as a contribution to the analysis 
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of biosystems in terms of improving information extraction and understanding of complex 

interactions between metabolites.
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Fig. 1. 
An overview of the data pre-processing steps. The data in the three dimensional data cube 

are represented by the peak height in the position of the detected peaks and the peaks are 

aligned towards an average sample. The data cube is then divided into time windows 

(segments) and each segment is summed in the time direction to form a matrix (XSUM), (step 

a). XSUM is compressed into intensity vectors and mass profiles using alternating regression 

(AR) (step b). The intensity vectors from all time windows are then combined to form the 

final matrix (X) which is subjected to multivariate analysis (step c).
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Fig. 2. 
PLS-DA score plot for the first two components (T2/T1) showing the separation between the 

two cohorts based on the 347 model samples. Shanxi population (★) and Honolulu 
population (+).
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Fig. 3. 
Histograms for the prediction of the 253 test set samples. x-axis: predicted values, y-axis: 

count in each interval (interval = 0.05). (A) Prediction results for class 1 samples 

(Honolulu). (B) Prediction results for class 2 samples (Shanxi). Samples predicted to belong 

to the Honolulu class should have a value close to 1, while samples predicted to belong to 

the Shanxi class should have a value close to 0. 221 of 253 samples (87.4%) were correctly 

classified.
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Fig. 4. 
PLS-DA variable loadings plot for the two first components (w*c2/w*c1) explaining the 

separation between the two cohorts. Variable P250_C04 (time window: 250, AR component: 

4) was found to be positively correlated to the Honolulu population. Variable P284_C01 

(time window: 284, AR component: 1) was found to be positively correlated to the Shanxi 
population.
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Fig. 5. 
(A) The mass spectrum for time window 250 (5.72 min) with the most intense m/z = 288. 

(B) Ion chromatogram for m/z = 288 in time window 250 for the Honolulu samples. (C) Ion 

chromatogram for m/z = 288 in time window 250 for the Shanxi samples.
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Fig. 6. 
(A) The mass spectrum for time window 284 (6.50 min) with the most intense m/z = 355. 

(B) Ion chromatogram for m/z = 355 in time window 284 for the Honolulu samples. (C) Ion 

chromatogram for m/z = 355 in time window 284 for the Shanxi samples.
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