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ABSTRACT 

The goal of our project is to collect the dataset of 3D 
facial motion parameters for the synthesis of talking 
head. However, the capture of human facial motion 
is usually an expensive task in some related 
researches, since special devices must be applied, 
such as optical or electronic trackers.  
In this paper, we propose a robust, accurate and 
inexpensive approach to estimate human facial 
motion from mirror-reflected videos. The approach 
takes advantages of the characteristics between 
original and mirrored image, and can be more robust 
than most of other general-purposed stereovision 
approach in the motion analysis for mirror-reflected 
videos. A preliminary dataset of facial motion 
parameters of MPEG-4 and French visemes and 
with voice data has been acquired, the estimated 
data are also applied to our facial animation system. 

1. INTRODUCTION 
Research about relation between acoustic speech 
and human facial motion is an important topic for 
several areas in computer science, such as audio-
visual speech recognition, computer graphics, and 
etc. However, so far, the analysis or synthesis of 
facial motion is still a difficult work since it is not 
easy to acquire accurate 3D facial motion data.  
For 3D facial or lip motion estimation, stereovision 
motion tracking, optoelectronical or magnetic space 
trackers are the mainstream approach. Magnetic and 
optoelectronical space trackers can provide 
extremely precise 3D position data, but the accurate 
devices are highly expensive, and they are 
unsuitable for lip surface motion tracking. Most of 
the stereovision motion tracking is based on the 
epipolar constraint and 8 points algorithm [18]. 
Images with multiple view directions are taken to 
estimate the 3D positions of feature points. 
[19][20][21] provide a good reference and 
discussion base for 3D motion and structure 
estimation. 
A number of techniques have been developed for 
audio-visual synthesis of facial animation. This 
research about synthetic face can be approximately 
classified into three categories: feature-point-driven, 
muscle-based, and image-sample-based approach. 
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In order to get precise 3D position and the motion of 
feature points on the faces of one subject, colorful 
dot markers are stuck on the positions of feature 
points. With these markers, tracking feature point 
movements is much easier and more accurate. 
It is well known that multiple view images are 
required for 3D position reconstruction. In our work, 
we didn’t use multiple cameras to capture images 
from different view directions. Instead, we placed 
two mirrors next to one subject’s face, and used only 
one camera to capture the front view image and two 
mirrored images (as shown in Fig. 1). The mirrored 
image can be regarded as a “flipped” image taken by 
a “virtual camera”, which is in a distinct view 
direction comparing to physical one. With this 
approach, we can acquire three different views of 
the image data simultaneously, and it can also avoid 
the problem of synchronization between data among 
different cameras. 
In the aforementioned situation, the 3D position 
determination can be solved by general-purposed 3D 
structure reconstruction approaches, which estimate 
rotation matrix R, translation vector T between two 
cameras from fundamental matrix [21]. After getting 
the location and orientation of two cameras, the 
target point 3D positions can be approximated by 
the closest points to all projection rays from 
different cameras. However, there are some special 
properties of mirrored images that can be applied to 
get a more accurate result. We present our approach 
in subsection 2.2. Moreover, a flexible camera 
calibration method proposed by Zhang et al [23] is 
utilized to calculate the intrinsic parameters of the 
camera. With the parameters, we can calibrate the 
video captured by camera. 

2.1. Marker Tracking in Video 
A simple semi-automatic approach is applied to 
estimate the location variations of markers in each 
frame of the video clip. Once a video has been 
prepared for tracking, users have to initially select 
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Figure 1: The image data captured by DV camera
(resolution 720x480). 54 markers are placed on the
subject’s face and lips. 
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Figure 2: The geometric
representation of the
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where k is a scale value. Thus, vector mi, mi
’, u are 

coplanar, and thus 
0)(, =×⋅ ii mum ,  (3) 

•is the dot product, and × is the cross product. 
It can be simplified as 
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For each marker and the rest stationary points for 
rigid body calibration, we can form a matrix M, 
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Since there is noise to perturb the shape and position 
of markers on image plane I, the least square method 
is applied to estimate the vector u with least error.  
There is another property of mirror is that 

)()( , Θ−=Θ− iui mHm ,  (6) 

where Θ is an arbitrary point on the mirror plane 
Mirror. )2( 33

t
xu uuIH −= is the Householder matrix. 

We assume that t

c
d ),0,0(=Θ , and deduce the 

equation 
















=































−++

−++

−++

c
b
a

d
z
z

cbcyacx

yybcybabx

xxacabyxa

i

i

pipi

ipipipi

ipipipi

,

2

,2

,2

2
1

2
1

2
1

2
1

2
1

2
1

, (7) 

From equation 7, we can find that once vector u has 
been determined, zi and zi

’is proportional to variable 
d. Thus, after the above steps, the vector u can be 
estimated first, and then the scaled position of s(xi, yi, 
zi), where s is the scale value, for each marker and 
stationary points can be calculated by the least 
square method 

minz ||Gz – du ||,   (8) 
such as approach based on Singular Value 
Decomposition (SVD) or QR factorization [24]. The 
scale value s can be determined by comparing the 
scaled data with a reference ruler in real world. 
Furthermore, to reduce the influence of errors of the 
marker position estimation in the front view image, 
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rotation and translation of successive time stamps 
are determined, we can obtain the displacement of 
marker i caused by facial motion as 
dispi = R-1(vi(j+1) - t) – vij, where vij is the estimated 
3D position of marker i at time j. 

2.4. Discussion of the proposed approach   
Intuitively, in the case of 3D position estimation 
from the mirror-reflected multi-view images, the 
proposed approach should be much more robust 
than approaches that apply some other general-
purposed 3D estimation approaches which calculate 
rotation matrix R and translation vector t of the 
virtual camera from the fundamental matrix [22]. 
One of the reasons is that the degree of freedom of 
the rotation matrix R and the translation vector t 
both have 3 degrees of freedom. In our case, we 
evaluate the mirror plane equation, which has only 4 
degree of freedom. The fewer degrees of freedom 
roughly mean that we can use much fewer 
information to reach the accuracy of the same 
magnitude. 
Secondly, when estimating R and t from the 
fundamental matrix, it first has to evaluate the 
fundamental matrix, which is of 8 degree of freedom, 
and then analogous rotation matrix W is estimated. 
However, the matrix W usually may not be of the 
properties of rotation matrix, such as orthogonality, 
etc. In that situation, the matrix W is adjusted to fit 
the properties, and then the vector t can be evaluated. 
Each of the steps involves a lot of numerical matrix 
computation, such as eigenvector estimation, SVD, 
and quaternion reformulation, etc. The errors are 
progressively accumulated by each step. [19] 
provides a detailed discussion of error analysis and 
estimation of 3D position and structure 
reconstruction from R, t. 
We also simulate the situation where normal-
distributed errors are perturbed in the captured 
image by computers. Fig 3 is the figure about the 
error distribution for our proposed approach and the 
approach via the virtual camera R, t estimation. The 
figure manifest that the virtual camera approach 
requires many more feature points or calibration 
points to reach the accuracy of the proposed 
approach. Our proposed approach is also more 
robust in the noisy situation. 

3. FACIAL ANIMATION 

3.1. Face Modeling 
The approach mentioned in subsection 2.2 for 3D 
position estimation can also be applied to construct a 
realistic head model. However, a 3D scanner can 
provide 3D models of error less than 1 millimeter. 
Thus, we exploit a 3D scanner to get 3D head 
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example the points of jaw near the ear, etc. We use a 
hypothesis to derive the hypothetical points 
according to related feature points. Eyelids and 
some of the points on the jaw are hypothetical points. 
The blink of eyelid is approximately once per 3 
seconds as a random process. After determining the 
displacement of all control points, a face can be 
deformed by the radial basis scatter data 
interpolation function mentioned in subsection 3.1. 
Once we repeat the above similar process frame by 
frame, we can generate realistic facial animation 
according to estimated 3D facial motion data. 

4. EXPERIMENT 
The collection of dataset for facial and lip motions 
according to articulation is still under way. Three 
languages, English, French, and Mandarin Chinese, 
are adopted to be included in our dataset. At this 
moment, data of 6 French subjects (3 males, 3 
females), and 2 Taiwanese subjects (2 males) have 
been recorded. For records of French, the 
videotaping is focused on the mouth. Each French 
subject performed 20 French visemes, 14 consonant-
vowel articulations, 10 vowel-vowel articulations, 
and read a paragraph about 2 minutes long. The 
speech group of Loria, France suggests the decision 
of visemes and articulations. For Taiwanese subjects, 
all markers described in subsection 3.1 are applied. 
They did 14 MPEG4 visemes [27], 40 consonant-
vowel articulations, and 10 vowel-vowel 
articulations. 
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Figure 5: the part of estimated 3D motion variation (viseme O
3 times). (a) the motion of the right lip corner; (b) the motion
of the lower lip tip; (c) the motion of the jaw tip. Frame (33ms)
is the unit of x-axis, and mm is the unit of y-axis. 
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5. CONCLUSION 
we proposed an inexpensive and 
re to estimate 3D facial motion 

 front view and mirror-reflected 
reliminary dataset of MPEG-4 and 
has been acquired. The collection of 
otion dataset is still in progress. We 
ata will be published soon through 
pplied to further research for the 
thesis of the human face. 
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