
EXTRACTION OF BUILT-UP AREAS USING CONVOLUTIONAL NEURAL 

NETWORKS AND TRANSFER LEARNING FROM SENTINEL-2 SATELLITE IMAGES 
 

 

V. S. Bramhe1,*, S. K. Ghosh 1, P. K. Garg1 

 
1Geomatics Engineering Group, Civil Engineering Department, IIT Roorkee, 247667,India,  

vijendra89singh@gmail.com 

 

Commission III, WG III/1 
 

 
KEY WORDS: Built-up Area Extraction, Convolutional Neural Networks, Deep Learning, Sentinel-2 Images, Transfer Learning 

 

 

ABSTRACT: 
 

With rapid globalization, the extent of built-up areas is continuously increasing. Extraction of features for classifying built-up areas 

that are more robust and abstract is a leading research topic from past many years. Although, various studies have been carried out 

where spatial information along with spectral features has been utilized to enhance the accuracy of classification. Still, these feature 

extraction techniques require a large number of user-specific parameters and generally application specific. On the other hand, 

recently introduced Deep Learning (DL) techniques requires less number of parameters to represent more abstract aspects of the data 

without any manual effort. Since, it is difficult to acquire high-resolution datasets for applications that require large scale monitoring 

of areas. Therefore, in this study Sentinel-2 image has been used for built-up areas extraction. In this work, pre-trained Convolutional 

Neural Networks (ConvNets) i.e. Inception v3 and VGGNet are employed for transfer learning. Since these networks are trained on 

generic images of ImageNet dataset which are having very different characteristics from satellite images. Therefore, weights of 

networks are fine-tuned using data derived from Sentinel-2 images. To compare the accuracies with existing shallow networks, two 

state of art classifiers i.e. Gaussian Support Vector Machine (SVM) and Back-Propagation Neural Network (BP-NN) are also 

implemented. Both SVM and BP-NN gives 84.31% and 82.86% overall accuracies respectively. Inception-v3 and VGGNet gives 

89.43% of overall accuracy using fine-tuned VGGNet and 92.10% when using Inception-v3. The results indicate high accuracy of 

proposed fine-tuned ConvNets on a 4-channel Sentinel-2 dataset for built-up area extraction. 

 

 

1. INTRODUCTION 

With the recent advancement in sensor technology, a large 

number of Remote Sensing (RS) satellites (Landsat, Sentinel, 

Worldview etc.) are available at different spatial resolution, fast 

revisit time as well as a wide variety of spectral bands. 

However, retrieving accurate information from remote sensing 

data is still a challenging task (Mukherjee, 2012).Satellite 

images have complex patterns that are difficult to understand 

due to its heterogeneity (Ashish, 2009; Adam, 2014). 

Identification of built-up areas is essential for territorial 

planning, climate change studies, population relocation etc. 

Since spectral features are not sufficient to extract built-up areas 

as other classes such as River Sand and Fallow Land shows 

similar spectral characteristics. Therefore, there is a need to 

develop more sophisticated algorithms in order to extract built 

up with precision using remotely sensed data. 

 

In present day context, traditional classifiers such as Support 

Vector Machines (SVM), Multi-Linear Perceptron (MLP), and 

Linear Regression (LR) are shallow structures. These networks 

process input data in single layer whereas, when using kernel 

function, the same input data can be processed in two layers 

(Melgani, 2004; Ustuner, 2015). Detecting urban areas in 

satellite images using traditional approaches requires human 

expertise and it is time consuming also. Most of the previous 

studies mainly focuses on classifying pixels or group of pixels 

by extracting low-level image features such as texture (Zhao, 

2007), spatial and spectral information (Bernabe, 2014; Tuia, 

2014) or hybrids (Tuia, 2009; Zhang, 2014; Tong, 2014).  

 

Spectral-spatial classification approaches are widely used in 

recent years for satellite image classification. The classification 

algorithm improves the accuracy of classification by inclusion 

of spatial information (Benediktsson, 2003; Zhang, 2013). 

Spatial features such as Gray Level Co-occurrence (GLCM) 

derived texture features, Wavelets, Morphological Profiles etc. 

are widely used for urban area classification (Kuffe, 2016; Vu, 

2003)  

 

Although satellite imagery provides continuous availability of 

data, it is a big challenge to accurately retrieve the extent of 

urban area using that data (Sirmacek, 2010). In Zhong (2007) 

various features are classified separately using Conditional 

Random Field (CRF) classifier and then information is fused to 

get the class information. The approach gives good accuracy but 

suffers from taking higher computational times because of 

multiple classifiers. In Sirmacek (2011) various local features 

are detected and used in detection of urban area using variable 

kernel based density estimation method.  Gamba (2007) utilize 

the boundary information for urban area mapping. The 

boundary and non-boundary pixels are classified using neural 

network and Markov Random Field (MRF) classifiers 

respectively and the results are combined using decision fusion. 

They have come to get good mapping of VHR imagery.  

Performance of classifiers are highly dependent on 

representation of data or features. Erroneous or incomplete 

features limit the performance of classification; therefore, 

feature extraction is a key step that generally requires human 

intelligence and prior knowledge of the field (Arel, 2010). 

However, a Deep Learning (DL) algorithm is able to provide 

multiple higher level features, automatically without any feature 

engineering (Bengio, 2013). Deep learning approaches are 

giving impressive results in the field of pattern recognition. 

Recent studies suggested great potential of these methods in 

remote sensing also. 
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DL classifiers are well known to computer vision community 

still limited research has been carried out for RS data (Romero, 

2016). However, in recent years, a shift towards the usage of 

DL techniques for various applications such as PAN sharpening 

(Masi, 2016), object detection, Land cover classification (Basu, 

2015). Most of the studies using DL approaches have been 

carried out either on Aerial images or Very High Resolution 

(VHR) images such as UC Merced dataset or ISPRS Vaihingen 

and Potsdam benchmark data sets for image classification or 

semantic labelling. 

 

The primary objective of this paper is to test the suitability of 

pre-trained Convolutional Neural Networks (ConvNets) on 

Sentinel-2 images for built-up classification. Our goal is to 

develop an approach which can exploit DL technique 

specifically ConvNet to extract informative features that can 

accurately distinguish built-up areas in the Sentinel-2 images. 

 

2. HISTORY AND BACKGROUND 

The main goal of DL research is to solve our day-to-day tasks, 

which are highly complex for machines like recognising 

objects, Natural language processing (NLP) etc. Our brain can 

model the same physical world it sees regularly, so it can easily 

able to specify good priors for modelling the world. During 

1960s, Hubel and Wiesel’s early work (Hubel, 1962; Hubel, 
1965) on the cat’s visual cortex shows that visual cortex 
contains an intricate ordering of cells. These cells are sensitive 

to small context of the visual field, called a receptive field. 

Primary visual cortex is around seven stage beyond the retina. 

So, the information reaching visual cortex processed through 

multiple times, where at each stage higher level features are 

generated.  

 

Fukushima (1980), first discuss the concept of deep 

convolutional network. This network is similar to the structure 

of a human visual processing as discussed by Hubel and 

Wiesel’s work The output of this network was able to provide 
features that were not affected by position, change in shape and 

stimulus pattern. During 1970s and 1980s use of back-

propagation to compute the gradient of objective function 

evolved significantly. The first practical demonstration of Back-

Propagation (BP) at Bell Labs was done by LeCun (1990). In 

this study, convolutional networks were trained using BP 

algorithm to classify handwritten digits. Auto encoders were 

also introduced during the late 80’s (Rumelhart, 1986; Baldi, 

1989) as a technique for dimensionality reduction but these 

techniques are limited to compress the features in lower 

dimensions only. In 2006, a major breakthrough was achieved 

by unsupervised pre-training of Restricted Boltzmann Machines 

(RBMs) on MNIST data set (Hinton, 2006). An effective way 

of training deep networks has been presented in this study. 

Also, the work done by Bengio (2007) and Ranzato (2007) 

revived the interest of Machine Learning (ML) community in 

feed forward networks again. As one can see that the idea of 

multiple level processing of data has been formalized long 

before, but the main reasons behind success and widespread use 

are, the availability of high-end Graphical Processing Units 

(GPUs) and a large amount of labelled data available for 

training these days.  

 

Representation learning is a set of methods that allow a machine 

to be fed with raw data and to automatically discover the 

representations needed for detection or classification. (Hinton, 

2007; Bengio, 2013). Better feature representation of data leads 

to good performance of classification. DL networks can model 

complex relationship between variables using multiple layers of 

nonlinear function. These models combine non-linear modules 

such that the data is being transformed to different 

representation and becomes more and more abstract after each 

level of processing. Deep Neural Network (DNN) models 

capture multiple representations, using hierarchical processing 

of data. These models process the input data sequentially in 

each module such that the output of the previous module is used 

as input to the next modules, these modules are called layers. 

Input and output units are connected through weights and biases 

whose values are learned during training of the network.  

 

3. STUDY AREA AND DATA USED 

The study area selected comprises of Haridwar Tehsil, India. 

The coordinates of the bounding box covering study area is, 

Long. 77° 51' 21.00'' E and Lat. 30° 07' 0.31'' N at upper left 

and Long. 78° 20' 39.91'' E and Lat. 29° 38' 13.10'' N at lower 

right. Haridwar Tehsil is situated on the plane of the Ganges 

river.In last few decades, rapid urbanization has been taken 

place in this area, which results in increased infrastructural/ 

housing construction and urban expansion. The area comprises 

of heterogeneous land cover types including built-up regions, 

agricultural area, water, river sand and fallow land. The false 

colour composite image of the study area is shown in Figure 1. 

 

 
Figure 1. False color composite (FCC) of Sentinel-2 (Band 8 

(NIR), 4 (Red), 3 (Green)) of study area. 

 
The satellite data used in this study consists of fourmultispectral 

bands i.e. NIR, Red, Green and Blue acquired by Sentinel-2 

Multispectral Imager (MSI) on 11 November 2016.The image 

represents a diverse land class scenario with pixels in four bands 

ranging from wavelength 0.49-0.842 µm in the electromagnetic 

spectrum. 

 

4. METHODOLOGY 

In this section, various techniques used in this experiment along 

with proposed classification framework for built-up area 

extraction is discussed. 

 

4.1 CNN Architecture 

CNN is one of the most popular computer vision algorithm 

today, due to its ability to handle image data effectively. As 

CNN model consists of multiple convolution and pooling 

operations therefore, it is very good at finding more abstract and 

robust representation of image features in the input data 

(Maggiori, 2017). In the case of CNNs, weights are shared 
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locally and weights connected to the same output unit form a 

filter (Romero, 2016).  

 

A CNN architecture consists of multiple convolution and 

pooling layers. To generate convoluted feature maps, kernel 

functions as filters are used in convolutional layers.The 

convoluted features are generalised into higher levels by sub-

sampling layer which make features more abstract and robust. 

Similar to the structure in the primary visual cortex system 

where simple and complex cells are stacked layer-wise, 

convolution and pooling layers are intermixed in CNNs. The 

number of convolution and pooling layer can be different and 

generally depends on the application. 

 

To draw mathematical formulation, suppose we have a d-

dimensional input data
d

x , in case of multiband data, m is 

width, n is height and c is number of channels in input data x. 

Therefore, for a given input x, the output of any convolution 

layer lcan be defined as 

 

1

1

Nl l l l
h f h k bj i ij j

i

    
 

 (1) 

 

where,  f   is an activation function which could be sigmoid 

(Russell, 2003) , Rectified Linear Unit (ReLU) (Krizhevsky, 

2012) or hyperbolic tangent . The   denotes convolution 

operation and N denotes number of input feature maps.
l

ij
k is the 

kernel operating on ith feature map of layer l-1 to give jth feature 

map of layer l and 
l

j
b is the bias for jth feature map of layer l. If 

l =1 then
1l

h x
   is the input layer.Features generated by 

convolution layers are then given as input to pooling layer. 

Popular pooling functions are average pooling or sub-sampling 

and max-pooling (Lee, 2015). The output of sub-sampling can 

be defined as 

 

 1
n nl ll

h jj j
N N

l
S g bj 

 


   
 

 (2) 

 

where, the average of n n  patch of previous layer’s jth feature 

map i.e. 
1l

j
h


is taken.  Then, it is multiplied by a trainable 

scalar γ and adds to a bias b and passes through a non-linear 

function  g  . Whereas, a max-pooling operation can be 

defined as (Scherer, 2010) 

    

 1max
n nl l

Q h jj
N N

    
  

  (3) 

 

In general pooling layers are inserted after convolution layers so 

that the spatial size and computational complexity would be 

reduced. Also, the features become more robust so the model 

will be less likely to over-fit. A very important feature of CNN 

is weight sharing in the convolution layers, so that same filter 

bank can be used for all pixels in a particular layer.  

 

4.2 Inception-v3 and VGGNet 

A large amount of labelled dataset is a pre-requisite for success 

of any CNN. However, it is very difficult to collect large 

amount ground truth data in remote sensing studies. Therefore, 

it is easier to adopt an already trained network and update its 

weight according to the application. In Penatti (2015) CaffeNet 

and Overfeat ConvNets are fine-tuned on remote sensing dataset 

for classification purpose. Experiment on these datasets 

suggests that Transfer Learning can be adopted for classifying 

satellite images also. 

 

Szegedy (2015) first proposed Inception (GoogleNet) 

architecture. This architecture won ImageNet competition. 

Since then the model is utilized in various computer vision 

applications because of its good performance and low 

computational cost in comparison to AlexNet or other 

architectures. In Castelluccio (2015) GoogleNet along 

withCaffeNet are trained to classify UC-Merced dataset and 

Braizilian Coffee Scenes.Inception-v3 uses 12 times fewer 

parameters than the winning architecture of AlexNet 

(Krizhevsky, 2012). In Figure 2. single module of Inception is 

shown.  

 

 
Figure 2. Inception module with dimension reductions 

(Szegedy, 2015) 

 

VGGNet was proposed by Simonyan (2014). This network 

adopts very simple design where only 3x3 convolution filters 

and 2x2 pooling layers are used. The size of input layer is 

224x224, and then series of convolution and pooling layers are 

interspersed along with three fully connected layers and soft 

max classifier. The configuration of VGGNet is shown in 

Figure 3 (Simonyan, 2014) 

 

 
Figure 3. VGG Network Architecture proposed by Simonyan, 

(2014) 
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Both Inception-v3 and VGGNet models learn to explain better 

feature representation for different class of images. To train 

these models ImageNet Large-Scale Visual Recognition 

Challenge (ILSVRC) dataset is used. These models are initially 

trained on millions of images of generic objects such as table, 

pen etc. and able to categories them into 1000 object classes. 

 

4.3 Classification Framework 

Following steps has been taken to classify built-up areas in 

order to implement transfer learning based approach: 

i. Download pre-trained Inception-v3 and VGGNet 

network 

ii. Patches centered over ground truth pixel location are 

extracted from Sentinel-2 image which are of same 

size of input layer of the networks. 

iii. Fine tuning of the networks on training dataset 

iv. Applied fine-tuned network on test dataset 

 

Firstly pre-trained networks with learning weights on ImageNet 

dataset are download. In order to employ these networks on new 

dataset final layers of the networks are replaced with fully-

connected, softmax and classification layer. Extraction of 

patches have been done which are centered over the known 

ground truth pixel. Once labelled data is generated fine-tuning 

of networks have been done. Finally, trained networks are 

applied on test dataset and accuracy of the networks are 

calculated. 

 

5. EXPERIMENT AND ANALYSIS 

5.1 Generation of Training and testing dataset 

The major problem when using CNNs for remote sensing 

studies is the availability of labelled data for training the 

network(Castelluccio, 2015). Since, collecting ground truth data 

is one of the difficult task some freely available datasets 

provided by various agencies and research groups are easier 

choice for training and testing of algorithm. Most commonly 

used dataset are hyperspectral scenes of Pavia and Salinas data. 

UC-Merced dataset consists of 100 samples of size 256x256 

belongs to 21 classes which are extracted United States 

Geological Survey (USGS) National Map. AID dataset, having 

30 different classes and about 200 to 400 samples of size 

600x600 in each class. SAT-4 and SAT-6 datasets consists of 

500000 samples of size 28x28 for 4 different classes. 

 

 
Figure 4. Built-up area patches generated from Sentinel-2 

dataset for training and testing networks 

 

For this study, training and testing samples have been taken 

using stratified random sampling method so that the samples 

will be more scattered and randomly distributed all over the 

study area. To capture the spatial information contained within 

image, a local neighborhood of fixed size (patch)has been 

considered. The label of center pixel is taken as reference of 

output class. Image patches of fixed size around the center pixel 

of known class locations have been taken to train the network. 

Patch size taken from Sentinel-2 is taken as 11x11 because to 

capture small contextual variation present in the kernel. Figure 4 

shows the sample patches used in training and testing of 

classifiers. However larger kernel size can also be taken but in 

that case pixels for different classes makes kernel less 

homogeneous and also causes smoothing effect on the output 

result (in case of generation of classified map). 16000 image 

patches centered over the known class location of built-up 

classes and other classes such as vegetation, water etc. have 

been extracted. Whereas, the accuracy has been tested over 

4000 image patches. 

 

5.2 Training and Validation  

In this work, pre-trained ConvNets i.e. Inception v3 and 

VGGNetare used for transfer learning. Both of these networks 

are trained on ImageNet dataset, which consists of generic 

images of objects such as trees, vehicles, persons etc. Since, 

these networks are learned on ImageNet dataset, which are 

having very different characteristics from satellite images 

therefore, final layers of these networks are fine-tuned using 

data derived from Sentinel-2 images.  

 

To fine-tune the networks size of training images should be 

equal to the input size of the network, therefore, pre-processing 

(resizing, rotation and reflection) of data has been done. Figure 

5 shows change in training and validation accuracy of the 

network at each iteration of VGGNet architecture. 

 

 
Figure 5. Accuracy plot at each iteration of VGGNet training. 

 

The training run through 6 epocs (using all training data in the 

network) with 700 iterations in each. 70% of data is used for 

training whereas 30% is used for validating the model. It can be 

seen that both training and validation accuracy greatly increases 

initially but later there is very subtle increase at each iteration. 

In Figure 6 depicts cross-entropy error at each iteration of 

training and validation of VGGNet is shown. It can be seen that 

error of training data keeps on fluctuating whereas validation 

data error (shown by black dots) keeps on decreasing. 
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Figure 6. Accuracy plot at each iteration of VGGNet training. 

 

5.3 Accuracy assessment 

To compare the results of Inception-v3 and VGGNet two 

shallow network models i.e. Gaussian SVM (RBF-SVM) and 

Back-propagation Neural Network (BP-NN) are also tested on 

similar dataset. These classifiers have been chosen because they 

are most widely used classifiers in remote sensing classification. 

Out of the all, the labelled data 4000 patches have been kept for 

calculating the test accuracy. Table 1 shows the overall 

accuracy of classification of fine-tuned ConvNets in comparison 

to other shallow classifiers. 

 

Method Classification accuracy (%) 

BP-NN 82.86 

RBF - SVM 84.31 

Inception-v3 92.10 

VGGNet 89.43 

Table 1. Comparison of overall accuracies of Deep and shallow 

networks 

 

6. CONCLUSIONS 

In this work, Transfer learning approach for built-up area 

classification is proposed. Experiments are carried out on 

Sentinel-2 image having four spectral band with 10 m spatial 

resolution.  Weights of Inception-v3 and VGGNet models are 

fine-tuned with 16000 image patches. Whereas, 4000 image 

patches test are used to test the model. Results shows that 

Inception-v3 and VGGNet gives overall accuracies of 92.10% 

and 89.93% respectively, which is good improvement in 

comparison to BP-NN and RBF-SVM methods.Whereas, in 

between applied CNNs,the Inception-v3 model are faster to 

train in comparison to VGGNet due to their network structure. 

For future studies, effect of different kernel size on efficiency 

and generation of map of whole image will be considered. 
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