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Abstract

An increasingly urgent topic for the realization of
densely packed (mixed signal) integrated circuits is preven-
tion of cross-talk via the substrate. This paper proposes a
Boundary Element Method (BEM) for calculating an ad-
mittance matrix for the substrate in order to analyze the
parasitic coupling during layout verification.

In contrast with standard BE methods, we propose a
Green’s function which is specific to the domain and the
problem. This allows minimal discretization and a direct
extraction of circuit models for the cross-talk. The extrac-
tion can be combined with an efficient model reduction
technique to obtain more simple, yet accurate models for
the cross-talk. The complete extraction process has a linear
time complexity and a constant memory usage. The method
is fully implemented and integrated in an existing layout-to-
circuit extractor.

1 Introduction
Due to the continuing decrease of the distances between

components and the simultaneous increase of operating fre-
quencies, the cross-talk between components and/or circuit
blocks becomes stronger. The increase of cross-talk not
only holds for coupling via the interconnect (parasitic cou-
pling capacitances), but more and more also for cross-talk
via the substrate [1]. Thus, an increasingly urgent topic for
the realization of densely packed integrated circuits is pre-
vention or at least control of cross-talk via the substrate.
This problem is particularly important in high-frequency
and/or mixed-signal integrated circuits. There exist exam-
ples of designs that, because of this problem, could not be
fabricated on one chip [2].

In Figure 1 we illustrate the situation at hand. It shows
a mixed-signal integrated circuit. The switching in the dig-
ital part induces potential spikes on the supply lines. These
spikes are then coupled into the substrate, where they prop-
agate to the analogue part of the circuit. There they are
picked up, e.g. by the depletion capacitance of a diffused
resistor or the bulk contact of a transistor. Thus, the distur-
bances may appear at the output of the circuit, degrading
the performance or even causing malfunctioning of the cir-
cuit.
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Figure 1: Sketch of a substrate coupling problem in a
mixed-signal circuit.

Currently, the most commonly used method to circum-
vent these problems is a very costly trial-and-error proce-
dure, which relies on experience and expertise of the de-
signer. In order to allow accurate substrate analysis of the
design, before it is sent to the foundry, it is of paramount
importance to have a CAD tool, similar to the layout veri-
fication methods for the parasitic interconnect capacitance
problem, which can be used within the design loop. Such a
tool is not available today.

Some methods were published for detailed numerical
analysis of these problems in a few standard situations [3,
4, 5]. They use a full (Finite Element) numerical analysis
of all potentials and currents in the substrate, either by sim-
ulation of a 3D resistance mesh of the complete substrate
or by device simulation. However these approaches are not
efficient enough for implementation in a standard CAD sys-
tem. Furthermore, they do not provide a circuit model for
the designer as a direct feedback between the circuit design,
the layout design and the substrate problems.

In this paper we propose a method to derive circuit
models for the parasitic substrate cross-talk directly from
the layout. This is achieved using a Boundary Element
Method (BEM), with a suitable choice of the Green’s func-
tion, which characterizes the inhomogeneous domain. This
avoids a full discretization of the complete substrate and
allows a straight forward computation of a fully specified
equivalent electrical network. However, the matrix inver-
sion in the BEM can be done in an approximate way with
the Schur method. This leads to a much smaller network



with approximately the same behaviour as the fully spec-
ified network. The circuit model can be merged with the
original or the simultaneously extracted circuit description
in order to be simulated for an analysis of the cross-talk ef-
fects on the circuit behaviour.

In the next section we give a description of the pro-
posed method. First we give a description of all the steps
needed to calculate the circuit model by a Boundary Ele-
ment Method [6]. Then we give a detailed description of
one of the key issues in the method, i.e. the choice of a
Green’s function. This is followed by a discussion on the
use of approximate matrix inversion with the Schur Method
[7]. Finally we discuss some issues for implementation in
a layout extractor [8]. In Section 3 we present results illus-
trating important properties of the proposed method and re-
sults showing the relevance of substrate cross-talk analysis.
Finally, we conclude in Section 4.

2 Method
2.1 Formulation

At the frequencies of interest (/10 GHz) the substrate
behaves resistively. The resistivity varies, because of the
doping profile, only in the direction perpendicular to the
Si-SiO2 interface. Therefore, the substrate with the doping
profile is modelled as a stack of parallel homogeneous lay-
ers. Often the substrate can be treated as a 2 layer medium:
an epi-layer and a substrate layer. On top of this stack a
number of areas, which are denoted as contacts, is placed.
These represent the areas where the designed circuit may
possibly interact with the substrate, e.g. bottom sides of
MOSFETs, real (designed) substrate contacts, etc. The
structure is illustrated in Figure 2. On the bottom of the
stack there may also be contacts. In practice however, this
will usually be one large contact covering the whole bottom
or there will be no contact at all.
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Figure 2: 3D view of the epi-layer and substrate with
contacts.

In order to model the behaviour of the substrate, we
must know the admittance matrix of the multiterminal dis-
tributed resistance network between these contacts.

Mathematically the problem is described by a partial dif-
ferential equation in a domain Ω with boundary conditions
on the boundary Γ. A direct solution with a Finite Ele-
ment or Finite Difference Method would require a full dis-
cretization of the complete substrate, which leads to very

large matrices. Furthermore, we are primarily interested in
the behaviour on the boundary, since this is where the sub-
strate interacts with the circuit. In fact we are looking for
an equivalent electrical network between the contacts only.
Therefore it is more attractive to use a Boundary Element
Method [6].

In each layer the problem is described by the Laplace
equation for the potential φ(~x)

σ(~x)∇2φ(~x) = 0: (1)

where σ(~x) is the conductivity of the layer. The boundary
condition is that no currents are flowing through the bound-
aries (normal derivative of φ= 0) except for the contact ar-
eas. For these areas the potential is prescribed (constant
over the area for ideal contacts). All layers are coupled
through interface conditions (potential and normal compo-
nent of current density are continuous).

With Green’s theorem the set of equations is trans-
formed to the following Boundary Integral Equation (BIE)
[6]

αφ(~x0)+

Z
Γ

σ(~x)
∂G(~x;~x0)

∂n
φ(~x)dΓ(~x) = (2)

Z
Γ

σ(~x)G(~x;~x0)
∂φ(~x)

∂n
dΓ(~x) =

Z
Γ

G(~x;~x0)~Jn(~x)dΓ(~x)

where α= 1 if ~x0 ∈ Ω, α= 0 if ~x0 6∈ Ω and α= 0:5 if ~x0 ∈ Γ.
~Jn is the normal component of the current density on Γ and
G(~x;~x0) denotes the so-called Green’s function. This func-
tion will be discussed in detail in Section 2.2. Here it suf-
fices to know that it is a fundamental solution of the partial
differential equation. It characterizes the nature of the do-
main and thus assures a correct behaviour on the layer in-
terfaces. We will tailor our Green’s function such that as lit-
tle of the boundary integrals remain as possible. In general
this is done by demanding additional boundary conditions
for the Green’s function.

The above formulation in Equation (2) is called the col-
location BEM. After discretization, applying the BIE to all
discrete boundary elements and assuming piecewise con-
stant shape functions for φ(~x) and ~Jn(~x), the resulting set
of equations can be written in matrix form. With the defi-
nitions

Hi j =

8>><
>>:

Z
Γ j

σ(~x j)
∂G(~x j ;~xi)

∂n dΓ(~x j) i 6= j

α+
Z
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σ(~x j)
∂G(~x j ;~xi)

∂n dΓ(~x j) i = j
(3)

and

Gi j =
1

A j

Z
Γ j

G(~x j;~xi)dΓ(~x j) (4)

where A j denotes the area of element j, we have

H · Φ = G · J or J = G−1 · H · Φ = Ye · Φ (5)



Here, Φ is a vector collecting all element potentials and
J is a vector collecting all element current densities. A
Galerkin version of Equation (2) is obtained by applying an
additional weighting procedure, with the shape functions as
weighting functions, to each term of the equation.

Matrix Ye can be interpreted as a full admittance matrix
between all boundary elements with respect to a (virtual)
reference node. This reference node represents the poten-
tial at infinity. The boundary elements are part of a contact
or part of the rest of the boundary.

Using an incidence matrix F, elements which belong to
the same physical contact can be grouped together. Thus
we obtain an admittance matrix for the network between all
physical contacts and the elements not belonging to a phys-
ical contact with respect to a virtual reference node:

Y = FT ·Ye · F (6)

From this admittance matrix an indefinite admittance
matrix YIAM can be derived by adding a row and a column
such that all row sums and all column sums are zero. For
convenience we now distinguish between matrix entries be-
longing to a contact (index c) and entries not belonging to a
contact (index n). We then find the following form forYIAM:

YIAM =

0
@

Yc;c Yc;n Yc;∞
Yn;c Yn;n Yn;∞
Y∞;c Y∞;n Y∞;∞

1
A (7)

If desired, the non-contact elements and the virtual refer-
ence node may be eliminated by Gaussian elimination.

2.2 Green’s Function
As discussed above we need Green’s function in order

to solve the integral equation. Basically, Green’s function
is the solution of the fundamental PDE, corresponding to
Equation (1)

σ(~x)∇2G(~x;~x0) = −δ(~x −~x0) (8)

For the analogous electrostatic problem Green’s function
may be interpreted as the potential at position~x (observa-
tion point) in a domain, induced by a unit point charge at
position ~x0 (source point) [9]. The simplest form of a fun-
damental solution is Green’s function of the free space elec-
trostatic problem

G(~x;~x0) =
1

4πε0k~x −~x0k
(9)

The main disadvantage of the above equation is that it
requires all interfaces to be treated as double boundaries on
which afterwards the interface conditions have to be im-
posed [6]. This implies a complete discretization of all
layer interfaces. Furthermore the complete boundary of the
substrate must be discretized [6], while we are only inter-
ested in the contacts. In contrast with standard BE methods,

we will not use the above Green’s function, but one which
is specific to the domain and the problem, in order to reduce
the sizes of the matrices. This is described for the capaci-
tance problem in [10, 12].

We start by requiring that G(~x;~x0) satisfies Equation (8)
in the whole domain Ω. Additionally we demand that it also
satisfies the interface conditions, i.e. G(~x;~x0) and its nor-
mal derivative multiplied by the local conductivity (σ(~x))
are continuous over the interfaces. This assures, as can eas-
ily be verified, that Equation (2) describes the problem in Ω,
including the interfaces between the layers, and not only the
problem in a single homogeneous layer.

If we would demand that the normal derivative of
G(~x;~x0) vanishes on the boundary, the integral in the left
hand side of Equation (2) would vanish. Moreover, due to
the boundary conditions for Jn, the integral in the right hand
side would reduce to an integral just over the contact part
of the boundary. This is possible to do, but leads to a dou-
ble Fourier type series expression for G(~x;~x0), which has
an unsuitable convergence behaviour [10].

In order to obtain a more suitable Green’s function we
relax the additional boundary condition for G(~x;~x0). We
only demand that the normal derivative of G(~x;~x0) vanishes
on the top surface of the substrate, i.e. the Si-SiO2 inter-
face. Thus the Green’s function models a layered semis-
pace. For this situation the Green’s function can be found
by separation of variables in cylinder coordinates. This
leads, for a 2 layer semispace with h the thickness of the
first layer, to a single series expansion of the form

G =
n=∞

∑
n=0

an

�
σ1−σ2
σ1+σ2

�n

p
ρ2+(bn+ cnz)2

; (10)

of which each term can be interpreted as originating from
the method of images [9].

The rate of convergence of the series for Green’s func-
tion depends mainly on the ratio of the two conductivi-
ties (σ1, σ2). For larger ratios the convergence becomes
slower. However, we noted that in these cases even if the
series is truncated before the desired accuracy for the se-
ries is reached, this is often not noticeable in the resulting
admittance matrix. Furthermore, the series (Equation (10))
is either alternating or monotonous. This makes it suitable
for standard transforms to speed up the convergence [11].
However, further research is necessary to find a good re-
lation between desired accuracy for the result and needed
accuracy in the evaluation of the (integrals of the) Green’s
function.

In effect, the above approach means that the Green’s
function models a chip with infinite dimensions in the lat-
eral direction as well as an infinite thickness. This is in
many cases a good approximation, since the substrate layer



is often much thicker than the epi-layer and usually all de-
vices are placed far from the sidewalls of the chip (saw lane,
safety margin etc). If this approach is applied to the analysis
of the previous section it turns out that matrix H reduces to
an identity matrix and only integrals over the contacts (on
the top surface) remain. Clearly this reduces the computa-
tional effort needed to obtain the solution.

If necessary, the effects of the finite thickness of the chip
can be taken into account by discretizing the bottom. This
is necessary for extremely thin substrates. This will be il-
lustrated in the next section. In this case, the matrix H in
Equation (6) is no longer an identity matrix. The additional
elements can be eliminated from the solution before the fi-
nal admittance matrix is formed. It is clear that it is also
necessary to discretize the bottom of the substrate if a back-
side contact exists.

With the proposed method the effects of the lateral side-
walls of the chip are neglected. This may cause errors e.g.
for contacts which are close to the edges of the chip. In Sec-
tion 3.1 it will be shown that in many cases these effects are
negligible. The effects could be taken into account by dis-
cretizing the lateral sidewalls. However, this leads to the
evaluation of difficult integrals and increases the amount
of computational effort drastically. Alternatively, the ef-
fects of the sidewalls can be taken into account by apply-
ing the method of images [9] to the entire Green’s function.
This means mirroring the source point in all sidewalls of
the chip. Since the source point lies surrounded by 4 walls
(mirrors) this leads to an infinite number of images, as illus-
trated in Figure 3. Unfortunately, this leads to a divergent
series. However, the sidewall effects are well approximated
if we only take into account the side(s) close to the source
point (+ in Figure 3). Effectively, this means a double or
triple evaluation of the Green’s function. In the Section 3.1
we will show that this approach gives a good approximation
for the sidewall effects.
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Figure 3: Method of images to include effect of lateral
sidewalls. Fat lines indicate the actual chip. • indicates
the boundary element under consideration. ’+’ and ’-’
indicate images. Only the images indicated by a ’+’ are
used for the approximation.

2.3 Approximate Inversion
The inversion in Equation (5) may be performed exactly

via standard methods. However, in general inversion is an
O(N3) process, in which N is the number of boundary ele-
ments. Although this number is minimal due to the use of
a Boundary Element Method and the choice of the Green’s
function, the inversion can still become inefficient. Exact
inversion results in a fully specified inverse and therefore
also a fully specified admittance matrix.

However, it is possible to calculate an approximate in-
verse with the (hierarchical) Schur method [7]. This ap-
proximate inversion yields a reduced, but physically cor-
rect admittance matrix. The Schur method results in a
sparse (banded) approximation of the inverse of G and will
also result in a (banded) approximation of the admittance
matrix. Physically this means that for a contact all admit-
tances to other contacts within a user-defined environment
around that contact are calculated, but the direct admit-
tances to contacts outside this environment are not calcu-
lated. However the indirect coupling, via the (virtual) ref-
erence node is taken into account. For these cases the direct
admittance (coupling) is much smaller than the admittances
(coupling) to the virtual node and thus may indeed be ne-
glected. This is illustrated in Section 3.1.

It has been shown that this inversion method is an
O(Nb2) process [12]. Here b is the width of the Schur band.
Thus for a given choice of b, which mainly depends on the
used technology, the time complexity is linear. Note that
if the band covers the whole design b = N and we obtain
again an O(N3) process. The resulting inverse is exact in
this case, leading to the fully specified admittance matrix.
Finally we remark that the memory usage of this method is
mainly depending on the (fixed) bandwidth. Thus concern-
ing the memory usage this is an O(N0) process.

2.4 Implementation
The method as described above is fully suitable for im-

plementation in many layout-to-circuit extractors. Here,
we describe issues related to our implementation in the
layout-to-circuit extractor Space [8, 10, 12].

Space uses a scanline mechanism and a corner-stitched
data structure of the layout. In a technology file the mask
combinations defining devices (e.g. MOSFETS), relevant
contact areas (e.g. substrate contacts), etc. must be speci-
fied together with data describing the substrate (layer thick-
nesses and conductivities). This has to be done once for
each different technology. Data for e.g. integration meth-
ods, collocation or Galerkin method and Schur inversion
(e.g. the bandwidth) can be specified in a separate, user
controllable, parameter file. An efficient scanline mecha-
nism is used to scan the layout. During the scanning pro-
cess the discretization, calculation of the matrix entries,
(approximate) Schur inversion and calculation of the ad-



mittance matrix is performed. The Schur bandwidth corre-
sponds with a geometrical window attached to the scanline.
As soon as possible the calculated network elements are
written in the netlist database. With the correct stimuli the
extracted circuit can then be analyzed with e.g. Spice. The
whole extraction process of the substrate cross-talk model
is fully integrated with all other features of Space, includ-
ing extraction of active devices, interconnect resistances
and 3D interconnect capacitances.

The matrix inversions, which arise for the substrate
cross-talk extraction as well as for the 3D interconnect ca-
pacitance extraction, are the bottleneck of the whole layout
extraction process if they are carried out exactly. However,
with the Schur inversion and since all other steps in the ex-
traction are at most linear (O(N)) in time complexity, the
whole extraction can be done in linear time.

Although the above method is efficient for large designs
it still can be too time consuming. Therefore, analogous
to the capacitance problem, we have developed a heuris-
tic method for faster calculations [13]. It uses a Delauney
mesh to determine the most relevant couplings. Next the
coupling resistances are calculated via interpolation formu-
lae based on results for typical structures calculated with
the present method.

3 Results
In this section we present results from the Boundary El-

ement method discussed above. First, results from some
special test structures will be presented to illustrate the
properties and approximations discussed in the previous
section. Subsequently, we will present results from circuit
applications. More examples are given in [10, 14].

3.1 Test structures
First we will concentrate on the effect of boundedness

of the domain, i.e. the finite thickness of the substrate and
the presence of the sidewalls. For this purpose we consider
a substrate with two parallel rectangular contacts (10 µm ×
100 µm at a distance of 30 µm) on the top surface. The epi-
layer is 7 µm thick and has a resistivity (1=σ) of 20 Ωcm.
The conductivity of the substrate layer is varied.

Figure 4 shows the calculated resistance for three chip
thicknesses, while the domain was considered to be infi-
nite in the lateral dimensions. For the thinnest chip the bot-
tom was discretized in 400 elements, while for the medium
thickness 324 elements were used. For the thickest chip
only 4 elements were already more than sufficient. In fact
the same result is obtained if the bottom is neglected, i.e.
if the chip is considered to be infinitely thick. For refer-
ence also the exact results obtained with the method of [10],
with a Green’s function with vanishing derivatives on all
boundaries of the domain, are given. Clearly, there is a
good agreement between the methods. Note that for the ex-

tremely thin chip more than 400 elements are needed for
agreement with the exact results.
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Figure 4: Calculated resistance vs. substrate conductiv-
ity σ2 with total chip thickness (H) as parameter. Epi-
layer was 20 Ωcm and 7 µm thick in all cases.
Solid lines: method of [10], dashed lines: present
method. �: H=7.1 µm, +: H=10 µm, �: H=300µm.

The second example considers the influence of the lat-
eral sidewalls of the chip. The structure is similar to the pre-
vious one, except that the substrate structure now consists
of a 22 µm thick 20 Ωcm epilayer on a 278 µm thick 3.5
Ωcm substrate. Figure 5 shows the calculated resistance as
a function of the distance of the sidewalls to the bounding
box of the contact structure. The exact solution is calcu-
lated with the program described in [10]. The overall error
is certainly small enough for practical purposes. The largest
error of the approximation method of Figure 3 is about 3%
and occurs if the contacts touch the sidewalls. This is just
the situation where the approximation can be expected to
be least accurate, since the strength of the images decreases
with distance. Clearly we see that for distances larger than
40 µm the sidewall effects are negligible and the infinite
chip method can be used.

The third set of test results is shown in Figure 6. These
were obtained with the present method for several varia-
tions of the same structure. Here we see the influence of
distance between the contacts, doping levels and epi-layer
thickness on the resistance value. We observe that the dis-
tance over which the resistance varies with the separation
between the contacts is mainly determined by the epi-layer
thickness. The rule of thumb [4] that the critical distance is
approximately 4 times the epi-layer thickness is confirmed.

With this same rule we can now explain the result of Fig-
ure 5. Considering that the distance between the original
and its mirror image is twice the distance shown on the x-
axis, we see that the distance of twice 40 µm agrees with ap-
proximately 4 times the epi-layer thickness (22 µm). Thus



we conclude as a rough guideline that sidewall effects can
be neglected if all contacts are further than twice the epi-
layer thickness from the edges of a chip. In practice this
will often be the case, especially with the tendency to de-
crease epi-layer thicknesses in modern technologies.
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Figure 5: Calculated resistance vs. distance Dc to side-
wall for exact method [10], infinite domain and approx-
imation.
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Figure 6: Resistance as a function of contact distance
for various substrate situations. All substrate layers
were 3.5Ωcm. Epi-layer resistivities and thicknesses
varied. Lines: epi-layer resistivity: dashed lines: 40
Ωcm, solid lines: 20 Ωcm, dotted lines: 10 Ωcm. Sym-
bols: epi-layer thickness: �: 16.6 µm, +: 4.15 µm, �:
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The following example illustrates some properties of the
Schur inversion. The structure considered consists of 5 par-
allel rectangular contacts (1 µm × 10 µm at distances of 1
µm, numbered 1 to 5) on a 5 µm thick epilayer. In Table 1
the calculated resistances for contacts 1 and 2 are shown for
several values of the Schur window. Ri j denotes the direct

resistance between contacts i and j, where ∞ represents the
virtual reference node and Ris denotes the short-circuit re-
sistance, - the total resistance that a contact ’sees’.

An infinite band is equivalent to exact inversion. As the
band is made narrower, resistances between ’far’ contacts
become infinite. This means that direct coupling between
these resistances is neglected, but not the coupling via the
reference node. Note however, that Ris stays almost con-
stant until very small bandwidth values. Thus a good ap-
proximation of the coupling to and through the substrate is
kept, even for small bandwidths.

Table 1: Calculated resistances for several Schur bands.
window R1∞ R12 R13 R14 R15 R1s

∞ 129 41.8 134 204 193 20.3
4 117 40.9 122 135 ∞ 20.6
3 101 38.9 83.6 ∞ ∞ 21.0
2 81.0 31.1 ∞ ∞ ∞ 22.5
1 47.0 ∞ ∞ ∞ ∞ 47.0

window R2∞ R21 R23 R24 R25 R2s

∞ 209 41.8 48.0 171 204 16.6
4 235 40.9 49.2 222 134 16.4
3 221 38.9 52.0 83.6 ∞ 16.3
2 292 31.1 31.1 ∞ ∞ 14.8
1 47.0 ∞ ∞ ∞ ∞ 47.0
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Figure 7: Extraction time as a function of the number of
inverters for two choices of the Schur bandwidth. Com-
putation times were measured on a HP 9000/735.

In Figure 7 we show the time complexity for experi-
ments done on series of MOS inverters. It clearly shows
the linear extraction time as a function of the number of in-
verters for two choices of the Schur window. The largest
bandwidth covers three neighbouring inverters and thus
all direct coupling between three successive stages are ac-
counted for. Coupling between inverters further apart is ac-
counted for via the virtual reference node. The memory us-



age was 0.9 Mbyte for the small bandwidth and 1.6 Mbyte
for the large bandwidth, largely independent of the number
of inverters.

3.2 Circuit examples
The next example is based on the structure used in [4],

which is shown in Figure 8. It is an abstraction of a typi-
cal situation in a mixed-signal chip. Contact 3 represents
the output of a digital ring oscillator (MOSFET drain re-
gion) and contact 2 represents a sensitive node (back gate of
MOSFET) in an analogue part. If due to the digital switch-
ing the potential of this back gate fluctuates, this modu-
lates the threshold voltage and thus the current through the
MOSFET. This results in noise in the analogue signal. We
analyzed this structure for two substrate situations: a 7 µm,
15 Ωcm epi-layer on a highly doped substrate (300 µm,
0.05 Ωcm) and a homogeneously lowly doped (15 Ωcm)
substrate. The distance (Dx) between the substrate contacts
and the other contacts was 6µm or 22µm and the distance
between ’source and destination’ (Dc) was varied.
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Figure 8: Structure from [4], used for next figure.
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The calculated (voltage) transfer characteristics from
contact 3 to contact 2 when all other contacts are connected
to ground are shown in Figure 9. Clearly, close substrate
contacts suppress coupling more than far substrate contacts.
As expected a backside contact can significantly reduce the
coupling in the case of a highly doped substrate. Further-
more we see that in the case of a good conducting substrate

layer the effect of increasing distance between ’source and
destination’ saturates quickly if the distance is in the or-
der of 3 times the thickness of the epi-layer. For the lightly
doped substrate this saturation distance is much larger. This
confirms the behaviour observed in [4, 5] by full device
simulations and measurements. It is also in agreement with
the experiments shown in Figure 6.

As a more realistic example we study the transfer char-
acteristics of a bipolar high-frequency amplifier. The
schematic and the simplified layout are shown in Figure 10.
The substrate contacts are connected to ground with short
and wide metal interconnections, therefore the influence
of these interconnections are negligible. Since the bipolar
transistors occupy the full depth of the epi-layer, the epi-
layer does not need to be modelled. The doping profile of
the substrate is modelled by a 1.4 µm thick 0.15 Ω-cm tran-
sition layer between the epi-layer and the 4 Ω-cm substrate.
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Figure 10: Schematic (a) and Simplified Layout (b) of
HF bipolar amplifier. Grey areas indicate the position
of a transistor (from left to right T1, T2, T3a and T3b),
black areas indicate the position of a substrate contact.

Figure 11 shows the transfer characteristics of the am-
plifier calculated with Spice, with and without taking into
account the substrate effects. The substrate model was cal-
culated with the present model with full inversion. For clar-
ity no other parasitics were taken into account. Globally the
behaviour does not change. However, it can be seen that the
unity gain frequency is overestimated by about 10% if the
substrate is neglected. Furthermore, the phase at this fre-
quency shows a difference of 15 degrees (20%). The peak
before the unity gain frequency is smoothened due to the
substrate coupling.
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Figure 11: Simulated magnitude (a) and phase (b) of
transfer function vs. frequency. Solid lines: without
substrate effects, dashed lines: with substrate effects.

4 Conclusions
In this paper we outlined the key issues of a method

to derive systematically a network model for the para-
sitic substrate cross-talk from the layout of a design. We
showed that by a proper choice of the Green’s function
of the Boundary Element Method this can be done, such
that only those parts of the substrate boundary (called ’con-
tacts’) have to be discretized that directly interact with the
designed circuit. We gave a method to include the effects of
the lateral boundedness without introducing extra bound-
ary elements. It was shown that it is only necessary to in-
clude these if there are contacts closer than twice the epi-
layer thickness to the edges of the chip. Only in the rare
case that the total thickness of the chip is important addi-
tional boundary elements need to be introduced. Further-
more we showed that it is possible to integrate model reduc-
tion techniques with the proposed method to arrive at sim-
plified, yet accurate enough, networks for the analysis of
substrate cross-talk. Due to the Schur inversion the whole
extraction can be achieved with a linear time complexity

and a constant memory usage. The method was completely
implemented and integrated in the layout-to-circuit extrac-
tor Space.
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