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ABSTRACT
Motivation: A major issue in computational biology is the
reconstruction of pathways from several genomic datasets,
such as expression data, protein interaction data and
phylogenetic profiles. As a first step toward this goal, it is
important to investigate the amount of correlation which
exists between these data.
Method: We present new methods to measure the cor-
relation between several heterogeneous datasets, and to
extract sets of genes which share similarities with respect
to multiple biological attributes. The originality of our ap-
proach is the extension of the concept of correlation for
non-vectorial data, which is made possible by the use of
generalized kernel canonical correlation analysis (KCCA),
and the method we propose to extract groups of genes re-
sponsible for the detected correlations. Moreover, two vari-
ants of KCCA are proposed when more than two datasets
are available.
Result: These methods are successfully tested on
their ability to recognize operons in the Escherichia
coli genome, from the comparison of three datasets
corresponding to functional relationships between genes
in metabolic pathways, geometrical relationships along
the chromosome, and co-expression relationships as
observed by gene expression data.
Contact: yoshi@kuicr.kyoto-u.ac.jp

INTRODUCTION
Recent developments in high-throughput technologies
have filled biological databases with many kinds of
genomic data, such as pathway knowledge (Kanehisa et
al., 2002), microarray gene expression data (Eisen et al.,
1998), protein-protein interaction data (Ito et al., 2001),
phylogenetic profiles (Pellegrini et al., 1999), and several
more. The problem of reconstructing pathways from
such genomic datasets is a major issue in computational
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biology because pathways represent a higher level of
biological functions than single genes. As a first step
toward this goal, it is crucial to investigate the correlation
which exists between multiple biological attributes, and
eventually to use this correlation in order to extract
biologically meaningful features from heterogeneous
genomic data. Indeed, a correlation detected between
multiple datasets is likely to be due to some hidden
biological phenomenon. Moreover, by selecting the
genes responsible for the correlation, one can expect to
select groups of genes which play a special role in or
are affected by the underlying biological phenomenon.
As an example, the existence of operons in prokaryotes
is responsible for a form of correlation between several
datasets, because genes which form operons are close
to each other along chromosomes, have similar expres-
sion profiles and can catalyze successive reactions in a
pathway. Conversely, one can start from three datasets
containing the localization of the genes on the genome,
their expression profiles, and the chemical reactions they
catalyze in known pathways, and look for correlations
between these datasets, in order to finally recover groups
of genes, which may form operons.

The integration of different kinds of data has been
investigated with a variety of approaches so far. Using
graph-theoretical arguments, clusters of genes have been
extracted from several biological networks using multiple
graph comparison by Ogata et al. (2000) and Nakaya et
al. (2001). Several approaches using kernel methods have
also been proposed, such as the combination of kernel
matrices of expression data and phylogenetic profiles
(Pavlidis et al., 2001) or the extraction of features from
microarray data using a gene network as side information
(Vert et al., 2003). In both cases, the goal was to improve
the performance of gene function prediction algorithms.

A well-known statistical method to investigate the cor-
relation between different real-valued attributes is canon-
ical correlation analysis (CCA) (Hotelling, 1936). How-
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ever, ordinary CCA cannot be applied to non-vectorial ge-
nomic data, such as pathways, protein-protein interactions
or gene positions in a chromosome. In this paper we over-
come this issue by using a generalization of CCA, known
as kernel CCA (KCCA; Akaho, 2001; Bach et al., 2001),
which provides a way to perform a generalized form of
CCA on any data type as soon as a kernel function can be
defined. KCCA finds directions simultaneously in the two
feature spaces defined by the kernel functions with max-
imum correlation. If some biological phenomenon is re-
sponsible for this correlation, then significantly high/low-
scoring genes in each direction can be considered func-
tionally related in some biological meaning.

In this paper we derive two variants of KCCA in order
to perform CCA on more than two datasets. The first one
is a multiple KCCA, which is a natural generalization
of KCCA to more than two kernel functions, already
suggested by Bach et al. (2001). The second one is an
integrated KCCA, which is a normal KCCA carried
out with two kernels which are themselves sums of
primary kernels. Integrated KCCA can therefore be
useful to extract correlations between two sets of data
types, represented by two sets of kernel functions. These
methods are tested on their ability to extract operons from
the Escherichia coli genome, by detecting correlations
between the KEGG/pathways dataset, the positions of the
genes on the genome, and microarray expression data.

MATERIAL AND METHODS
Data
The dataset of pathways is constructed from the
KEGG/LIGAND database (Goto et al., 2000). The
LIGAND database of chemical compounds and reactions
in biological pathways is part of KEGG database (Kane-
hisa et al., 2002). It contains thousands of metabolic
reactions known to take place in various organisms,
together with the substrates involved and the classification
of the catalyzing enzyme as an EC number. From this
database we created an undirected graph with genes of an
organism as vertices, and where two vertices are linked
when the genes catalyze two successive reactions in a
pathway.

The dataset containing the position of the genes on
a sequenced genome is available from KEGG/BRITE
database (Goto et al., 1996). BRITE is a database of
binary relations for computation and comparison of
graphs involving genes and proteins. From the gene
position information we created a graph whose nodes cor-
respond to genes and whose edges encode the neighboring
association between two genes on a chromosome.

The data of microarray expression are downloaded from
ExpressDB (Aach et al., 2000). ExpressDB is a relational
database containing yeast and E.coli RNA expression data

and information loaded from numerous expression stud-
ies. We created a multivariate dataset whose individuals
correspond to genes and whose variables correspond to
four experimental conditions.

Ordinary kernel canonical correlation analysis
Kernel CCA (Akaho, 2001; Bach et al., 2001) is a
method which generalizes classical CCA and which we
now recall. Its goal is to detect correlations between two
datasets {xi }N

i=1 and {yi }N
i=1, where N is the number of

objects and each object xi (resp. yi ) belongs to some
set X (resp. Y). To this end, the objects xi (resp. yi )
are mapped to some Hilbert space Hx (resp. Hy) by a
mapping φx (.) (resp. φy(.)). These objects correspond to
genes or proteins in this study, and each data corresponds
to one representation of the genes. Classical CCA can
then be performed between the images {φx (xi )}N

i=1 and
{φy(yi )}N

i=1 as follows. The goal is to find two directions
fx ∈ Hx and fy ∈ Hy such that the features

ux = 〈 fx , φx (x)〉,
uy = 〈 fy, φy(y)〉, (1)

be maximally correlated. As directions orthogonal to
the linear spans of the points do not contribute to any
correlation, fx and fy can be restricted to belong to these
linear spans. They can therefore be expressed as:

fx =
∑

i

αi
xφx (xi ),

fy =
∑

i

αi
yφy(yi ), (2)

in which case the corresponding ux and uy can be
rewritten as

ux =
∑

i

αi
x 〈φx (xi ), φx (x)〉,

uy =
∑

i

αi
y〈φy(yi ), φy(y)〉. (3)

The fx and fy can now be found by solving the La-
grangean

L0 = E[(ux − E[ux ])(uy − E[uy])]
−ρx

2
E[(ux − E[ux ])2] − ρy

2
E[(uy − E[uy])2],(4)

where ρx and ρy are Lagrange multipliers. However, the
Lagrangean is ill-posed when the dimensionalities of the
Hilbert spaces are too large. To overcome the difficulty,
penalty terms P E N ( fx ) and P E N ( fy) are introduced to
form a new Lagrangean :

L = L0 + λx

2
P E N ( fx ) + λy

2
P E N ( fy), (5)

i324

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/suppl_1/i323/228274 by guest on 20 August 2022



Extraction of correlated gene clusters

where λx and λy are regularization parameters. The
importance of regularization in CCA in high dimension
has been discussed in detail (see Hastie et al., 1995;
Leurgans et al., 1993).

Any kernel function kX (·, ·) on X 2 defines a Hilbert
space and a mapping φx (.) (Schölkopf et al., 2002)
such that ∀(x1, x2) ∈ X 2, kx (x1, x2) = 〈φ(x1), φ(x2)〉.
Examples of the kernel functions are the following:

kx (x1, x2) = (x1·x2 + 1)d , (6)

kx (x1, x2) = exp{− ‖ x1 − x2 ‖2 /2σ 2}. (7)

Equation (6) is a polynomial kernel with degree d, and
Equation(7) is a Gaussian radial basis function (RBF)
kernel with width σ . Now let (Kx )i j := kx (xi , x j ) and
(Ky)i j := ky(yi , y j ) be two kernel matrices, assumed to
be centered (Bach et al., 2001). Then L can be rewritten
as

L = αT
x Kx Kyαy − ρx

2
αT

x (Kx + λx I)2αx

−ρy

2
αT

y (Ky + λyI)2αy, (8)

where I is an identity matrix and αx = (α1
x , · · · , αN

x )T

and αy = (α1
y, · · · , αN

y )T . This shows that regularization
parameters λx and λy control the trade-off between
maximizing the correlation and penalizing the complexity
of fx and fy . Maximizing this Lagrangean can be done by
solving the following generalized eigenvalue problem:

(
0 Kx Ky

KyKx 0

) (
αx
αy

)

= ρ

(
(Kx + λx Ix )

2 0
0 (Ky + λyIy)

2

) (
αx
αy

)
. (9)

After finding αx and αy , canonical correlation scores (CC
scores) can be recovered by ux = Kxαx and uy = Kyαy .

Multiple kernel canonical correlation analysis
Here we propose an extension of the model when more
than two attributes are available. This method was sug-
gested by Bach et al. (2001) for the purpose of indepen-
dent component analysis. We refer to it as multiple kernel
canonical correlation analysis (MKCCA). It is a straight-
forward extension of the ordinary KCCA model described
in the previous section.

Suppose that we have P datasets {xi
p}N

i=1 (p =
1, 2, · · · , P), and mappings φx p (xp) to some Hilbert
spaces Hx p . Then we can look for directions f p ∈
Hp (p = 1, 2, · · · , P) such that the sum of all pairwise
correlations between features

u p = 〈 f p, φx (xp)〉, p = 1, · · · , P, (10)

be the largest possible. Since f p is expressed as

f p =
∑

i

αi
pφx p (x

i
p), (11)

the corresponding u p can be rewritten as

u p =
∑

i

αi
p〈φx p (x

i
p), φx p (xp)〉, (12)

where αp = (α1
p, · · · , αN

p )T . The f p can be found by
solving the Lagrangean

L0 = ∑
p,q E[(u p − E[u p])(uq − E[uq ])]

− ∑
p

ρp
2 E[(u p − E[u p])2].

(13)

Like in ordinary KCCA, we introduce a penalty term
P E N ( fx p ) and we get

L = L0 + λp

2

∑
p

P E N ( fx p ), (14)

where λp is a regularization parameter. Using the kernel
trick, we can work with P kernel matrices as (Kx p )i j :=
kx p (x

i
p, x j

p) (p = 1, · · · , P), assumed to be centered.
Then L can be rewritten in the kernel form as

L = ∑
p,q αT

p Kx p Kxq αq

− ∑
p

ρp
2 αT

p (Kx p + λx p I)2αp.

(15)

Finally, the estimation of canonical correlation scores (CC
scores) is reduced to the following generalized eigenvalue
problem:




0 . . . K1KP
...

. . .
...

KPK1 . . . 0







α1
...

αP




= ρ




(K1 + λ1I1)
2 . . . 0

...
. . .

...

0 . . . (KP + λPIP)2







α1
...

αP


 .

(16)

After finding αp, CC scores can be obtained by u p =
Kpαp (p = 1, 2, · · · , P).

Integrated kernel canonical correlation analysis
Instead of maximizing the sum of all pairwise correla-
tions as in multiple KCCA, one can prefer to maximize
the correlation between one type of attribute and a combi-
nation of other types, or even between two combinations
of attributes. A simple combination of attributes via ker-
nel is obtained by summing two (or more) kernels, which
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Fig. 1. Mutual correlation model in multiple KCCA (MKCCA).

is equivalent to taking the direct sum of the feature spaces
associated with each kernel as a new feature space. Hence
it is a way to combine implicitly two attributes into a sin-
gle one. This possibility was used for instance by Pavlidis
et al. (2001), where kernel matrices of expression data and
phylogenetic profiles are combined into one kernel matrix
in support vector machine (SVM) for functional classifi-
cation of genes.

More formally, suppose we have two major attributes
x and y, where x has several sub-attributes x p (p =
1, 2, · · · , P) and y has several sub-attributes yq (q =
1, 2, · · · , Q). If a kernel is defined on each set of sub-
attributes, then heterogeneous kernel matrices for x and
y are computed as

Kx =
P∑

p=1

Kx p , Ky =
Q∑

q=1

Kyq . (17)

Classical KCCA is then performed on the heterogeneous
kernel matrices, by solving the following generalized
eigenvalue problem:

(
0

∑
p Kx p

∑
q Kyq∑

q Kyq

∑
p Kx p 0

) (
αx
αy

)

= ρ

(
(
∑

p Kx p + λx Ix )
2 0

0 (
∑

q Kyq + λyIy)
2

)

×
(

αx
αy

)
. (18)

Then, CC scores can be obtained as ux = ∑
p Kx pαx and

uy = ∑
q Kyq αy .

Diffusion kernel
When the dataset is a network of genes, it must be
transformed into a kernel function to be analyzed by
our methods. This operation can be performed with the
diffusion kernel, proposed in Kondor et al. (2002), which
we now recall.

Suppose that we have an undirected, unweighted graph
� = (V, E). The (opposite) Laplacian of this graph is the

Fig. 2. Mutual correlation model in integrated KCCA (IKCCA).

matrix

Hi j =



1 for i ∼ j,
−di for i = j,
0 otherwise,

(19)

where i ∼ j means that the i th and j th genes are
joined by an edge on the graph, and di is the number of
genes emanating from the i th gene. The exponential of the
matrix H is defined as

exp(βH) = lim
m→∞

(
1 + βH

m

)m

, (20)

where β is a positive constant. This is equivalent to the
following expansion:

exp(βH) = I + βH + β2

2
H2 + β3

3! H3 + · · · . (21)

The resulting matrix is symmetric and positive definite.
It is therefore a valid kernel called the diffusion kernel
(Kondor et al., 2002), which can be thought of as a
generalization of the Gaussian RBF kernel to a discrete
setting.

RESULTS
An operon is a characteristic structure of prokaryotic
genomes. Genes belonging to the same operon are coreg-
ulated, often play successive roles in pathways, and are
closely located on genomes. We therefore use pathways,
genome positions, and microarray expression data for
E.coli as original datasets, because those attributes are
expected to exhibit some form of correlation between
each other due to the presence of operons. Multiple and
integrated KCCAs (MKCCA and IKCCA) are applied to
extract operon structures of E.coli. Figures 1 and 2 show
the illustration of mutual correlation models in MKCCA
and IKCCA, respectively.

In the application of MKCCA, the kernel matrices
K1, K2 and K3 correspond to gene-gene similarities in
pathways, genome, and expression. The kernel matrices
K1 and K2 are computed using diffusion kernel, where
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Fig. 3. CC1 scores in MKCCA: pathway vs. genome vs. expression.

the parameter β is set to 1. The kernel matrix K3 is
computed from a Gaussian RBF kernel with unit width.
The regularization parameters λ in the algorithm of
KCCAs are set to 0.1. In the application of IKCCA, we
set Ky = K1 (pathway) and Kx1 = K2 (genome) and
Kx2 = K3 (expression), hence Q = 1 and P = 2. This
is motivated by the hypothesis that gene-gene similarity
in pathways can be predicted by a combination of gene-
gene similarities in genome and expression, because
successive reactions on pathways are often implied by
neighboring relationships on chromosome or coexpression
relationship in microarray experiment. For comparison,
ordinary KCCA is applied twice. First, ordinary KCCA
is applied to pathways and genome positions, which
we refer to as OKCCA(a). Second, ordinary KCCA is
applied to pathways and expressions, which we refer to
as OKCCA(b). In each experiment, the maximum value in
each kernel matrix is set to 1 by scaling of the matrices.

Figure 3 shows multiple cross-scatter plots of the
first canonical correlation scores (CC1 scores) for genes
in MKCCA between pathway, genome, and expression.
Figure 4 shows a scatter plot of CC1 scores for genes
in IKCCA between pathway and genome/expression. In
each case a correlation has clearly been detected between
different attributes. The correlations detected are mostly
due to the genes with high or low score, which can be
suspected of forming clusters simultaneously in several
feature spaces. Such clusters are operon candidates, in the
sense that they would correspond to genes close to each
other with respect to their positions in the pathways, in
the genome, and to their expression profiles. To validate
this hypothesis we selected the upper and lower 5 %
genes on the CC1 computed by each method, mapped

Fig. 4. CC1 scores in IKCCA: pathway vs. genome+expression.

and visualized them on the KEGG/pathway database,
and compared them with known operons obtained from
the Operon Data Library (http://cib.nig.ac.jp/dda/taitoh/
operondata.html).

In this study we focus on operons in the metabolic
pathways available from the KEGG database. Each gene
is represented by the EC number of its product enzyme in
this database, so we compare the EC numbers of selected
genes with those of genes in known operons. Table 1
shows the number of genes selected by each method
(OKCCA(a), OKCCA(b), MKCCA, and IKCCA) which
belong to 9 major known operons. For those operons,
IKCCA provides the best overall rate of gene detection,
followed by MKCCA. Figure 5 shows an example of a
known operon involved in the biotin metabolism, which
contains 3 genes marked with bold lines. Figure 6 shows
the genes selected by the IKCCA method which belong to
the biotin metabolism, colored in gray. We observe that in
this case, the gene selected correspond almost perfectly
to the operon, except for the bioA gene (EC:2.6.1.62)
which is selected but absent from the Operon Data Library.
One can observe that the four genes selected form a
more appropriate operon candidate than the three genes
listed in the Operon database, because they catalyze four
successive reaction in the biotin pathway.

DISCUSSION AND CONCLUSION
In this paper we presented new approaches to investigate
the correlation between heterogeneous genomic data. We
proposed several generalized formulations of ordinary
canonical correlation analysis and derived the algorithm
for computing CC scores. The integration of different
types of genomic data, (e.g. biochemical pathways,
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Fig. 5. An example of known operons in Operon Data Library.

genomes, and expression data), is a key problem in
computational biology. When data types are different,
(e.g. graphs, strings, and vectors), integration strate-
gies often rely on various heuristic approaches which
depend on the types of the data. The originality of our
approach is the extension of the concept of correlation for
non-vectorial data and integration of genomic data in a
rigorous mathematical framework common to all types.

The proposed methods (MKCCA and IKCCA) enable
us to automatically find correlated directions, along which
high/low scoring genes share similarities with respect to
multiple biological attributes. These methods worked well
to recognize the genes that belong to operons in the E.coli
genome, by comparing three datasets corresponding to
functional relationships between genes in metabolic path-
ways, geometrical relationships along the chromosome,
and co-expression relationships as observed by gene
expression data. We observed that generalized KCCAs
(MKCCA and IKCCA) behaved better than ordinary KC-
CAs in terms of the numbers of correctly extracted operon
candidates. In this work we used the 0.05 percentile as a
threshold and confirmed that extracted genes correspond
well to known operons of the E.coli genome. It would
be necessary to determine an appropriate threshold for a
more specific purpose.

In our preliminary results it seems that the number of
correct operon candidates selected by MKCCA tends to
be smaller than that selected by IKCCA. One explanation
for this difference in performance might be the fact that
MKCCA looks for correlations simultaneously among all
pairs of datasets. It would work well if the genes in an
operon were systematically similar to each other with
respect to all three sources of information we used. To the
contrary, in our IKCCA setting, we relax the constraint
of having a correlation between gene positions along the
genome and gene expression, and rather focus on detection

Fig. 6. An example of operons predicted by IKCCA.

of correlations between positions on the pathways on the
one hand, positions on the genome OR expression profile
on the other. Due to noise and errors in the data, this less
constrained problem might detect biological phenomena
(operons in our case) more easily than the MKCCA
approach. We conjecture that as the number of datasets
increases, the performance of MKCCA might decrease
because it becomes too difficult to impose correlation
constraints between any two datasets. In that case it might
be more efficient to try to detect correlations between
a smaller number of datasets, obtained themselves by
combining the initial datasets available, as we did in
IKCCA.

From the viewpoint of algorithms, our method first
starts by transforming each dataset into a kernel matrix
whose elements represent similarities between genes. This
process enables us to deal with different data types
elegantly and in a unified framework. We showed that CC
scores can be easily computed by solving the generalized
eigenvalue problem. However, the performance of kernel
methods often depends on the definition of the kernel
function and its parameters. In kernel methods such
as support vector machines (SVM), a kernel function
between two objects should be determined a priori (Müller
et al., 2001). For that reason, kernel engineering for
various genomic data has been investigated by several
methods recently in bioinformatics (e.g. Tsuda et al.,
2002; Vert, 2002). The performance of our method could
be improved by using a more specific kernel function
for each data type in actual application. In addition, it is
necessary to develop appropriate normalization methods
across different kernel matrices in KCCA algorithm,
because scales are different across data types.

The biological motivation of our approach is similar
to the work on multiple graph comparison (Ogata et al.,
2000; Nakaya et al., 2001), where gene-gene relation-
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Table 1. Acurracy for operon prediction based on the first canonical correlation scores (CC1 scores) in each KCCA

No. Operon (#gene products) OKCCA(a) OKCCA(b) MKCCA IKCCA

1 Fructose uptake (3) 2/3 2/3 2/3 2/3
2 Galactose metabolism (3) 0/3 2/3 3/3 3/3
3 Ubiquinone biosynthesis (2) 1/2 2/2 2/2 0/2
4 Fatty acid biosynthesis (2) 0/2 2/2 2/2 2/2
5 Purine nucleotide biosynthesis (2) 2/2 1/2 2/2 2/2
6 Pyruvate dehydrogenase (3) 3/3 3/3 3/3 3/3
7 Biotin metabolism (3) 0/3 1/3 1/3 3/3
8 Valine biosynthesis (5) 3/5 2/5 2/5 3/5
9 Peptidoglycan biosynthesis (3) 3/3 1/3 1/3 1/3

Total prediction rate 14/26 16/26 18/26 19/26

ships on all the attributes are regarded as graphs whose
nodes correspond to genes and whose edges encode the
presence of the association between two genes. In graph
comparison methods, finding correlated gene clusters
can be formalized as a subgraph isomorphism problem,
but the method is based on the assumption that the
relationship between genes are linear across different
biological attributes. That is why the addition of too many
graphs is sometimes too restrictive to uncover biologically
meaningful findings. The other approach related to our
study is the graph-driven features extraction method
studied by Vert et al. (2003), where ordinary KCCA is
applied to microarray expression data and biochemical
pathways of yeast. They propose to use the resulting
CC scores as feature vectors for functional classification
by SVM. Their method improved the performance in
functional classification. This suggests that the integration
of different kinds of data is beneficial to improve the accu-
racy and reliability of the prediction of gene functions. It
is also expected that such good behavior can be obtained
in functional prediction by using CC scores extracted by
generalized KCCAs.

The proposed methods enable us to gain some under-
standing of how pathways are correlated with several ge-
nomic datasets. However, it is just a first step toward our
final goal of pathway prediction. The quantity of pathway
data is by far fewer than that of other genomic datasets
(e.g. gene expression, protein interaction, genome posi-
tion, and phylogenetic profiles). That is why the compu-
tational reconstruction of unkown pathways from other
genomic data is an important issue in bioinformatics. We
are currently working on developing methods for pathway
prediction by expanding the framework described in this
paper.
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