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Abstract

In this paper, three different voicing features are studied as
additional acoustic features for continuous speech recognition.
The harmonic product spectrumbased feature is extracted
in frequency domain while theautocorrelation and the
average magnitude differencebased methods work in time
domain. The algorithms produce a measure of voicing for
each time frame. The voicing measure was combined with
the standardMel Frequency Cepstral Coefficients(MFCC)
using linear discriminant analysis to choose the most relevant
features. Experiments have been performed on small and
large vocabulary tasks. The three different voicing measures
combined with MFCCs resulted in similar improvements in
word error rate: improvements of up to 14% on the small-
vocabulary task and improvements of up to 6% on the large-
vocabulary task relative to using MFCC alone with the same
overall number of parameters in the system.

1. Introduction
Standard state-of-the-art automatic speech recognition systems
use spectral (e.g. Mel Frequency Cepstral Coefficients,
MFCC) representation of the speech signal. However, these
representation techniques are not robust to acoustical variation
like background noise, speaker change etc. Word error rate can
increase considerably under real life conditions.
A possible way to increase robustness of speech recognition
could be finding representative features of the speech signal
and corresponding robust extraction methods. In this work we
investigated the voicing feature. Voiced sounds are produced
by quasi periodic oscillation of the vocal chords. A feature
value explicitly measuring the state of the vocal chords can
lead to better discrimination of voiced and unvoiced sounds and
consequently to better recognition results.
The first related studies go back to rule based speech recognition
where voiced-unvoiced detection was used as one of different
acoustical features, see Chapter “The Speech Signal” in [1].
In [2] experiments with autocorrelation based voicing measure
are reported. Standard MFCCs with 1st and 2nd derivatives
are used as acoustic feature vector augmented by the voicing
measure and its 1st and 2nd derivatives. In [3] fundamental
frequency and a voicing measure is combined with standard
MFCCs using linear discriminant analysis (LDA).
In this paper, we describe implementation issues and the
evaluation of three different voicing extraction methods:
1) harmonic product spectrum based, 2) autocorrelation based,
and 3) average magnitude difference based, see Chapter
“Pitch Detection” in [4]. The extraction methods produce

a measure of voicedness for each time frame. The voicing
measures were combined with the standard MFCC features
using linear discriminant analysis. Experiments showed similar
improvements in word error rate (WER) for the three extraction
methods: relative improvements of up to 14% on small-
vocabulary task and relative improvements of up to 6% on large-
vocabulary task due to one additional voicing feature.
The rest of the paper is organized as follows. In Section 2, the
baseline MFCC signal analysis is described. In Section 3, the
three different extraction methods are derived. Experiments will
be presented in Section 4, followed by a summary in Section 6.

2. Baseline Signal Analysis

In this section, the standard MFCC signal analysis component
of our speech recognition system is described. First we perform
a preemphasis of the sampled speech signal. Every10ms, a
Hamming window is applied to preemphasized25ms speech
segments. We compute the short-term spectrum by FFT along
with zero padding. The number of FFT points is chosen
sufficiently high to represent the number of samples in a time
frame (e.g. 256 points in case of8kHz sampling rate and25ms
window length). Next, we compute the outputs of Mel scale
triangular filters, the number of which depends on the sampling
rate and varies 15 to 20 in our system. A filter bank is applied to
the Mel spectrum, in which each filter has a triangular bandpass
frequency response with bandwidth and spacing determined by
a constant Mel frequency interval. For each filter the output is
the logarithm of the sum of the weighted spectral magnitudes.
Due to overlapping filters, filter bank outputs of adjacent filters
are correlated. The filter bank outputs are decorrelated by a
discrete cosine transform. The optimal number of cepstrum
coefficients varies formM = 12 to M = 16 depending on
the number of filters.
Subsequently, a cepstral mean and variance normalization is
carried out in order to account for different audio channels.
We distinguish two types of normalization: sentence-wise
and session-wise. For sentence-wise recorded corpora,
normalization is performed on whole sentences. In addition,
the zeroth coefficient is shifted so that the maximum value
within every sentence is zero (energy normalization). Session-
wise recorded corpora consist of recordings containing several
sequentially spoken sentences. For these corpora, normalization
is carried out with a symmetric sliding window of 2 s without
energy normalization. In such way every10ms, a vector
consisting of normalized cepstrum coefficients is computed.



3. Voicing Features
Voiced and unvoiced sounds form two complementary classes,
thus a feature explicitly expressing the voicedness of a time
frame can lead to better discrimination of phonemes and
consequently to better recognition results. Our goal was to
test different extraction methods which deliver a measure of
voicedness for each time frame. For evaluation, we augmented
the standard MFCCs with different measures of voicedness.
Common motivation of the extraction methods is to detect
the quasi periodic oscillation of the vocal chords. Harmonic
product spectrum based method measures the periodicity of a
time frame in the frequency domain while autocorrelation based
and average magnitude difference based methods work in the
time domain.

3.1. Harmonic Product Spectrum (HPS)

The amplitude spectrum of voiced sounds shows sharp peaks
that occur at integer multiples of the fundamental frequency.
This fact serves as basis for the method harmonic product
spectrum [4]. The harmonic product spectrumP (n) is the
product of R frequency-shrunken replicas of the amplitude
spectrum|X(ej 2π

N
n)|:

P (n) = R

vuut RY
r=1

|X(ej 2π
N

nr)| (1)

N is the number of FFT points andR = bN/2nc is the
maximum shrinkage of amplitude spectrum which can still
provide an amplitude value on discrete frequencyn.
The motivation for using the product spectrum is that for
periodic signals, shrinking the frequency scale by integer
factors should cause the harmonics to coincide at the
fundamental frequency and at its nearby harmonics. Since the
amplitude spectrum of a periodic signal is zero between the
harmonics, the product of shrunken amplitude spectra cancels
out all the harmonics falling between two harmonics of the
fundamental frequency.
In ideal case the harmonic product spectrum gives high peaks
at the fundamental frequency and at its nearby harmonics
and it is zero otherwise. Since speech analysis is based on
short-time Fourier analysis and even voiced sounds are only
quasi periodic, the harmonic product spectrum is not zero
between the harmonics of the fundamental frequency and its
peaks are not always obvious.

3.1.1. Measure of Voicedness

The aim of voicing extraction is to produce a bounded value
describing how voiced the current time frame is. We developed
a measure that evaluates the peak structure of the harmonic
product spectrum. Voiced time frames exhibit a sharp maxima.
Unvoiced time frames have no clear peak structure and the
maxima of the harmonic product spectrum is typically flat.
The measurẽvHPS evaluates the maximum amplitude value
of the harmonic product spectrum. It is defined as the ratio of
the maximum amplitude value and the geometric mean of the
neighboring amplitudes without the maximum value:

nmax = argmax
80Hz· N

fs
≤n≤400Hz· N

fs

P (n), (2)
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wherefs is sampling frequency andN is number of FFT points.
We search for the maximum of harmonic product spectrum
nmax only in the interval of natural pitches[80Hz..400Hz]. The
geometric mean is calculated over the neighborhood ofnmax:
n runs fromnmax − W to nmax + W excludingnmax. The
minimum pitch and thus the minimum distance between two
harmonics is about80Hz. The size of the neighborhood is set
to W = 70Hz · N

fs
to avoid peaks of the neighboring harmonics

being included in the average.
Typically we have1 ≤ v < 4. Valuesv > 2 are cut to2 since
they obviously indicate a voiced segment:

vHPS = min{2, ṽHPS} − 1. (4)

Resulting measurevHPS has been used in recognition tests.
Figure 1 depicts distributions ofvHPS on voiced-unvoiced
sound pairs. We compared the plosive sound pair /g/-/k/ and
the fricative sound pair /v/-/f/ which in phonetical point of view
differ only in type of excitation. The histogram of a given
phoneme has been estimated on values aligned to any of the
states of one of the triphones with the given phoneme as central
phoneme. Major difference between histograms is the high peak
at value1 for voiced sounds.
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Fig. 1. Histograms of measurevHPS estimated onVerbMobil
corpus. Left: voiced plosive sound /g/ and its unvoiced pair /k/.
Right: voiced fricative sound /v/ and its unvoiced pair /f/.

3.2. Autocorrelation (AC)

AutocorrelationR(t) aims to find periodicity of a time frame of
lengthT in the time domain. It expresses the similarity between
the signalx(τ) and its copy shifted byt:

R(t) =
1

T − t

T−t−1X
τ=0

x(τ) x(τ + t). (5)

Autocorrelation attains its maximum value att = 0 (i.e.
|R(t)| ≤ R(0) for all t). Furthermore, autocorrelation of a
periodic signal is also periodic with the same frequency. Thus
autocorrelation of periodic signals with frequencyf attains its
maximumR(0) not only att = 0 but also att = k

f
k =

0,±1,±2, ... integer multiples of the period. Therefore a peak
in the range of natural pitches with a value close toR(0) is
a strong indication for periodicity thus voicedness of a time
frame.

3.2.1. Measure of Voicedness

In order to produce a bounded measure of voicedness,
autocorrelation is divided by its maximum valueR(0). The
resulting function has values only in the interval[−1..1].
The voicedness measurevAC is the maximum value of the
normalized autocorrelation in the interval of natural pitch
periods[2.5ms..12.5ms]:

vAC =

max
2.5ms·fs≤t≤12.5ms·fs

R(t)

R(0)
. (6)



Values ofvAC close or equal to1 indicate voicedness, values
close to 0 indicate voicedless time frames. Figure 2 compares
distributions of vAC on voiced-unvoiced sound pairs (see
Section 3.1.1 for details of histogram estimation process).
However, autocorrelation of a speech segment contains not only
information on the periodicity but also on the vocal tract. The
lowest 10-15 autocorrelation values are often used to estimate
the linear transfer function of the vocal tract. In cases when
the autocorrelation peaks due to the vocal tract response are
bigger then those due to the periodicity of voicing excitation,
the simple procedure of picking the largest peak fails.
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Fig. 2. Histograms of measurevAC estimated onVerbMobil
corpus. Left: voiced plosive sound /g/ and its unvoiced pair /k/.
Right: voiced fricative sound /v/ and its unvoiced pair /f/.

3.3. Average Magnitude Difference (AMD)

Motivation of average magnitude difference (see chapter “Pitch
Detection” in [4]) is to measure periodicity in a time frame by
summing up absolute differences between equidistant samples.
Periodic signal give zero for distances of integer multiples of
the period length and give a value larger than zero for all other
distances. The larger the value is for a distance the larger
the average difference of samples with the given distance was.
Definition of average magnitude difference:

D(t) =
1

T − t

T−t−1X
τ=0

|x(τ)− x(τ + t)|. (7)

Average magnitude difference is a functional alternative of
autocorrelation. It measures the similarity of a time frame
x(τ) of length T and its time shifted copyx(τ + t)
by applying absolute difference instead of multiplication.
The functional correspondence can be shown by substituting
quadratic difference instead of absolute difference into Eq. 7
which yields the inverse of autocorrelation:

Q(t) =
1

T − t

T−t−1X
τ=0

|x(τ)− x(τ + t)|2 (8)

Q(t) ≈ 2(R(0)−R(t)) ≤ 4R(0). (9)

3.3.1. Measure of Voicedness

In order to produce a measure of voicedness which is
independent of loudness we need the bounds of average
magnitude difference. The upper bound of average magnitude
difference can be derived by using the vector norm inequality
‖v‖1 ≤ √

n‖v‖2 wheren is the length of vectorv. If we
replace elements ofv by the differencev(τ) − v(τ − t) and
n by T − t we get the following inequality:

0 ≤ D(t) ≤
p

Q(t) ≤ 2
p

R(0) (10)

Dividing average magnitude difference by its upper bound
2
p

R(0) ensures values in the range of [0..1]. The voicedness

measurevAMD is the minimum value of the normalized
average magnitude difference in the interval of natural pitch
periods[2.5ms..12.5ms]:

vAMD =

min
2.5ms·fs≤t≤12.5ms·fs

D(t)

2
p

R(0)
(11)

A valuevAMD close to0 indicates periodicity thus voicedness
while a value close to1 indicate a voicedless time frame. Figure
3 shows distributions ofvAMD on voiced-unvoiced sound pairs
(see Section 3.1.1 for details of histogram estimation process).
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Fig. 3. Histograms of measurevAMD estimated onVerbMobil
corpus. For easier comparability with Fig. 1 and 2 we used
1 − vAMD instead of the original values. Left: voiced plosive
sound /g/ and its unvoiced pair /k/. Right: voiced fricative sound
/v/ and its unvoiced pair /f/.

3.4. Experimental Setup

The details of generation of the different voicing measures are
summarized in this section. Every10ms, a40ms long window
is applied to the speech signal. The window is longer than for
MFCCs to increase the possible number of periods in a time
frame.
For the time domain based methods (autocorrelation and
average magnitude difference) rectangular window has been
applied.
For harmonic product spectrum Hamming window is used.
To increase the frequency resolution and thus to increase the
number of amplitude values between two harmonics, a 2048-
point FFT is computed with zero padding.
In all three extraction methods we search for the mini-
mum/maximum amplitudes only in the interval of natural
pitches[80Hz..400Hz].

4. Experimental Results
Experiments were performed on small and large vocabulary
corpora. In all cases, voicing measures are combined with
MFCCs using the same technique. The normalized MFCC
feature vectors are augmented with one voicing measure. LDA
is applied to choose the most relevant features and to extract the
time dependencies. 11 successive augmented feature vectors
of the sliding windowt − 5, t − 4, ..., t, ..., t + 4, t + 5 are
concatenated to form a large input vector for LDA. The LDA
matrix projects this vector onto a lower dimensional subspace
by reserving the most relevant classification information. The
resulting acoustic vectors are used for training and recognition.
The baseline experiments apply LDA in the same way. The only
difference is in the size of the LDA input vector and thus in the
size of the LDA matrix. The resulting feature vector has the
same size to ensure comparable recognition results.
The SieTill corpus was recorded with8kHz sampling rate
resulting in 15 Mel scale filters and 12 cepstrum coefficients.
LDA projects the 11 concatenated feature vectors on a 25-
dimensional subspace.



TheVerbMobilcorpus was recorded with higher sampling rate
(16kHz). The wider bandwidth enables 20 Mel scale filters and
16 cepstrum coefficients. The 11 concatenated feature vectors
are projected by LDA on a 33-dimensional subspace.

4.1. Small-vocabulary Task

The small-vocabulary tests were performed on theSieTill
corpus [5]. The corpus consists of German continuous digit
strings recorded over telephone line: approximately 43k spoken
digits in 13k sentences in both training and test set. The number
of female and male speakers is balanced.
The baseline recognition system for theSieTill corpus is
built with whole word HMMs using continuous emission
distributions. It can be characterized as follows:

• vocabulary of 11 German digits including ’zwo’;
• gender-dependent whole-word HMMs;
• for each gender 214 distinct states plus one for silence;
• Gaussian densities, global pooled diagonal covariance;
• 25 acoustic features after applying LDA;
• max. likelihood training using Viterbi approximation.

The baseline system has a word error rate of 1.91% which is
the best reported so far using MFCC features and maximum
likelihood training [5]. In Table 1, the experimental results are
summarized for using the three additional voicing measures.
Experiments were performed with single and with 32 Gaussian
densities per mixture. In both cases, a relative improvement
in word error rate of 14% is obtained. The tests with different
voicing measures did not show any significant differences.

#dns acoustic feature error rates [%]
del ins WER

1 MFCC 0.49 0.75 3.82
MFCC + HPS 0.47 0.34 3.26
MFCC + AC 0.44 0.46 3.24

MFCC + AMD 0.45 0.45 3.28

32 MFCC 0.30 0.52 1.91
MFCC + HPS 0.29 0.37 1.65
MFCC + AC 0.28 0.40 1.71

MFCC + AMD 0.28 0.38 1.71

Table 1. Word error rates on theSieTill test corpus obtained
by combining MFCCs with one of the voicing measures:
harmonic product spectrum (HPS), autocorrelation (AC), or
average magnitude difference (AMD). #dns gives the average
number of densities per mixture.

4.2. Large-vocabulary Task

The large-vocabulary test were conducted on theVerbMobil II
corpus [6]. The corpus consists of German large-vocabulary
conversational speech: 36k training-sentences (61.5h) form 857
speakers and 1k test-sentences (1.6h) from 16 speakers. The
baseline recognition system can be characterized as follows:

• recognition vocabulary of 10157 words;
• 3-state-HMM topology with skip;
• 2501 decision tree based within-word triphone states

including noise plus one state for silence;
• 237k gender independent Gaussian densities with global

pooled diagonal covariance;
• 33 acoustic features after applying LDA;
• max. likelihood training using Viterbi approximation;
• class-trigram language model, test set perplexity: 62.0.

The baseline system has a word error rate of 23.5% which
is the best reported so far using MFCC features and within-
word acoustic modeling [6]. In Table 2, the experimental
results are summarized for using the three additional voicing
measures. Relative improvements in word error rate of up to 6%
is achieved by adding one of the voicing measures. The tests
with different voicing measures did not show any significant
differences.

acoustic feature error rates [%]
del ins WER

MFCC 4.9 3.4 23.5
MFCC + HPS 5.7 2.8 22.5
MFCC + AC 5.7 2.9 22.8

MFCC + AMD 5.7 2.8 22.2

Table 2. Word error rates onVerbMobil test corpus obtained
by combining MFCCs with one of the voicing measures:
harmonic product spectrum (HPS), autocorrelation (AC), or
average magnitude difference (AMD).

5. Summary
In this paper, three different voicing measures were tested in
combination with the standard MFCC features using LDA.
We compared voicing measures based on harmonic product
spectrum, autocorrelation, and average magnitude difference.
Experiments performed on the small-vocabulary taskSieTill
achieved an improvement in word error rate of up to 14%
relative. The large-vocabulary tests conducted on theVerbMobil
corpus resulted in a relative improvement of 6% using one
additional voicing features. The different extraction methods
performed in average similarly with small and inconsistent
differences on the two corpora. Experiments with combination
of more than one voicing measure have not achieved any
improvement over using only one additional voicing measure.
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