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Abstract A numerical-relativity calculation yields in general a solution of the Einstein
equations including also a radiative part, which is in practice computed in a region of
finite extent. Since gravitational radiation is properly defined only at null infinity and in
an appropriate coordinate system, the accurate estimation of the emitted gravitational
waves represents an old and non-trivial problem in numerical relativity. A number
of methods have been developed over the years to “extract” the radiative part of the
solution from a numerical simulation and these include: quadrupole formulas, gauge-
invariant metric perturbations, Weyl scalars, and characteristic extraction. We review
and discuss each method, in terms of both its theoretical background as well as its
implementation. Finally, we provide a brief comparison of the various methods in
terms of their inherent advantages and disadvantages.
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1 Introduction

With the commissioning of the second generation of laser interferometric gravitational-
wave detectors, and the recent detection of gravitational waves (Abbott 2016), there is
considerable interest in gravitational-wave astronomy. This is a huge field, covering
the diverse topics of: detector hardware construction and design; data analysis; astro-
physical source modeling; approximate methods for gravitational-wave calculation;
and, when the weak field approach is not valid, numerical relativity.

Numerical relativity is concerned with the construction of a numerical solution to
the Einstein equations, so obtaining an approximate description of a spacetime, and
is reviewed, for example, in the textbooks by Alcubierre (2008), Bona et al. (2009),
Baumgarte and Shapiro (2010), Gourgoulhon (2012) and Rezzolla and Zanotti (2013).
The physics in the simulation may be only gravity, as is the case of a binary black
hole scenario, but it may also include matter fields and/or electromagnetic fields. Thus
numerical relativity may be included in the modeling of a wide range of astrophysical
processes. Often (but not always), an important desired outcome of the modeling
process will be a prediction of the emitted gravitational waves. However, obtaining an
accurate estimate of gravitational waves from the variables evolved in the simulation
is normally a rather complicated process. The key difficulty is that gravitational waves
are unambiguously defined only at future null infinity (J +), whereas in practice the
domain of numerical simulations is a region of finite extent using a “3+1” foliation of
the spacetime. This is true for most of the numerical codes, but there are also notable
exceptions. Indeed, there have been attempts towards the construction of codes that
include both null infinity and the central dynamic region in the domain, but they have
not been successful in the general case. These attempts include the hyperboloidal
method (Frauendiener 2004), Cauchy characteristic matching (Winicour 2005), and
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a characteristic code (Bishop et al. 1997b). The only successful application to an
astrophysical problem has been to axisymmetric core collapse using a characteristic
code (Siebel et al. 2003).

In the linearized approximation, where gravitational fields are weak and velocities
are small, it is straightforward to derive a relationship between the matter dynamics and
the emission of gravitational waves, the well-known quadrupole formula. This can be
traced back to work by Einstein (1916, 1918) shortly after the publication of general
relativity. The method is widely used to estimate gravitational-wave production in
many astrophysical processes. However, the strongest gravitational-wave signals come
from highly compact systems with large velocities, that is from processes where the
linearized assumptions do not apply. And of course, it is an event producing a powerful
signal that is most likely to be found in gravitational-wave detector data. Thus it is
important to be able to calculate gravitational-wave emission accurately for processes
such as black hole or neutron star inspiral and merger, stellar core collapse, etc. Such
problems cannot be solved analytically and instead are modeled by numerical relativity,
as described in the previous paragraph, to compute the gravitational field near the
source. The procedure of using this data to measure the gravitational radiation far from
the source is called “extraction” of gravitational waves from the numerical solution.

In addition to the quadrupole formula and full numerical relativity, there are a
number of other approaches to calculating gravitational-wave emission from astro-
physical sources. These techniques are not discussed here and are reviewed elsewhere.
They include post-Newtonian methods (Blanchet 2014), effective one-body methods
(Damour and Nagar 2016), and self-force methods (Poisson et al. 2011). Another
approach, now no-longer pursued, is the so-called “Lazarus approach”, that combined
analytical and numerical techniques (Baker et al. 2000b, 2002a, b).

In this article we will review a number of different extraction methods: (a) Quadru-
pole formula and its variations (Sect. 2.3); (b) methods using the Newman–Penrose
scalar ψ4 evaluated on a worldtube (Γ ) (Sect. 3.3); (c) Cauchy Perturbative methods,
using data on Γ to construct an approximation to a perturbative solution on a known
curved background (Sects. 4, 5; Abrahams and Evans 1988, 1990); and (d) Character-
istic extraction, using data on Γ as inner boundary data for a characteristic code to find
the waveform at J + (Sects. 6, 7). The description of the methods is fairly complete,
with derivations given from first principles and in some detail. In cases (c) and (d),
the theory involved is quite lengthy, so we also provide implementation summaries
for the reader who is more interested in applying, rather than fully understanding, a
particular method, see Sects. 5.6 and 7.8.

In addition, this review provides background material on gravitational waves
(Sect. 2), on the “3+1” formalism for evolving the Einstein equations (Sect. 3), and
on the characteristic formalism with particular reference to its use in estimating grav-
itational radiation (Sect. 6). The review concludes with a comparison of the various
methods for extracting gravitational waves (Sect. 8). This review uses many different
symbols, and their use and meaning is summarized in “Appendix 1”. Spin-weighted,
and other, spherical harmonics are discussed in “Appendix 2”, and various computer
algebra scripts and numerical codes are given in “Appendix 3”.

Throughout, we will use a spacelike signature (−,+,+,+) and a system of
geometrised units in which G = c = 1, although when needed we will also indi-
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cate the speed of light, c, explicitly. We will indicate with a boldface any tensor,
e.g., V and with the standard arrow any three-dimensional vector or operator, e.g., v

and ∇. Four-dimensional covariant and partial derivatives will be indicated in general
with ∇μ and ∂μ, but other symbols may be introduced for less common definitions, or
when we want to aid the comparison with classical Newtonian expressions. Within the
standard convention of a summation of repeated indices, Greek letters will be taken
to run from 0 to 3, while Latin indices run from 1 to 3.

We note that some of the material in this review has already appeared in books or
other review articles. In particular, we have abundantly used parts of the text from
the book “Relativistic Hydrodynamics”, by Rezzolla and Zanotti (2013), from the
review article “Gauge-invariant non-spherical metric perturbations of Schwarzschild
black-hole spacetimes”, by Nagar and Rezzolla (2006), as well as adaptations of the
text from the article “Cauchy-characteristic matching”, by Bishop et al. (1999a).

2 A quick review of gravitational waves

2.1 Linearized Einstein equations

When considering the Einstein equations

Gμν = Rμν −
1

2
R gμν = 8πTμν, (1)

as a set of second-order partial differential equations it is not easy to predict that
there exist solutions behaving as waves. Indeed, the concept of gravitational waves
as solutions of the Einstein equations written as linear and homogeneous wave equa-
tions is valid only under some rather idealised assumptions, such as a vacuum and
asymptotically flat spacetime, a linearised regime for the gravitational fields and suit-
able gauges. If these assumptions are removed, the definition of gravitational waves
becomes much more difficult, although still possible. It should be noted, however,
that in this respect gravitational waves are not peculiar. Any wave-like phenomenon,
in fact, can be described in terms of homogeneous wave equations only under sim-
plified assumptions, such as those requiring a uniform “background” for the fields
propagating as waves.

These considerations suggest that the search for wave-like solutions to the Einstein
equations should be made in a spacetime with very modest curvature and with a line
element which is that of flat spacetime but for small deviations of nonzero curvature,
i.e.,

gμν = ημν + hμν + O
(
(hμν)

2
)
, (2)

where the linearised regime is guaranteed by the fact that |hμν | ≪ 1. Before writing the
linearised version of the Einstein equations (1) it is necessary to derive the linearised
expression for the Christoffel symbols. In a Cartesian coordinate basis (such as the
one we will assume hereafter), we recall that the general expression for the affine
connection is given by
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Γ αβγ = 1

2
gαδ

(
∂γ gδβ + ∂βgδγ − ∂δgβγ

)
. (3)

where the partial derivatives are readily calculated as

∂βgνα = ∂βηνα + ∂βhνα = ∂βhνα. (4)

As a result, the linearised Christoffel symbols become

Γ
μ
αβ = 1

2
ημν(∂βhνα + ∂αhνβ − ∂νhαβ) =

1

2
(∂βhμα + ∂αh

μ
β − ∂μhαβ). (5)

Note that the operation of lowering and raising the indices in expression (5) is not
made through the metric tensors gμν and gμν but, rather, through the spacetime metric
tensors ημν and ημν . This is just the consequence of the linearised approximation and,
despite this, the spacetime is really curved!

Once the linearised Christoffel symbols have been computed, it is possible to derive
the linearised expression for the Ricci tensor which takes the form

Rμν = ∂αΓ
α
μν − ∂νΓ αμα = 1

2
(∂α∂νh α

μ + ∂α∂μh α
ν − ∂α∂αhμν − ∂μ∂νh), (6)

where
h := hαα = ημαhμα (7)

is the trace of the metric perturbations. The resulting Ricci scalar is then given by

R := gμνRμν ≃ ημνRμν . (8)

Making use of (6) and (8), it is possible to rewrite the Einstein equations (1) in a
linearised form as

∂α∂νhμα+∂α∂μhνα−∂α∂αhμν−∂μ∂νh −ημν(∂α∂βhαβ −∂α∂αh) = 16πTμν . (9)

Although linearised, the Einstein equations (9) do not yet seem to suggest a wave-
like behaviour. A good step in the direction of unveiling this behaviour can be made
if we introduce a more compact notation, which makes use of “trace-free” tensors
defined as

h̄μν := hμν −
1

2
ημνh, (10)

where the “bar-operator” in (10) can be applied to any symmetric tensor so that, for

instance, R̄μν = Gμν , and also iteratively, i.e., ¯̄hμν = hμν .1 Using this notation, the
linearised Einstein equations (9) take the more compact form

− ∂α∂α h̄μν − ημν ∂α∂β h̄αβ + ∂α∂μh̄να = 16πTμν, (11)

1 Note that the “bar” operator can in principle be applied also to the trace so that h̄ = −h.
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where the first term on the left-hand side of (11) can be easily recognised as the
Dalambertian (or wave) operator, i.e., ∂α∂α h̄μν = �h̄μν . At this stage, we can exploit
the gauge freedom inherent in general relativity (see also below for an extended dis-
cussion) to recast Eq. (11) in a more convenient form. More specifically, we exploit
this gauge freedom by choosing the metric perturbations hμν so as to eliminate the
terms in (11) that spoil the wave-like structure. Most notably, the coordinates can be
selected so that the metric perturbations satisfy

∂α h̄μα = 0. (12)

Making use of the gauge (12), which is also known as the Lorenz (or Hilbert) gauge,
the linearised field equations take the form

� h̄μν = −16πTμν, (13)

that, in vacuum reduce to the desired result

� h̄μν = 0. (14)

Equations (14) show that, in the Lorenz gauge and in vacuum, the metric perturba-
tions propagate as waves distorting flat spacetime.

The simplest solution to the linearised Einstein equations (14) is that of a plane
wave of the type

h̄μν = Aμν exp(iκαxα), (15)

where of course we are interested only in the real part of (15), with A being the
amplitude tensor. Substitution of the ansatz (15) into Eq. (14) implies that κακα = 0
so that κ is a null four-vector. In such a solution, the plane wave (15) travels in the
spatial direction k = (κx , κy, κz)/κ

0 with frequency ω := κ0 = (κ jκ j )
1/2. The next

step is to substitute the ansatz (15) into the Lorenz gauge condition Eq. (12), yielding
Aμνκ

μ = 0 so that A and κ are orthogonal. Consequently, the amplitude tensor A,
which in principle has 16−6 = 10 independent components, satisfies four conditions.
Thus the imposition of the Lorenz gauge reduces the independent components of A

to six. We now investigate how to reduce the number of independent components to
match the number of dynamical degrees of freedom of general relativity, i.e., two.

While a Lorenz gauge has been imposed [cf. Eq. (12)], this does not completely fix
the coordinate system of a linearised theory. A residual ambiguity, in fact, is preserved
through arbitrary gauge changes, i.e., through infinitesimal coordinate transformations
that are consistent with the gauge that has been selected. The freedom to make such
a transformation follows from a foundation of general relativity, the principle of gen-
eral covariance. To better appreciate this matter, consider an infinitesimal coordinate
transformation in terms of a small but otherwise arbitrary displacement four-vector ξ

xα
′ = xα + ξα. (16)

123



2 Page 8 of 117 Living Rev Relativ (2016) 19:2

Applying this transformation to the linearised metric (2) generates a “new” metric
tensor that, to the lowest order, is

gnew
μ′ν′ = ημν + hold

μν − ∂νξμ − ∂μξν, (17)

so that the “new” and “old” perturbations are related by the following expression

hnew
μ′ν′ = hold

μν − ∂νξμ − ∂μξν, (18)

or, alternatively, by

h̄new
μ′ν′ = h̄old

μν − ∂νξμ − ∂μξν + ημν ∂αξα. (19)

Requiring now that the new coordinates satisfy the condition (12) of the Lorenz gauge
∂α h̄new

μα = 0, forces the displacement vector to be solution of the homogeneous wave
equation

∂β∂
βξα = 0. (20)

As a result, the plane-wave vector with components

ξα := −iCαexp(iκβxβ) (21)

generates, through the four arbitrary constants Cα , a gauge transformation that changes
arbitrarily four components of A in addition to those coming from the condition
A · κ = 0. Effectively, therefore, Aμν has only 10 − 4 − 4 = 2 linearly independent
components, corresponding to the number of degrees of freedom in general relativity
(Misner et al. 1973).

Note that these considerations are not unique to general relativity and simi-
lar arguments can also be made in classical electrodynamics, where the Maxwell
equations are invariant under transformations of the vector potentials of the type
Aμ → Aμ′ = Aμ + ∂μΨ , where Ψ is an arbitrary scalar function, so that the corre-
sponding electromagnetic tensor is Fnew

μ′ν′ = ∂ν′ Aμ′ − ∂μ′ Aν′ = Fold
μ′ν′ . Similarly, in a

linearised theory of general relativity, the gauge transformation (18) will preserve the
components of the Riemann tensor, i.e., Rnew

αβμν = Rold
αβμν + O(R2).

To summarise, it is convenient to constrain the components of the amplitude tensor
through the following conditions:

(a) orthogonality condition: four components of the amplitude tensor can be specified
since the Lorenz gauge implies that A and κ are orthogonal, i.e., Aμνκ

ν = 0.
(b) choice of observer: three components of the amplitude tensor can be eliminated

after selecting the infinitesimal displacement vector ξμ = iCμ exp(iκαxα) so that
Aμνuμ = 0 for some chosen four-velocity vector u. This means that the coordi-
nates are chosen so that for an observer with four-velocity uμ the gravitational
wave has an effect only in spatial directions.2

2 Note that the orthogonality condition fixes three and not four components since one further constraint
needs to be satisfied, i.e., κμAμνuν = 0.
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(c) traceless condition: one final component of the amplitude tensor can be eliminated
after selecting the infinitesimal displacement vector ξμ = iCμ exp(iκαxα) so that
A
μ
μ = 0.

Conditions (a), (b) and (c) define the so-called transverse–traceless (TT) gauge,
which represents a most convenient gauge for the analysis of gravitational waves.
To appreciate the significance of these conditions, consider them implemented in a
reference frame which is globally at rest, i.e., with four-velocity uα = (1, 0, 0, 0),
where the amplitude tensor must satisfy:

(a)
Aμνκ

ν = 0 ⇐⇒ ∂ j hi j = 0, (22)

i.e., the spatial components of hμν are divergence-free.
(b)

Aμνuν = 0 ⇐⇒ hμt = 0, (23)

i.e., only the spatial components of hμν are nonzero, hence the transverse char-
acter of the TT gauge.

(c)
Aμμ = 0 ⇐⇒ h = h

j
j = 0, (24)

i.e., the spatial components of hμν are trace free hence the trace-free character
of the TT gauge. Because of this, and only in this gauge, h̄μν = hμν .

2.2 Making sense of the TT gauge

As introduced so far, the TT gauge might appear rather abstract and not particularly
interesting. Quite the opposite, the TT gauge introduces a number of important advan-
tages and simplifications in the study of gravitational waves. The most important of
these is that, in this gauge, the only nonzero components of the Riemann tensor are

R j0k0 = R0 j0k = −R j00k = −R0 jk0. (25)

However, since

R j0k0 = −1

2
∂2

t h
TT

jk, (26)

the use of the TT gauge indicates that a travelling gravitational wave with periodic time
behaviour h

TT

jk ∝ exp(iωt) can be associated to a local oscillation of the spacetime,
i.e.,

∂2
t h

TT

jk ∼ −ω2 exp(iωt) ∼ R j0k0, and R j0k0 = 1

2
ω2h

TT

jk . (27)

To better appreciate the effects of the propagation of a gravitational wave, it is useful
to consider the separation between two neighbouring particles A and B on a geodesic
motion and how this separation changes in the presence of an incident gravitational
wave (see Fig. 1). For this purpose, let us introduce a coordinate system x α̂ in the
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Fig. 1 Schematic diagram for the changes in the separation vector n between two particles A and B

moving along geodesic trajectories produced by the interaction with a gravitational wave propagating along
the direction κ

neighbourhood of particle A so that along the worldline of the particle A the line
element will have the form

ds2 = −dτ 2 + δ
î ĵ

dx î dx ĵ + O(|x ĵ |2) dx α̂ dx β̂ . (28)

The arrival of a gravitational wave will perturb the geodesic motion of the two particles
and produce a nonzero contribution to the geodesic-deviation equation. We recall
that the changes in the separation four-vector n between two geodesic trajectories
with tangent four-vector u are expressed through the geodesic-deviation equation (see
Fig. 1)

D2nα

Dτ 2
= uγ∇γ

(
uβ∇βnα

)
= −Rαβδγ uβuδnγ , (29)

where the operator
D

Dτ
:= uα∇α, (30)

is the covariant time derivative along the worldline (in this case a geodesic) of a
particle.

Indicating now with n ĵ
B
:= x ĵ

B
− x ĵ

A
= x ĵ

B
the components of the separation three-

vector in the positions of the two particles, the geodesic-deviation equation (29) can
be written as

D2x ĵ
B

Dτ 2
= −R

ĵ

0k̂0
x k̂

B
. (31)

A first simplification to these equations comes from the fact that around the particle

A, the affine connections vanish (i.e.,Γ ĵ

α̂β̂
= 0) and the covariant derivative in (31) can
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be replaced by an ordinary total derivative. Furthermore, because in the TT gauge the
coordinate system x α̂ moves together with the particle A, the proper and the coordinate
time coincide at first order in the metric perturbation [i.e., τ = t + O((h

TT

μν)
2)]. As a

result, equation (31) effectively becomes

d2x ĵ
B

dt2
= 1

2

⎛
⎝
∂2h

TT

ĵ k̂

∂t2

⎞
⎠ x k̂

B
, (32)

and has solution

x ĵ
B
(t) = x k̂

B
(0)

[
δ

ĵ k̂
+ 1

2
h

TT

ĵ k̂
(t)

]
. (33)

Equation (33) has a straightforward interpretation and indicates that, in the refer-
ence frame comoving with A, the particle B is seen oscillating with an amplitude
proportional to h

TT

ĵ k̂
.

Note that because these are transverse waves, they will produce a local deformation
of the spacetime only in the plane orthogonal to their direction of propagation. As a
result, if the two particles lay along the direction of propagation (i.e., if n ‖ κ), then

h
TT

ĵ k̂
x ĵ

B
(0) ∝ h

TT

ĵ k̂
κ ĵ

B
(0) = 0 and no oscillation will be recorded by A [cf. Eq. (22)].

Let us now consider a concrete example and in particular a planar gravitational
wave propagating in the positive z-direction. In this case

h
TT

xx = −h
TT

yy = ℜ{A+ exp[−iω(t − z)]}, (34)

h
TT

xy = h
TT

yx = ℜ{A× exp[−iω(t − z)]}, (35)

where A+, A× represent the two independent modes of polarization, and the symbol
ℜ refers to the real part. As in classical electromagnetism, in fact, it is possible to
decompose a gravitational wave in two linearly polarized plane waves or in two cir-

cularly polarized ones. In the first case, and for a gravitational wave propagating in
the z-direction, the polarization tensors + (“plus”) and × (“cross”) are defined as

e+ := ex ⊗ ex − ey ⊗ ey, (36)

e× := ex ⊗ ex + ey ⊗ ey . (37)

The deformations that are associated with these two modes of linear polarization are
shown in Fig. 2 where the positions of a ring of freely-falling particles are schematically
represented at different fractions of an oscillation period. Note that the two linear
polarization modes are simply rotated of π/4.

In a similar way, it is possible to define two tensors describing the two states of cir-
cular polarization and indicate with eR the circular polarization that rotates clockwise
(see Fig. 3)

eR := e+ + ie×√
2

, (38)
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Fig. 2 Schematic deformations produced on a ring of freely-falling particles by gravitational waves that
are linear polarized in the “+” (“plus”) and “×” (“cross”) modes. The continuous lines and the dark filled

dots show the positions of the particles at different times, while the dashed lines and the open dots show
the unperturbed positions

Fig. 3 Schematic deformations produced on a ring of freely-falling particles by gravitational waves that
are circularly polarized in the R (clockwise) and L (counter-clockwise) modes. The continuous lines and
the dark filled dots show the positions of the particles at different times, while the dashed lines and the open

dots show the unperturbed positions

and with eL the circular polarization that rotates counter-clockwise (see Fig. 3)

eL := e+ − ie×√
2

. (39)

The deformations that are associated to these two modes of circular polarization
are shown in Fig. 3.

2.3 The quadrupole formula

The quadrupole formula and its domain of applicability were mentioned in Sect. 1,
and some examples of its use in a numerical simulation are presented in Sect. 8. In
practice, the quadrupole formula represents a low-velocity, weak-field approximation
to measure the gravitational-wave emission within a purely Newtonian description of
gravity.3 In practice, the formula is employed in those numerical simulations that either

3 Of course no gravitational waves are present in Newton’s theory of gravity and the formula merely
estimates the time variations of the quadrupole moment of a given distribution of matter.
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treat gravity in an approximate manner (e.g., via a post-Newtonian approximation or a
conformally flat metric) or that, although in full general relativity, have computational
domains that are too small for an accurate calculation of the radiative emission.

In what follows we briefly discuss the amounts of energy carried by gravitational
waves and provide simple expressions to estimate the gravitational radiation luminos-
ity of potential sources. Although the estimates made here come from analogies with
electromagnetism, they provide a reasonable approximation to more accurate expres-
sions from which they differ for factors of a few. Note also that while obtaining such a
level of accuracy requires only a small effort, reaching the accuracy required of a tem-
plate to be used in the realistic detection of gravitational waves is far more difficult and
often imposes the use of numerical relativity calculations on modern supercomputers.

In classical electrodynamics, the energy emitted per unit time by an oscillating
electric dipole d = qx , with q the electrical charges and x their separation, is easily
estimated to be

Lelectric dip. :=
(energy emitted)

(unit time)
= 2

3
q2(ẍ )2 = 2

3
(d̈ )2, (40)

where the number of “dots” counts the order of the total time derivative. Equally
simple is to calculate the corresponding luminosity in gravitational waves produced
by an oscillating mass dipole. In the case of a system of N point-like particles of mass
m

A
(A = 1, 2, . . . , N ), in fact, the total mass dipole and its first time derivative are

d :=
N∑

A=1

m
A

x
A
, (41)

and

ḋ :=
N∑

A=1

m
A

ẋ
A
= p, (42)

respectively. However, the requirement that the system conserves its total linear
momentum

d̈ := ṗ = 0, (43)

forces to conclude that Lmass dip. = 0, i.e., that there is no mass-dipole radiation in
general relativity (This is equivalent to the impossibility of having electromagnetic
radiation from an electric monopole oscillating in time.). Next, consider the electro-
magnetic energy emission produced by an oscillating electric quadrupole. In classical
electrodynamics, this energy loss is given by

Lelectric quad. :=
1

20
(
...
Q)2 = 1

20
(
...
Q jk

...
Q jk), (44)

where

Q jk :=
N∑

A=1

q
A

[
(x

A
) j (xA

)k − 1

3
δ jk(xA

)i (xA
)i
]
, (45)
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is the electric quadrupole for a distribution of N charges (q1, q2, . . . , qN ).
In close analogy with expression (44), the energy loss per unit time due to an

oscillating mass quadrupole is calculated to be

Lmass quad. :=
1

5
〈 (

...
I− )2 〉 = 1

5
〈
...
I− jk

...
I− jk〉, (46)

where I− jk is the trace-less mass quadrupole (or “reduced” mass quadrupole), defined
as

I− jk :=
N∑

A=1

m
A

[
(x

A
) j (xA

)k − 1

3
δ jk(xA

)i (xA
)i
]

=
∫
ρ

(
x j xk − 1

3
δ jk xi x i

)
dV, (47)

and the brackets 〈 〉 indicate a time average [Clearly, the second expression in (47)
refers to a continuous distribution of particles with rest-mass density ρ.].

A crude estimate of the third time derivative of the mass quadrupole of the system
is given by

...
I− jk ∼ (mass of the system in motion)× (size of the system)2

(timescale)3
∼ M R2

τ 3
∼ M〈v2〉

τ
,

(48)
where 〈v〉 is the mean internal velocity. Stated differently,

...
I− jk ∼ L int, (49)

where L int is the power of the system flowing from one part of the system to the other.
As a result, the gravitational-wave luminosity in the quadrupole approximation can

be calculated to be (we here restore the explicit use of the gravitational constant and
of the speed of light)

Lmass−quad ∼
(

G

c5

)(
M〈v2〉
τ

)2

∼
(

G4

c5

)(
M

R

)5

∼
(

c5

G

)(
RS

R

)2 ( 〈v2〉
c2

)3

.

(50)
The second equality has been derived using the virial theorem for which the kinetic
energy is of the same order of the potential one, i.e., M〈v2〉 ∼ G M2/R, and assum-
ing that the oscillation timescale is inversely proportional to the mean stellar density,
i.e., τ ∼ (1/G〈ρ〉)1/2 ∼ (R3/G M)1/2. Similarly, the third equality expresses the
luminosity in terms of dimensionless quantities such as the size of the source rela-
tive to the Schwarzschild radius RS = 2G M/c2, and the source speed in units of
the speed of light. Note that the quantity c5G has indeed the units of a luminosity,
i.e., erg s−1 = cm2 g s−3 in cgs units.

Although extremely simplified, expressions (48) and (50) contain the two most
important pieces of information about the generation of gravitational waves. The first
one is that the conversion of any type of energy into gravitational waves is, in general,
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not efficient. To see this it is necessary to bear in mind that expression (46) is in
geometrized units and that the conversion to conventional units, say cgs units, requires
dividing (46) by the very large factor c5/G ≃ 3.63 × 1059 erg s−1. The second one is
contained in the last expression in Eq. (50) and that highlights how the gravitational-
wave luminosity can also be extremely large. There are in fact astrophysical situations,
such as those right before the merger of a binary system of compact objects, in which√
〈v2〉 ∼ 0.1 c and R ∼ 10 RS , so that Lmass−quad ∼ 1051 erg s−1 ∼ 1018 L⊙, that is,

1018 times the luminosity of the Sun; this is surely an impressive release of energy.

2.3.1 Extensions of the quadrupole formula

Although valid only in the low-velocity, weak-field limit, the quadrupole-formula
approximation has been used extensively in the past and still finds use in several
simulations, ranging from stellar-core collapse (see, e.g., Zwerger and Müller 1997
for some initial application) to binary neutron-star mergers (see, e.g., Oechslin et al.
2002 for some initial application). In many of the simulations carried out to study stellar
collapse, one makes the additional assumption that the system remains axisymmetric
and the presence of an azimuthal Killing vector has two important consequences.
Firstly, the gravitational waves produced in this case will carry away energy but not
angular momentum, which is a conserved quantity in this spacetime. Secondly, the
gravitational waves produced will have a single polarization state, so that the transverse
traceless gravitational field is completely determined in terms of its only nonzero
transverse and traceless (TT) independent component. Following Zwerger and Müller
(1997) and considering for simplicity an axisymmetric system, it is useful to express
the gravitational strain h

TT
(t) observed at a distance R from the source in terms of the

quadrupole wave amplitude A20 (Zanotti et al. 2003)

h
TT
(t) = F+

(
1

8

√
15

π

)
A20(t − R)

R
, (51)

where F+ = F+(R, θ, φ) is the detector’s beam pattern function and depends on
the orientation of the source with respect to the observer. As customary in these
calculations, we will assume it to be optimal, i.e., F+ = 1. The ℓ = 2,m = 0
wave amplitude A20 in Eq. (51) is simply the second time derivative of the reduced
mass quadrupole moment in axisymmetry and can effectively be calculated without
taking time derivatives numerically, which are instead replaced by spatial derivatives
of evolved quantities after exploiting the continuity and the Euler equations (Finn and
Evans 1990; Blanchet et al. 1990; Rezzolla et al. 1999b). The result in a spherical
coordinate system is

A20 := d2 I[ax]
dt2

= k

∫
ρ

[
vrv

r (3z2 − 1)+ vθvθ (2 − 3z2)− vφvφ

− 6z
√
(vrvr )(vθvθ )(1 − z2)−r

∂�

∂r
(3z2 − 1)
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+ 3z
∂�

∂θ

√
1 − z2

]
r2 dr dz, (52)

where z := cos θ , k = 16π3/2/
√

15, � is the Newtonian gravitational potential,
and I[ax] is the appropriate component of the Newtonian reduced mass-quadrupole
moment in axisymmetry

I[ax] :=
∫
ρ

(
3

2
z2 − 1

2

)
r4 dr dz. (53)

Of course it is possible to consider more generic conditions and derive expressions
for the strain coming from more realistic sources, such as a an astrophysical system
with equatorial symmetry. In this case, focussing on the lowest ℓ = 2 moments, the
relevant multipolar components for the strain are Baiotti et al. (2009)

h20 = 1

r

√
24π

5

(
Ïzz − 1

3
Tr(Ï)

)
, (54)

h21 = − ı

r

√
128π

45

(
J̈xz − iJ̈yz

)
, (55)

h22 = 1

r

√
4π

5

(
Ïxx − 2i Ïxy − Ïyy

)
, (56)

where

Ii j =
∫

d3x ρ xi x j , (57)

Ji j =
∫

d3x ρ ǫabi x j xa v
b, (58)

are the more general Newtonian mass and mass-current quadrupoles.
Expressions (52)–(58) are strictly Newtonian. Yet, these expression are often imple-

mented in numerical codes that are either fully general relativistic or exploit some level
of general-relativistic approximation. More seriously, these expressions completely
ignore considerations that emerge in a relativistic context, such as the significance
of the coordinate chosen for their calculation. As a way to resolve these inconsisten-
cies, improvements to these expressions have been made to increase the accuracy of
the computed gravitational-wave emission. For instance, for calculations on known
spacetime metrics, the gravitational potential in expression (52) is often approximated
with expressions derived from the metric, e.g., as � = (1 − grr )/2 (Zanotti et al.
2003), which is correct to the first Post-Newtonian (PN) order. Improvements to the
mass quadrupole (53) inspired by a similar spirit have been computed in Blanchet
et al. (1990), and further refined and tested in Shibata and Sekiguchi (2004), Nagar
et al. (2005), Cerdá-Durán et al. (2005), Pazos et al. (2007), Baiotti et al. (2007),
Dimmelmeier et al. (2007), Corvino et al. (2010).
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A systematic comparison among the different expressions of the quadrupole for-
mulas developed over the years was carried out in Baiotti et al. (2009), where a
generalization of the mass-quadrupole formula (57) was introduced. In essence,
following previous work in Nagar et al. (2005), Baiotti et al. (2009) introduced a
“generalized” mass-quadrupole moment of the form

Ii j [̺] :=
∫

d3x̺xi x j , (59)

where the generalized rest-mass density ̺ was assumed to take a number of possible
expressions, namely,

̺ := ρ, (60)

̺ := α2√γ T 00, (61)

̺ := √
γWρ, (62)

̺ := u0ρ = W

α
ρ, (63)

Clearly, the first option corresponds to the “standard” quadrupole formula, but, as
remarked in Baiotti et al. (2009) none of the alternative quadrupole formulas obtained
using these generalized quadrupole moments should be considered better than the
others, at least mathematically. None of them is gauge invariant and indeed they yield
different results depending on the underlining choice made for the coordinates. Yet,
the comparison is meaningful in that these expressions were and still are in use in
many numerical codes, and it is therefore useful to determine which expression is
effectively closer to the fully general-relativistic one.

Making use of a fully general-relativistic measurement of the gravitational-wave
emission from a neutron star oscillating nonradially as a result of an initial pressure
perturbation, Baiotti et al. (2009) concluded that the various quadrupole formulas are
comparable and give a very good approximation to the phasing of the gravitational-
wave signals. At the same time, they also suffer from systematic over-estimate
[expression (61)] or under-estimates of the gravitational-wave amplitude [expressions
(60), and (62)–(63)]. In all cases, however, the relative difference in amplitude was
of 50 % at most, which is probably acceptable given that these formulas are usually
employed in complex astrophysical calculations in which the systematic errors coming
from the microphysical modelling are often much larger.

3 Basic numerical approaches

3.1 The 3+1 decomposition of spacetime

At the heart of Einstein’s theory of general relativity is the equivalence among all coor-
dinates, so that the distinction of spatial and time coordinates is more an organisational
matter than a requirement of the theory. Despite this “covariant view”, however, our
experience, and the laws of physics on sufficiently large scales, do suggest that a
distinction of the time coordinate from the spatial ones is the most natural one in
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describing physical processes. Furthermore, while not strictly necessary, such a dis-
tinction of time and space is the simplest way to exploit a large literature on the
numerical solution of hyperbolic partial differential equations as those of relativistic
hydrodynamics. In a generic spacetime, analytic solutions to the Einstein equations
are not known, and a numerical approach is often the only way to obtain an estimate
of the solution.

Following this principle, a decomposition of spacetime into “space” and “time” was
already proposed in the 1960s within a Hamiltonian formulation of general relativity
and later as an aid to the numerical solution of the Einstein equations in vacuum. The
basic idea is rather simple and consists in “foliating” spacetime in terms of a set of
non-intersecting spacelike hypersurfaces Σ := Σ(t), each of which is parameterised
by a constant value of the coordinate t . In this way, the three spatial coordinates are
split from the one temporal coordinate and the resulting construction is called the 3+1
decomposition of spacetime (Misner et al. 1973).

Given one such constant-time hypersurface, Σt , belonging to the foliation Σ , we
can introduce a timelike four-vector n normal to the hypersurface at each event in the
spacetime and such that its dual one-form Ω := ∇t is parallel to the gradient of the
coordinate t , i.e.,

nμ = AΩμ = A∇μt, (64)

with nμ = {A, 0, 0, 0} and A a constant to be determined. If we now require that the
four-vector n defines an observer and thus that it measures the corresponding four-
velocity, then from the normalisation condition on timelike four-vectors, nμnμ = −1,
we find that

nμnμ = gμνnμnν = gt t A2 = − 1

α2
A2 = −1, (65)

where we have defined α2 := −1/gt t . From the last equality in expression (65) it
follows that A = ±α and we will select A = −α, such that the associated vector field
nμ is future directed. The quantity α is commonly referred to as the lapse function, it
measures the rate of change of the coordinate time along the vector nμ (see Fig. 4),
and will be a building block of the metric in a 3+1 decomposition [cf. Eq. (72)].

The specification of the normal vector n allows us to define the metric associated
to each hypersurface, i.e.,

γμν := gμν + nμnν, γ μν := gμν + nμnν, (66)

where γ 0μ = 0, γi j = gi j , but in general γ i j �= gi j . Also note that γ ikγk j = δi
j , that

is, γ i j and γi j are the inverse of each other, and so can be used for raising and lowering
the indices of purely spatial vectors and tensors (that is, defined on the hypersurface
Σt ).

The tensors n and γ provide us with two useful tools to decompose any four-
dimensional tensor into a purely spatial part (hence contained in the hypersurfaceΣt )
and a purely timelike part (hence orthogonal to Σt and aligned with n). Not surpris-
ingly, the spatial part is readily obtained after contracting with the spatial projection

operator (or spatial projection tensor)
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Fig. 4 Schematic representation of the 3+1 decomposition of spacetime with hypersurfaces of constant
time coordinateΣt andΣt+dt foliating the spacetime. The four-vector t represents the direction of evolution
of the time coordinate t and can be split into a timelike component αn, where n is a timelike unit normal to
the hypersurface, and into a spacelike component, represented by the spacelike four-vector β. The function
α is the “lapse” and measures the proper time between adjacent hypersurfaces, while the components of
the “shift” vector βi measure the change of coordinates from one hypersurface to the subsequent one

γ μν := gμαγαν = gμν + nμnν = δμν + nμnν, (67)

while the timelike part is obtained after contracting with the time projection operator

(or time projection tensor)
Nμ
ν := −nμnν, (68)

and where the two projectors are obviously orthogonal, i.e.,

γ αμNμ
ν = 0. (69)

We can now introduce a new vector, t , along which to carry out the time evolutions
and that is dual to the surface one-form Ω . Such a vector is just the time-coordinate
basis vector and is defined as the linear superposition of a purely temporal part (parallel
to n) and of a purely spatial one (orthogonal to n), namely

t = et = ∂t := αn + β. (70)

The purely spatial vector β [i.e., βμ = (0, β i )] is usually referred to as the shift

vector and will be another building block of the metric in a 3+1 decomposition
[cf. Eq. (72)]. The decomposition of the vector t into a timelike component nα and a
spatial component β is shown in Fig. 4.

Because t is a coordinate basis vector, the integral curves of tμ are naturally para-
meterised by the time coordinate. As a result, all infinitesimal vectors tμ originating at
a given point x i

0 on one hypersurfaceΣt would end up on the hypersurfaceΣt+dt at a
point whose coordinates are also x i

0. This condition is not guaranteed for translations
alongΩμ unless βμ = 0 since tμtμ = gt t = −α2 +βμβμ, and as illustrated in Fig. 4.
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In summary, the components of n are given by

nμ = (−α, 0, 0, 0) , nμ = 1

α

(
1,−β i

)
, (71)

and we are now ready to deduce that the lapse function and the shift vector can be
employed to express the generic line element in a 3+1 decomposition as

ds2 = −(α2 − βiβ
i ) dt2 + 2βi dx i dt + γi j dx i dx j . (72)

Expression (72) clearly emphasises that when β i = 0 = dx i , the lapse measures
the proper time, dτ 2 = −ds2, between two adjacent hypersurfaces, i.e.,

dτ 2 = α2(t, x j ) dt2, (73)

while the shift vector measures the change of coordinates of a point that is moved
along n from the hypersurface Σt to the hypersurface Σt+dt , i.e.,

x i
t+dt = x i

t − β i (t, x j ) dt. (74)

Similarly, the covariant and contravariant components of the metric (72) can be
written explicitly as

gμν =

⎛
⎝

−α2 + βiβ
i βi

βi γi j

⎞
⎠ , gμν =

⎛
⎝

−1/α2 β i/α2

β i/α2 γ i j − β iβ j/α2

⎞
⎠ , (75)

from which it is easy to obtain an important identity which will be used extensively
hereafter, i.e., √

−g = α
√
γ , (76)

where g := det(gμν) and γ := det(γi j ).
When defining the unit timelike normal n in Eq. (65), we have mentioned that it can

be associated to the four-velocity of a special class of observers, which are referred to
as normal or Eulerian observers. Although this denomination is somewhat confusing,
since such observers are not at rest with respect to infinity but have a coordinate
velocity dx i/dt = ni = −β i/α, we will adopt this traditional nomenclature also in
the following and thus take an “Eulerian observer” as one with four-velocity given by
(71).

When considering a fluid with four-velocity u, the spatial four-velocity v measured
by an Eulerian observer will be given by the ratio between the projection of u in the
space orthogonal to n, i.e., γ i

μuμ = ui , and the Lorentz factor W of u as measured
by n (de Felice and Clarke 1990)

− nμuμ = αut = W. (77)
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As a result, the spatial four-velocity of a fluid as measured by an Eulerian observer
will be given by

v := γ · u

−n · u
. (78)

Using now the normalisation condition uμuμ = −1, we obtain

αut = −n · u = 1√
1 − vivi

= W, ut = W (−α + βiv
i ), (79)

so that the components of v can be written as

vi = ui

W
+ β i

α
= 1

α

(
ui

ut
+ β i

)
, vi = ui

W
= ui

αut
, (80)

where in the last equality we have exploited the fact that γi j u
j = ui − βi W/α.

3.2 The ADM formalism: 3+1 decomposition of the Einstein equations

The 3+1 decomposition introduced in Sect. 3.1 can be used not only to decompose
tensors, but also equations and, in particular, the Einstein equations, which are then
cast into an initial-value form suitable to be solved numerically. A 3+1 decomposition
of the Einstein equations was presented by Arnowitt et al. (2008), but it is really the
reformulation suggested by York (1979) that represents what is now widely known
as the ADM formulation (see, e.g., Alcubierre 2008; Gourgoulhon 2012 for a detailed
and historical discussion). As we will see in detail later on, in this formulation the
Einstein equations are written in terms of purely spatial tensors that can be integrated
forward in time once some constraints are satisfied initially.

Here, we only outline the ADM formalism, and refer to the literature for the deriva-
tion and justification. Further, it is important to note that the ADM formulation is,
nowadays, not used in practice because it is only weakly hyperbolic. However, the
variables used in the ADM method, in particular the three-metric and the extrinsic
curvature, are what will be needed later for gravitational-wave extraction, and are eas-
ily obtained from the output of other evolution methods (see discussion in Sects. 5, 7).

Instead of the ADM formalism, modern simulations mainly formulate the Einstein
equations using: the BSSNOK method (Nakamura et al. 1987; Shibata and Nakamura
1995; Baumgarte and Shapiro 1999); the CCZ4 formulation (Alic et al. 2012), which
was developed from the Z4 method (Bona et al. 2003, 2004; Bona and Palenzuela-
Luque 2009) (see also Bernuzzi and Hilditch 2010 for the so-called Z4c formulation
and Alic et al. 2013 for some comparisons); or the generalized harmonic method
(Pretorius 2005) (see also Baumgarte and Shapiro 2010; Rezzolla and Zanotti 2013
for more details).

We start by noting that once a 3+1 decomposition is introduced as discussed in
Sect. 3.1, it is then possible to define the three-dimensional covariant derivative Di .
Formally, this is done by projecting the standard covariant derivative onto the space
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orthogonal to nμ, and the result is a covariant derivative defined with respect to the
connection coefficients

(3)Γ i
jk = 1

2
γ iℓ

(
∂ jγkℓ + ∂kγℓj − ∂ℓγ jk

)
, (81)

where we will use the upper left index (3) to mark a purely spatial quantity that needs
to be distinguished from its spacetime counterpart.4 Similarly, the three-dimensional
Riemann tensor (3)Ri

jkℓ associated with γ has an explicit expression given by

(3)Ri
jkℓ = ∂k

(3)Γ i
jℓ − ∂ℓ(3)Γ i

jk + (3)Γ i
mk
(3)Γ m

jℓ − (3)Γ i
mℓ
(3)Γ m

jk . (82)

In a similar manner, the three-dimensional contractions of the three-dimensional Rie-
mann tensor, i.e., the three-dimensional Ricci tensor and the three-dimensional Ricci
scalar, are defined respectively as their four-dimensional counterparts, i.e.,

(3)Ri j := (3)Rk
ik j ,

(3)R := (3)Rk
k . (83)

The information present in R
μ
νκσ and missing in (3)Ri

jkℓ can be found in another
symmetric tensor, the extrinsic curvature Ki j , which is purely spatial. Loosely
speaking, the extrinsic curvature provides a measure of how the three-dimensional
hypersurface Σt is curved with respect to the four-dimensional spacetime. For our
purposes, it is convenient to define the extrinsic curvature as (but note that other defi-
nitions, which can be shown to be equivalent, are common)

Ki j = −1

2
Lnγi j , (84)

where Ln is the Lie derivative relative to the normal vector field n. Expression (84)
provides a simple interpretation of the extrinsic curvature Ki j as the rate of change of
the three-metric γi j as measured by an Eulerian observer. Using properties of the Lie
derivative, it follows that

∂tγi j = −2αKi j + Diβ j + D jβi . (85)

Note that Eq. (85) is a geometrical result and is independent of the Einstein equations.
The next step is to note further purely geometric relations, how the spacetime

curvature is related to the intrinsic and extrinsic curvatures of the hypersurface Σt .
These formulas are known as the Gauss–Codazzi equations and the Codazzi–Mainardi
equations. They are

γ
μ
i γ

ν
j γ

ρ
k γ

σ
ℓ Rμνρσ = (3)Ri jkℓ + Kik K jℓ − KiℓK jk, (86)

γ
ρ
jγ
μ
iγ
ν
ℓn
σ Rρμνσ = Di K jℓ − D j Kiℓ, (87)

4 An alternative notation is to mark with an upper left index (4) the four-dimensional tensors and to leave
unmarked the three-dimensional ones (Baumgarte and Shapiro 2010; Gourgoulhon 2012).
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γ αiγ
β
j n
δnλRαδβλ = Ln Ki j −

1

α
Di D jα + K k

j Kik . (88)

We now have enough identities to rewrite the Einstein equations in a 3+1 decom-
position. After contraction, we can use the Einstein equations to replace the spacetime
Ricci tensor with terms involving the stress-energy tensor, and then after further manip-
ulation the final result is:

∂t Ki j = −Di D jα + βk∂k Ki j + Kik∂ jβ
k + Kk j∂iβ

k

+α
(
(3)Ri j + K Ki j − 2Kik K k

j

)
+ 4πα

[
γi j

(
S − E)− 2Si j

)]
, (89)

(3)R + K 2 − Ki j K i j = 16πE, (90)

D j (K
i j − γ i j K ) = 8π Si . (91)

The following definitions have been made for the “matter” quantities

Sμν := γ αμ γ
β
νTαβ , Sμ := −γ αμ nβTαβ , S := Sμμ, E := nα nβTαβ , (92)

that is, for contractions of the energy–momentum tensor that would obviously be zero
in vacuum spacetimes.

Overall, the six equations (89), together with the six equations (85) represent the
time-evolving part of the ADM equations and prescribe how the three-metric and the
extrinsic curvature change from one hypersurface to the following one. In contrast,
Eqs. (90) and (91) are constraints that need to be satisfied on each hypersurface.
This distinction into evolution equations and constraint equations is not unique to the
ADM formulation and is indeed present also in classical electromagnetism. Just as
in electrodynamics the divergence of the magnetic field remains zero if the field is
divergence-free at the initial time, so the constraint equations (90) and (91), by virtue
of the Bianchi identities (Alcubierre 2008; Bona et al. 2009; Baumgarte and Shapiro
2010; Gourgoulhon 2012; Rezzolla and Zanotti 2013), will remain satisfied during
the evolution if they are satisfied initially (Frittelli 1997). Of course, this concept is
strictly true in the continuum limit, while numerically the situation is rather different.
However, that issue is not pursued here.

Two remarks should be made before concluding this section. The first one is about
the gauge quantities, namely, the lapse function α and the shift vector β i . Since they
represent the four degrees of freedom of general relativity, they are not specified by
the equations discussed above and indeed they can be prescribed arbitrarily, although
in practice great care must be taken in deciding which prescription is the most useful.
The second comment is about the mathematical properties of the time-evolution ADM
equations (89) and (85). The analysis of these properties can be found, for instance,
in Reula (1998) or in Frittelli and Gómez (2000), and reveals that such a system
is only weakly hyperbolic with zero eigenvalues and, as such, not necessarily well-
posed. The weak-hyperbolicity of the ADM equations explains why, while an historical
cornerstone in the 3+1 formulation of the Einstein equations, they are rarely used in
practice and have met only limited successes in multidimensional calculations (Cook
et al. 1998; Abrahams et al. 1998). At the same time, the weak hyperbolicity of the
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ADM equations and the difficulty in obtaining stable evolutions, has motivated, and
still motivates, the search for alternative formulations.

3.3 Gravitational waves from ψ4 on a finite worldtube(s)

The Newman–Penrose scalars are scalar quantities defined as contractions between
the Weyl, or conformal, tensor

Cαβμν = Rαβμν − gα[μRν]β + gβ[μRν]α + gα[μgν]β R

3
, (93)

(in four dimensions), and an orthonormal null tetrad ℓα, nα[N P] ,m
α, m̄α (Newman and

Penrose 1963). The null tetrad is constructed from an orthonormal tetrad, and we
use the notation nα[N P] , rather than the usual nα , because nα[N P] is obtained in terms
of the hypersurface normal nα . Supposing that the spatial coordinates (x, y, z) are
approximately Cartesian, then spherical polar coordinates are defined using Eqs. (399)
and (400). However, in general these coordinates are not exactly spherical polar, and in
particular the radial coordinate is not a surface area coordinate (for which the 2-surface
r = t = constant must have area 4πr2). We reserve the notation r for a surface area
radial coordinate, so the radial coordinate just constructed will be denoted by s. Then
the outward-pointing radial unit normal es is

(es)
i = γ i j s j√

γ i j si s j

where s j = ∇ j

√
x2 + y2 + z2. (94)

An orthonormal basis (es, eθ , eφ) ofΣt is obtained by Gram–Schmidt orthogonal-
ization, and is extended to be an orthonormal tetrad of the spacetime by incuding the
hypersurface normal n. Then the orthonormal null tetrad is

ℓ = 1√
2
(n + es) , n[N P] =

1√
2
(n − es) , m = 1√

2

(
eθ + ieφ

)
. (95)

(The reader should be aware that some authors use different conventions, e.g., with-
out a factor of

√
2, leading to different forms for various equations). For example, in

Minkowski spacetime there is no distinction between s and r , and in spherical polar
coordinates (t, r, θ, φ) (Fig. 5)

ℓα =
(

1√
2
,

1√
2
, 0, 0

)
, nα[N P] =

(
1√
2
,− 1√

2
, 0, 0

)
, mα =

(
0, 0,

1

r
√

2
,

i

r
√

2 sin θ

)
. (96)

The null tetrad satisfies the orthonormality conditions

0 = ℓαℓα = nα[N P]n[N P]α = mαmα = mαnα = mαℓα, ℓ
αn[N P]α = −1, mαm̄α = 1.

(97)
The Newman–Penrose, or Weyl, scalars (Newman and Penrose 1963) are defined

as
ψ0 = − Cαβμνℓ

αmβℓμmν, (98)

ψ1 = − Cαβμνℓ
αnβ[N P]ℓ

μmν, (99)
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ψ2 = − Cαβμνℓ
αmβm̄μnν[N P] , (100)

ψ3 = − Cαβμνℓ
αnβ[N P]m̄

μnν[N P] , (101)

ψ4 = − Cαβμνnα[N P]m̄
βnμ[N P]m̄

ν . (102)

For our purposes, the most important of these quantities is ψ4 since in the asymptotic
limit it completely describes the outgoing gravitational radiation field: far from a
source, a gravitational wave is locally plane and ψ4 is directly related to the metric
perturbation in the TT gauge

ψ4 = ∂2
t (h+ − ih×) . (103)

In an asymptotically flat spacetime using appropriate coordinates (these issues are
discussed more formally in Sect. 6), the peeling theorem (Penrose 1965a; Geroch 1977;
Hinder et al. 2011) shows that ψ4 falls off as r−1, and more generally that ψn falls off
as rn−5. Thus, gravitational waves are normally described not byψ4 but by rψ4 which
should be evaluated in the limit as r → ∞ (which in practice may mean evaluated
at as large a value of r as is feasible). Often limr→∞ rψ4 is denoted by ψ0

4 (t, θ, φ),
but that notation will not be used in this section. These issues are discussed further
in Sect. 6, but for now we will regard gravitational waves, and specifically rψ4, as
properly defined only in a spacetime whose metric can be written in a form that tends
to the Minkowski metric, and for which the appropriate definition of the null tetrad is
one that tends to the form Eq. (96), as r → ∞.

Equation (102) for ψ4 involves spacetime, rather than hypersurface, quantities,
and this is not convenient in a “3+1” simulation. However, the expression for ψ4 can
be manipulated into a form involving hypersurface quantities only (Gunnarsen et al.
1995) (there is also a derivation in the textbook (Alcubierre 2008), but note the sign
difference in the definition of ψ4 used there):

ψ4 = (−Ri j − K Ki j + Kik K k
j + iǫkℓ

i ∇k Kℓj )m̄
i m̄ j . (104)

The proof is not given here, but in summary is based on using an arbitrary timelike
vector, in this case the hypersurface normal n, to decompose the Weyl tensor into its
“electric” and “magnetic” parts.

The above procedures lead to an estimate ψ4, but results are rarely reported in this
form. Instead, ψ4 is decomposed into spin-weighted spherical harmonics (see section
“The spin-weighted spherical harmonics sY ℓm” in “Appendix 2”),

ψ4 =
∑

ℓ≥2,|m|≤ℓ
ψℓm

4 −2Y ℓm where ψℓm
4 =

∫

S2
ψ4 −2Ȳ ℓm dΩ, (105)

and the rψℓm
4 are evaluated and reported. Although, normally, the dominant part of

a gravitational-wave signal is in the lowest modes with ℓ = 2, the other modes are
important to gravitational-wave data analysis, recoil calculations, etc.
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3.3.1 Extracting gravitational waves using ψ4 on a finite worldtube

“3+1” numerical simulations are restricted to a finite domain, so it is not normally
possible to calculate exactly a quantity given by an asymptotic formula (but see Sects. 6,
7). A simple estimate of rψ4 can be obtained by constructing coordinates (s, θ, φ)
and an angular null tetrad vector m as discussed at the beginning of Sect. 3.3. Then
rψ4 can be evaluated using Eq. (104) on a worldtube s = constant, and the estimate is
rψ4 = sψ4 or alternatively rψ4 = ψ4

√
A/4π , where A is the area of the worldtube

at time t . This approach was first used in Smarr (1977), and subsequently in, for
example, Pollney et al. (2007), Pfeiffer (2007) and Scheel et al. (2009). This method
does not give a unique answer, and there are many variations in the details of its
implementation. However, the various estimates obtained for rψ4 should differ by no
more than O(r−1).

The quantity ψ4 has no free indices and so tensorially is a scalar, but its value does
depend on the choice of tetrad. However, it may be shown that ψ4 is first-order tetrad-
invariant if the tetrad is a small perturbation about a natural tetrad of the Kerr spacetime.
This result was shown by Teukolsky (1972, 1973); see also Chandrasekhar (1978),
and Campanelli et al. (2000). Briefly, the reasoning is as follows. The Kinnersley null
tetrad is an exact null tetrad field in the Kerr geometry (Kinnersley 1969). It has the
required asymptotic limit, and the vectors ℓα , nα[N P] are generators of outgoing and

ingoing radial null geodesics respectively. In the Kerr geometry C
[Kerr]
αβμν �= 0, but using

the Kinnersley tetrad all ψn are zero except ψ2. Thus, to first-order, ψ4 is evaluated
using the perturbed Weyl tensor and the background tetrad; provided terms of the form
C

[Kerr]
αβμν nα[N P]m̄

βnμ[N P]m̄
ν , where three of the tetrad vectors take background values and

only one is perturbed, are ignorable. Allowing for those ψn that are zero, and using
the symmetry properties of the Weyl tensor, all such terms vanish. This implies that
the ambiguity in the choice of tetrad is of limited importance because it is a second-
order effect; see also Campanelli and Lousto (1998); Campanelli et al. (1998). These
ideas have been used to develop analytic methods for estimatingψ4 (Campanelli et al.
2000; Baker et al. 2000a; Baker and Campanelli 2000; Baker et al. 2001). Further, the
Kinnersley tetrad is the staring point for a numerical extraction procedure.

In practice the spacetime being evolved is not Kerr, but in many cases at least far
from the source it should be Kerr plus a small perturbation, and in the far future it should
tend to Kerr. Thus an idea for an appropriate tetrad for use on a finite worldtube is to
construct an approximation to the Kinnersley form, now known as the quasi-Kinnersley
null tetrad (Beetle et al. 2005; Nerozzi et al. 2005). The quasi-Kinnersley tetrad has
the property that as the spacetime tends to Kerr, then the quasi-Kinnersley tetrad tends
to the Kinnersley tetrad. The method was used in a number of applications in the mid-
2000s (Nerozzi et al. 2006; Campanelli et al. 2006; Fiske et al. 2005; Nerozzi 2007).

Despite the mathematical attraction of the quasi-Kinnersley approach, nowadays the
extrapolation method which assumes the simpler Schwarzschild background (see next
section) is preferred since, at a practical level, and as discussed in Sect. 8, extrapolation
can give highly accurate results. Modern simulations typically extract on a worldtube at
between 100 and 1000 M where the correction due to the background being Kerr rather
than Schwarzschild is negligible. More precisely, an invariant measure of curvature is
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Fig. 5 Schematic representation of an orthonormal tetrad and a null tetrad in Minkowski spacetime in
spherical polar (t, r, θ, φ) coordinates. The left panel shows the orthonormal tetrad (et , er , eθ , eφ), and the
right panel illustrates the null tetrad (ℓ, n,m, m̄). Both (eθ , eφ) and (m, m̄) constitute a basis of the (θ, φ)
subspace; and both (et , er ) and (ℓ, n) constitute a basis of the (t, r) subspace

the square root of the Kretschmann scalar, which for the Kerr geometry (Henry 2000)
takes the asymptotic form

√
R
[Kerr]
αβμν R

αβμν
[Kerr] = 4

√
3

M

r3

(
1 − 21a2 cos2 θ

2r2
+ O

(
a4

r4

))
, (106)

where a := J/M2. The curvature is already small in the Schwarzschild (a = 0) case,
and the effect of ignoring a is a small relative error of order a2/r2.

3.3.2 Extracting gravitational waves using ψ4 in practice: the extrapolation method

The method most commonly used at present is an adaptation of a simple estimate on
a finite worldtube, and has become known as the extrapolation method. A schematic
illustration of the method is given in Fig. 6. A preliminary version of extrapolation
was used in 2005 (Baker et al. 2006). However, the method, as used at present, was
developed in 2009 by two different groups (Pollney et al. 2009; Boyle and Mroué
2009), and a recent description is given by Taylor et al. (2013); see also Pollney et al.
(2011). The essential idea is thatψ4 is estimated on worldtubes at a number of different
radii, and then the data is fitted to a polynomial of form ψ4 =

∑N
n=1 An/rn so that

limr→∞ rψ4 is approximated by A1. However, there are some subtleties that com-
plicate the procedure a little. The expected polynomial form of ψ4 is applicable only
on an outgoing null cone; and further r should be a surface area coordinate (although
often requiring this property is not important). We assume that the data available is
ψℓm4 (t, s) obtained by decomposing ψ4 into spherical harmonic components on a
spherical surface of fixed coordinate radius s at a given coordinate time t . Then the
first step in extrapolation is to obtainψℓm4 (t∗, r), where t∗ is a retarted time coordinate
specified in Eq. (108) below, and where
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Fig. 6 Schematic illustration of
ψ4 extrapolation. The Cauchy
evolution is shown with green

slices, with an outer boundary in
blue subject to a boundary
condition that excludes
incoming gravitational waves.
The light blue lines are
approximations to outgoing null
slices. ψ4 is evaluated where the
Cauchy slices meet the
innermost worldtube rΓ ; and
also at fixed values of r > rΓ on
each Cauchy slice, and then
interpolated onto the black dots

shown on the null slices. Values
of ψ4 at the black dots on a
given null slice are then
extrapolated to r → ∞

r = r(t, s) =
√

A

4π
, (107)

with A the area of the coordinate 2-surface t = constant, s = constant. Because
the spacetime is dynamic, it would be a complicated process to construct t∗ exactly.
Instead, it is assumed that extraction is performed in a region of spacetime in which
the geometry is approximately Schwarzschild with (t, s) approximately standard
Schwarzschild coordinates. Then

t∗(t, s) =
∫ t

0

√
−gss(t ′, s)/gt t (t ′, s)

1 − 2M/r(t ′, s)
dt ′ − r(t, s)− 2M ln

(
r(t, s)

2M
− 1

)
. (108)

In Eq. (108), M is an estimate of the initial mass of the system, usually the ADM
mass, and gt t , gss are averaged over the 2-sphere t ′ = constant, s j = constant. It is
straightforward to check that if (t, s) are exactly Schwarzschild coordinates, then t∗
is null.

In this way we obtain, for fixed t∗, ψℓm4 at a number of different extraction radii;
that is, we have data of the form ψℓm4 (t∗, rk), k = 1, . . . , K .5 In practice, the real and
imaginary parts of ψℓm4 may vary rapidly, and it has been found to be smoother to
fit the data to the amplitude and phase.6 For each spherical harmonic component two
data-fitting problems are solved

|ψℓm4 (t∗, rk)|to
N∑

n=1

An(t∗)

rn
,

5 The values of rk may vary with t∗ since the extraction spheres are constructed to be of constant coordinate
radius s.
6 In the case of non-oscillatory modes, usually with m = 0, fitting to the real and imaginary parts of ψℓm4
is preferred.
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arg(ψℓm4 (t∗, rk))to
N∑

n=0

φn(t∗)

rn
, (109)

using the least-squares method, and where the An, φn are all real. Note that φ(t∗, r)
must be continuous in r , and so for certain values of rk it may be necessary to add
±2π to arg(ψℓm4 (t∗, rk)). Then the estimate is

lim
r→∞

rψℓm4 = A1 exp(iφ0). (110)

The remaining issue is the specification of N , and of the extraction spheres rk (or
more precisely, since extraction is performed on spheres of specified coordinate radius,
of the sk). The key factors are the innermost and outermost extraction spheres, i.e., the
values of r1 and r

K
, and of course the requirement that K > N + 1. Essentially, the

extrapolation process uses data over the interval 1/r ∈ [1/r
K
, 1/r1] to construct an

estimate at 1/r = 0. Polynomial extrapolation can be unreliable, or even divergent,
as N is increased; it can also be unreliable when the distance from the closest data
point is larger than the size of the interval over which the data is fitted. As a result of
this latter condition, it is normal to require r

K
> 2r1. On the other hand, increasing r

K

increases the computational cost of a simulation, and decreasing r1 could mean that a
higher order polynomial is needed for accurate modelling of the data at that point. A
compromise is needed between these conflicting factors. Values commonly used are
that N is between 3 and 5, r1 is normally of order 100 M, and r

K
is 300 M with values

as large as 1000 M reported. Typically, K is about 8, with the 1/rk evenly distributed
over the interval [1/r

K
, 1/r1].

If the desired output of a computation is a waveform (to be used, say, in the analysis
of LIGO detector data), thenψ4 needs to be translated into its wave strain components
(h+, h×). From Eq. (103),

hℓm+ (t)− ihℓm× (t) =
∫ t

(∫ t ′

ψℓm4 (t ′′) dt ′′
)

dt ′ + Aℓm t + Bℓm, (111)

where the constants of integration Aℓm , Bℓm need to be fixed by the imposition of some
physical condition, for example that the strain should tend to zero towards the end of
the computation. While this procedure is simple and straightforward, in practice it has
been observed that the double time integration may lead to a reduction in accuracy,
and in particular may introduce nonlinear drifts into the waveform. (The presence of a
linear drift is easily corrected by means of an adjustment to the integration constants
Aℓm, Bℓm). It was shown in Reisswig and Pollney (2011) that the cause of the problem
is that ψℓm4 includes random noise, and this can lead to noticeable drifts after a double
integration. The usual procedure to control the effect is via a transform to the Fourier
domain. The process to construct the wave strain from ψℓm4 , without any correction
for drift, is

ψ̃ℓm4 (ω) = F[ψℓm4 (t)], (112)
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h̃ℓm+ (ω)− i h̃ℓm× (ω) = − ψ̃
ℓm
4 (ω)

ω2
, (113)

hℓm+ (t)− ihℓm× (t) = F−1[h̃ℓm+ (ω)− i h̃ℓm× (ω)], (114)

where F is the Fourier transform operator,ω denotes frequency in the Fourier domain,
and ˜ denotes a Fourier transformed function. The division by ω2 in the second line
of Eq. (114) is clearly potentially problematic for small ω, and an obvious strategy is
to apply a filter to modify this equation. A number of such filters have been proposed,
based on reducing those frequency components that are lower than ω0—the lowest
frequency expected, on physical grounds, in the waveform. The simplest choice is a
step function (Campanelli et al. 2009; Aylott 2009), but it has the drawback that it
leads to Gibbs phenomena. To suppress this effect, a smooth transition is needed near
ω0 and various filters have been investigated (Santamaría et al. 2010; McKechan et al.
2010; Reisswig and Pollney 2011). A particularly simple choice of filter, yet effective
in many cases (Reisswig and Pollney 2011), is

h̃ℓm+ (ω)− i h̃ℓm× (ω) =− ψ̃ℓm4 (ω)

ω2
(ω ≥ ω0), (115)

=− ψ̃ℓm4 (ω)

ω2
0

(ω < ω0). (116)

3.3.3 Energy, momentum and angular momentum in the waves

Starting from the mass loss result of Bondi et al. (1962), the theory of energy and
momentum radiated as gravitational waves was further developed in the 1960s (Pen-
rose 1963, 1965a; Tamburino and Winicour 1966; Winicour 1968; Isaacson 1968)
and subsequently (Geroch 1977; Thorne 1980a; Geroch and Winicour 1981). For-
mulas for the radiated angular momentum were presented in Campanelli and Lousto
(1999), Lousto and Zlochower (2007) based on earlier work by Winicour (1980); for-
mulas were also obtained in Ruiz et al. (2007), Ruiz et al. (2008) using the Isaacson
effective stress-energy tensor of gravitational waves (Isaacson 1968).

The result is formulas that express the energy, momentum and angular momentum
content of the gravitational radiation in terms of ψ4. Strictly, all the quantities should
be evaluated in the limit as r → ∞ and using an appropriate null tetrad. The energy
equation is

d E

dt
= 1

16π

∮ ∣∣∣∣
∫ t

−∞
rψ4 dt ′

∣∣∣∣
2

dΩ. (117)

The linear momentum equations are

d Pi

dt
= 1

16π

∮
r̂i

∣∣∣∣
∫ t

−∞
rψ4 dt ′

∣∣∣∣
2

dΩ, (118)

where r̂i is a unit radial vector. If the angular coordinate system being used is spher-
ical polars, then from Eq. (399) r̂i = (sin θ cosφ, sin θ sin φ, cos θ), whereas if the
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coordinates are stereographic r̂i would by given by Eqs. (405) and (406). The angular
momentum equations are

d Ji

dt
= − 1

16π
ℜ
[∮ (∫ t

−∞
rψ̄4 dt ′

)
Ĵi

(∫ t

−∞

∫ t ′

−∞
rψ4 dt ′ dt ′′

)
dΩ

]
, (119)

where the Ĵi are operators given, in spherical polar coordinates, by

Ĵx = − sin φ∂θ − cosφ(cot θ∂φ − is csc θ), (120)

Ĵy = cosφ∂θ − sin φ(cot θ∂φ − is csc θ), (121)

Ĵz = ∂φ . (122)

In practice, the above formulas are rarely used directly, and instead ψ4 is first
decomposed into spin-weighted spherical harmonics using Eq. (105). Then the energy
equation is

d E

dt
= 1

16π

∑

ℓ≥2,|m|≤ℓ

∣∣∣∣
∫ t

−∞
rψℓm

4 dt ′
∣∣∣∣
2

. (123)

The momentum flux leaving the system is

d Px + i Py

dt
= r2

8π

∑

ℓ≥2,|m|≤ℓ

∫ t

−∞
ψℓm

4 dt ′
∫ t

−∞

×
(

aℓm ψ̄
ℓ,m+1
4 + bℓ,−m ψ̄

ℓ−1,m+1
4 − bℓ+1,m+1ψ̄

ℓ+1,m+1
4

)
dt ′, (124)

d Pz

dt
= r2

16π

∑

ℓ≥2,|m|≤ℓ

∫ t

−∞
ψℓm

4 dt ′
∫ t

−∞

(
cℓm ψ̄

ℓm
4 + dℓm ψ̄

ℓ−1,m
4 + dℓ+1,m ψ̄

ℓ+1,m
4

)
dt ′,

(125)

where

aℓm =
√
(ℓ− m)(ℓ+ m + 1)

ℓ(ℓ+ 1)
, bℓm = 1

2ℓ

√
(ℓ− 2)(ℓ+ 2)(ℓ+ m)(ℓ+ m − 1)

(2ℓ− 1)(2ℓ+ 1)
,

cℓm = 2m

ℓ(ℓ+ 1)
, dℓm = 1

ℓ

√
(ℓ− 2)(ℓ+ 2)(ℓ− m)(ℓ+ m)

(2ℓ− 1)(2ℓ+ 1)
. (126)

The angular momentum equations become

d Jx

dt
= − ir2

32π
ℑ

⎛
⎝

∑

ℓ≥2,|m|≤ℓ

∫ t

−∞

∫ t ′

−∞
ψℓm

4 dt ′′ dt ′
∫ t

−∞

(
fℓm ψ̄

ℓ,m+1
4 + fℓ,−m ψ̄

ℓ,m−1
4

)
dt ′

⎞
⎠ ,

(127)

d Jy

dt
= − r2

32π
ℜ

⎛
⎝

∑

ℓ≥2,|m|≤ℓ

∫ t

−∞

∫ t ′

−∞
ψℓm

4 dt ′′ dt ′
∫ t

−∞

(
fℓm ψ̄

ℓ,m+1
4 − fℓ,−m ψ̄

ℓ,m−1
4

)
dt ′

⎞
⎠ ,

(128)
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d Jz

dt
= − ir2

16π
ℑ

⎛
⎝

∑

ℓ≥2,|m|≤ℓ
m

∫ t

−∞

∫ t ′

−∞
ψℓm

4 dt ′′ dt ′
∫ t

−∞
ψ̄ℓm

4 dt ′

⎞
⎠ , (129)

where the symbol ℑ refers to the imaginary part and

fℓm :=
√
ℓ(ℓ+ 1)− m(m + 1). (130)

4 Gravitational waves in the Cauchy-perturbative approach

Black-hole perturbation theory has been fundamental not only for understanding the
stability and oscillations properties of black hole spacetimes (Regge and Wheeler
1957), but also as an essential tool for clarifying the dynamics that accompanies the
process of black hole formation as a result of gravitational collapse (Price 1972a, b).
As one example among the many possible, the use of perturbation theory has led to
the discovery that Schwarzschild black holes are characterised by decaying modes
of oscillation that depend on the black hole mass only, i.e., the black hole quasi-
normal modes (Vishveshwara 1970b, a; Press 1971; Chandrasekhar and Detweiler
1975). Similarly, black-hole perturbation theory and the identification of a power-
law decay in the late-time dynamics of generic black-hole perturbations has led to
important theorems, such as the “no hair” theorem, underlining the basic black-hole
property of removing all perturbations so that “all that can be radiated away is radiated
away” (Price 1972a, b; Misner et al. 1973).

The foundations of non-spherical metric perturbations of Schwarzschild black holes
date back to the work of Regge and Wheeler (1957), who first addressed the linear sta-
bility of the Schwarzschild solution. A number of investigations, both gauge-invariant
and not, then followed in the 1970s, when many different approaches were proposed
and some of the most important results about the physics of perturbed spherical
and rotating black holes established (Price 1972a, b; Vishveshwara 1970b, a; Chan-
drasekhar and Detweiler 1975; Zerilli 1970a, b; Moncrief 1974; Cunningham et al.
1978, 1979; Teukolsky 1972, 1973). Building on these studies, which defined most
of the mathematical apparatus behind generic perturbations of black holes, a number
of applications have been performed to study, for instance, the evolutions of per-
turbations on a collapsing background spacetime (Gerlach and Sengupta 1979b, a,
1980; Karlovini 2002; Seidel et al. 1987, 1988; Seidel 1990, 1991). Furthermore,
the gauge-invariant and coordinate independent formalism for perturbations of spher-
ically symmetric spectimes developed in the 1970s by Gerlach and Sengupta (1979b, a,
1980), has been recently extended to higher-dimensional spacetimes with a maximally
symmetric subspace in Kodama et al. (2000), Kodama and Ishibashi (2003), Ishibashi
and Kodama (2003), Kodama and Ishibashi (2004), for the study of perturbations in
brane-world models.

Also nowadays, when numerical relativity calculations allow to evolve the Ein-
stein equations in the absence of symmetries and in fully nonlinear regimes, black
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hole perturbative techniques represent important tools.7 Schwarzschild perturbation
theory, for instance, has been useful in studying the late-time behaviour of the coa-
lescence of compact binaries in a numerical simulation after the apparent horizon has
formed (Price and Pullin 1994; Abrahams and Cook 1994; Abrahams et al. 1995).
In addition, methods have been developed that match a fully numerical and three-
dimensional Cauchy solution of Einstein’s equations on spacelike hypersurfaces with
a perturbative solution in a region where the components of three-metric (or of the
extrinsic curvature) can be treated as linear perturbations of a Schwarzschild black
hole [this is usually referred to as the “Cauchy-Perturbative Matching”] (Abrahams
et al. 1998; Rupright et al. 1998; Camarda and Seidel 1999; Allen et al. 1998; Rezzolla
et al. 1999a; Lousto et al. 2010; Nakano et al. 2015). This method, in turn, allows to
“extract” the gravitational waves generated by the simulation, evolve them out to the
wave-zone where they assume their asymptotic form, and ultimately provide outer
boundary conditions for the numerical evolution.

This section intends to review the mathematical aspects of the metric perturbations
of a Schwarzschild black hole, especially in its gauge-invariant formulations. Special
care is paid to “filter” those technical details that may obscure the important results and
provide the reader with a set of expressions that can be readily used for the calculation
of the odd and even-parity perturbations of a Schwarzschild spacetime in the presence
of generic matter-sources. Also, an effort is made to “steer” the reader through the
numerous conventions and notations that have accompanied the development of the
formalism over the years. Finally, as mentioned in the Introduction, a lot of the mater-
ial presented here has already appeared in the Topical Review by Nagar and Rezzolla
(2006).

4.1 Gauge-invariant metric perturbations

It is useful to recall that even if the coordinate system of the background spacetime
has been fixed, the coordinate freedom of general relativity introduces a problem
when linear perturbations are added. In particular, it is not possible to distinguish an
infinitesimal “physical” perturbation from one produced as a result of an infinitesimal
coordinate transformation (or gauge-transformation). This difficulty, however, can be
removed either by explicitly fixing a gauge (see, e.g., Regge and Wheeler 1957; Price
1972a, b; Vishveshwara 1970b, a; Zerilli 1970a, b), or by introducing linearly gauge–
invariant perturbations (as initially suggested by Moncrief 1974 and subsequently
adopted in several applications Cunningham et al. 1978, 1979; Seidel et al. 1987,
1988; Seidel 1990, 1991).

More specifically, given a tensor field X and its infinitesimal perturbation δX , an
infinitesimal coordinate transformation xμ → xμ

′ := xμ + ξμ with ξμ ≪ 1 will
yield a new tensor field

δX → δX ′ = δX + Lξ X, (131)

7 All of our discussion hereafter will deal with perturbative analyses in the time domain. However, a hybrid
approach is also possible in which the perturbation equations are solved in the frequency domain. In this
case, the source terms are given by time-dependent perturbations created, for instance, by the motion of
matter and computed by fully nonlinear three-dimensional codes (Ferrari et al. 2006).
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where Lξ is the Lie derivative along ξ . We will then consider δX to be gauge-invariant
if and only if Lξ X = 0, i.e., if δX ′ = δX . In particular, since gravitational waves are

metric perturbations, we will consider the case that X is the background metric g
0
, and

then metric perturbations are gauge invariant if and only if Lξ g
0 = 0.

Stated differently, the possibility of building gauge–invariant metric perturbations
relies on the existence of symmetries of the background metric. In the case of a
general spherically symmetric background spacetime (i.e., one allowing for a time
dependence) and which has been decomposed in multipoles (see Sect. 4.2), the con-
struction of gauge-invariant quantities is possible for multipoles of order ℓ ≥ 2 only
(Gerlach and Sengupta 1979b, a; Martín-García and Gundlach 1999; Gundlach and
Martín-García 2000). In practice, the advantage in the use of gauge-invariant quantities
is that they are naturally related to scalar observables and, for what is relevant here,
to the energy and momentum of gravitational waves. At the same time, this choice
guarantees that possible gauge-dependent contributions are excluded by construction.

Of course, this procedure is possible if and only if the background metric has the
proper symmetries under infinitesimal coordinates transformation; in turn, a gauge-
invariant formulation of the Einstein equations for the perturbations of a general
spacetime is not possible. Nevertheless, since any asymptotically flat spacetime can
in general be matched to a Schwarzschild one at sufficiently large distances, a gauge-
invariant formulation can be an effective tool to extract physical information about
the gravitational waves generated in a numerically evolved, asymptotically flat space-
time (Abrahams et al. 1998; Rupright et al. 1998; Camarda and Seidel 1999; Allen
et al. 1998; Rezzolla et al. 1999a) (see also Sect. 5.6 for additional implementational
details). The following section is dedicated to a review of the mathematical techniques
to obtain gauge-invariant perturbations of a the Schwarzschild metric.

4.2 Multipolar expansion of metric perturbations

Given a spherically symmetric Schwarzschild solution with metric g
0

and line element

ds2 := g
0
μνdxμdxν = −e2adt2 + e2bdr2 + r2

(
dθ2 + sin2 θdφ2

)
, (132)

where e2a = e−2b = (1 − 2M/r), we generically consider small non-spherical per-
turbations hμν such that the new perturbed metric is

gμν := g
0
μν + hμν, (133)

where |hμν |/|g
0
μν | ≪ 1. Although we have chosen to employ Schwarzschild coordi-

nates to facilitate the comparison with much of the previous literature, this is not the
only possible choice, nor the best one. Indeed, it is possible to formulate the pertur-
bations equations independently of the choice of coordinates as discussed in Martel
and Poisson (2005), or in horizon-penetrating coordinates when the perturbations are
in vacuum (Sarbach and Tiglio 2001). Mostly to remain with the spirit of a review
and because most of the results have historically been derived in these coordinates, we
will hereafter continue to use Schwarzschild coordinates although the reader should
bear in mind that this is not the optimal choice.
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Because the background manifold M is spatially spherically symmetric, it can
be written as the product M = M

2 × S2, where M2 is a Lorentzian 2-dimensional
manifold of coordinates (t, r) and S2 is the 2-sphere of unit radius and coordinates
(θ, φ). As a result, the perturbations can be split “ab initio” in a part confined to M2 and
in a part confined on the 2-sphere S2 of metric γ . Exploiting this, we can expand the
metric perturbations h in multipoles referred to as “odd” or “even-parity” according to
their transformation properties under parity. In particular, are odd (or axial) multipoles
those that transform as (−1)ℓ+1, under a parity transformation (θ, φ)→ (π−θ, π+φ),
while are even (or polar) those multipoles that transform as (−1)ℓ. As a result, the
metric perturbations can be written as

hμν =
∑

ℓ,m

[(
hℓmμν

)(o)
+

(
hℓmμν

)(e)]
, (134)

where
∑
ℓ,m :=

∑∞
ℓ=2

∑ℓ
m=−ℓ, and the upper indices (o) and (e) distinguish odd

and even-parity objects, respectively. Adapting now a notation inspired by that of
Gerlach and Sengupta (Gerlach and Sengupta 1979b, a, 1980) and recently revived
by Gundlach and Martín-García (Martín-García and Gundlach 1999; Gundlach and
Martín-García 2000, 2001), we use lower-case indices a, b . . . = 0, 1 to label the
coordinates of M2 and upper-case indices C, D . . . = 2, 3 to label the coordinates of
S2. Using this notation, the scalar spherical harmonics Y ℓm are then simply defined
as

γ C D∇
D
∇

C
Y ℓm = −ΛY ℓm, (135)

where ∇
C

indicates the covariant derivative with respect to the metric γ :=
diag(1, sin2 θ) of S2, and where

Λ := ℓ(ℓ+ 1). (136)

It is now convenient to express the odd and even-parity metric functions in (133)
in terms of tensor spherical harmonics. To do this we introduce the axial vector Sℓm

C

defined as
Sℓm

C
:= ǫ

C D
γ DE ∇

E
Y ℓm, (137)

where ǫ
C D

is the volume form on S2 as defined by the condition ǫ
C D
ǫC E = γ E

D
and

such that ∇
C
ǫ

AB
= 0. In this way, each odd-parity metric function in (133) can be

written as

(
hℓmμν

)(o)
=

⎛
⎜⎝

0 h
(o)
a Sℓm

C

h
(o)
a Sℓm

C
h∇

(D
Sℓm

C )

⎞
⎟⎠ , (138)

where h, h
(o)
a are functions of (t, r) only, and where we have omitted the indices ℓ,m

on h, h
(o)
a for clarity.
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Proceeding in a similar manner, each even-parity metric function can be decom-
posed in tensor spherical harmonics as

(
hℓmμν

)(e)
=

⎛
⎜⎜⎝

e2a H0Y ℓm H1Y ℓm h
(e)
a ∇

C
Y ℓm

H1Y ℓm e2b H2Y ℓm

h
(e)
a ∇

C
Y ℓm r2

(
K Y ℓmγ

C D
+ G∇

D
∇

C
Y ℓm

)

⎞
⎟⎟⎠ , (139)

where H0, H1, H2, h
(e)
0 , h

(e)
1 K , and G (with the indices ℓ,m omitted for clarity) are

the coefficients of the even-parity expansion, are also functions of (t, r) only.
Note that we have used the Regge–Wheeler set of tensor harmonics to decompose

the even-parity part of the metric in multipoles (Regge and Wheeler 1957). Despite
this being a popular choice in the literature, it is not the most convenient one since
the tensor harmonics in this set are not linearly independent. An orthonormal set is
instead given by the Zerilli–Mathews tensor harmonics (Zerilli 1970; Mathews 1962)
and the transformation from one basis to the other is given by defining the tensor Zℓm

C D

confined on the 2-sphere S2 (see also section “Vector and tensor spherical harmonics”
in “Appendix 2”)

Zℓm
C D

:= ∇
C
∇

D
Y ℓm + Λ

2
γ

C D
Y ℓm, (140)

and then replacing in Eq. (139) the second covariant derivative of the spherical harmon-
ics∇

C
∇

D
Y ℓm with Zℓm

C D
. This transformation has to be taken into account, for instance,

when developing gauge-invariant procedures for extracting the gravitational-wave
content from numerically generated spacetimes which are “almost” Schwarzschild
spacetimes (Abrahams et al. 1992; Anninos et al. 1993, 1995a, b; Abrahams and Price
1996b, a).

Besides vacuum tensor perturbations, the background Schwarzschild spacetime
can be modified if non-vacuum tensor perturbations are present and have a nonzero
mass-energy, but much smaller than that of the black hole. In this case, the generic
stress-energy tensor tμν describing the matter-sources can be similarly decomposed
in odd and even-parity parts

tμν =
∑

ℓ,m

[(
tℓmμν

)(o)
+

(
tℓmμν

)(e)]
, (141)

that are naturally gauge-invariant since the background is the vacuum Schwarzschild
spacetime and are given explicitely by

(
tℓmμν

)(o)
=

⎛
⎝

0 Lℓma Sℓm
C

Lℓma Sℓm
C

Lℓm∇
(D

Sℓm
C)

⎞
⎠ , (142)
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for the odd-parity part and by

(
tℓmμν

)(e)
=

⎛
⎜⎜⎝

T ℓmab Y ℓm T ℓma ∇
C

Y ℓm

T ℓma ∇
C

Y ℓm r2T ℓm3 Y ℓmγ
C D

+ T ℓm2 Zℓm
C D

⎞
⎟⎟⎠ , (143)

for the even-parity one. Note that we have now used the Zerilli-Matthews set of har-
monics for the expansion, that the ten coefficients Lℓma , Lℓm, T ℓmab , T ℓma , T ℓm2 , T ℓm3
are gauge-invariant, and that explicit expressions for them will be presented in the
following sections.

Let us now consider the Einstein field equations that, in the static vacuum back-
ground, take the simple form

R
0

μν = 0, (144)

where R
0

is the Ricci tensor built from the background metric g
0
. At first order in the

perturbations, the field equations reduce to

Rμν −
1

2
g
0
μνR = 8π tμν, (145)

where R is now the Ricci tensor built from the metric perturbations h.
Note that while a generic perturbation will be a mixture of odd and even-parity

contributions, we will exploit the linearity of the approach to handle them separately
and simplify the treatment. In the following two sections we will discuss the form
the Einstein equations (145) assume in response to purely odd and even-parity pertur-
bations over a Schwarzschild background. In particular, we will show how the three
odd-parity coefficients of the expansion in harmonics of the metric, i.e., h

(o)
a , h, and the

seven even-parity ones, i.e., H0, H1, H2, h
(e)
0 , h

(e)
1 K , G, can be combined to give

two gauge-invariant master equations, named respectively after Regge and Wheeler
(1957) and Zerilli (1970), each of which is a wave-like equation in a scattering poten-
tial.8

Although our attention is here focussed on the radiative degrees of freedom of
the perturbations (i.e., those with ℓ ≥ 2) because of their obvious application to the
modelling of sources of gravitational waves, a comment should be made also on lower-
order multipoles. In particular, it is worth remarking that the monopole component of
the metric for a vacuum perturbation (i.e., with ℓ = 0) is only of even-parity type and
represents a variation in the mass-parameter of the Schwarzschild solution. On the
other hand, the dipole component of the even-parity metric for a vacuum perturbation
(i.e., with ℓ = 1) is of pure-gauge type and it can be removed by means of a suitable
gauge transformation (Zerilli 1970b). This is not the case for a dipolar odd-parity

8 These results were originally obtained by Regge and Wheeler (1957) and by Zerilli (1970a, b) in a specific
gauge (i.e., the Regge–Wheeler gauge). Subsequently, the work of Moncrief showed how to reformulate the
problem in a gauge-invariant form by deriving the equations from a suitable variational principle (Moncrief
1974).
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metric perturbation, which can instead be associated to the introduction of angular
momentum onto the background metric.

4.3 Gauge-invariant odd-parity perturbations

Before discussing the derivation of the odd-parity equation, we should make a choice
for the odd-parity master function. Unfortunately, this choice has not been unique
over the years and different authors have made different choices, making comparisons
between different approaches less straightforward. Here, we will make a choice which
highlights the relation with the gravitational-wave amplitude measured by a distant
observer and, in particular, we construct the gauge-invariant combination of multipoles
(Gerlach and Sengupta 1979b; Martín-García and Gundlach 1999; Harada et al. 2003)

ka := ha −∇ah + 2h
∇ar

r
, (146)

where, we recall, ∇a represents the covariant derivative with respect to the connection
of the submanifold M2. If ǫab is the antisymmetric volume form on M2, then the
function

�(o)(t, r) := r3ǫab∇b

(
ka

r2

)
= r

[
∂t h

(o)
1 − r2∂r

(
h
(o)
0

r2

)]
, (147)

is gauge-invariant and will be our choice for the Regge–Wheeler master function
(Gerlach and Sengupta 1979b; Martín-García and Gundlach 1999; Gundlach and
Martín-García 2000; Harada et al. 2003).

A slight variation of the master function (147) has been introduced by Cunningham
et al. (1978) in terms of the function ψ̃ := Λ�(o) and this has been used so extensively
in the literature (Seidel et al. 1987, 1988; Seidel 1991) that it is now commonly
referred to as the Cunningham-Price-Moncrief (CPM) convention. We partly follow
this suggestion and introduce a new master function for the odd-parity perturbations
defined as

Ψ (o) := 1

Λ− 2
�(o). (148)

With the choice (148), the Einstein field equations (145) with odd-parity perturba-
tions lead to the inhomogeneous “Regge–Wheeler” equation

∂2
t Ψ

(o) − ∂2
r∗Ψ

(o) + V
(o)
ℓ Ψ (o) = S(o), (149)

where
r∗ := r + 2M ln

( r

2M
− 1

)
, (150)

is the “tortoise coordinate” (Misner et al. 1973) and V
(o)
ℓ is the odd-parity potential,

defined as

V
(o)
ℓ :=

(
1 − 2M

r

)(
Λ

r2
− 6M

r3

)
. (151)
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The right-hand side of Eq. (149) represents the generic odd-parity “matter-source”
and is given by

S(o) := 16πr

Λ− 2
e2aǫbc∇c Lb = 16πr

Λ− 2

[(
1 − 2M

r

)
∂t Lℓm1 − ∂r∗ Lℓm0

]
, (152)

with the components of the odd-parity matter-source vector defined as

Lℓma := 1

Λ

∫
dΩ

sin θ

(
i m ta2Y ∗

ℓm + ta3 ∂θY ∗
ℓm

)
, a = 0, 1, (153)

and where dΩ = sin θdφdθ is the surface element on the 2-sphere S2.
Another choice for the gauge-invariant odd-parity master variable is possible and

indeed was originally proposed by Moncrief (1974). This function, which hereafter
we will refer to as the odd-parity Moncrief function, is defined as

Q(o) := g
0 ab

kb

∇ar

r
= 1

r

(
1 − 2M

r

)[
h
(o)
1 + r2

2
∂r

(
h2

r2

)]
, (154)

where the first expression is coordinate independent (Martel and Poisson 2005), while
the second one is specialized to Schwarzschild coordinates with h2 = −2h (Moncrief
1974). In the Regge–Wheeler gauge, i.e., for h2 = h = 0, the definition (154) coincides
with the variable used by Regge and Wheeler (1957). Historically, the choice of (154)
as master variable has been the most common in the literature to describe odd-parity
perturbations of a Schwarzschild spacetime and we will refer to it as “Regge–Wheeler”
(RW) convention. It should be noted that while (154) is a solution of the Regge–
Wheeler equation, the corresponding source term differs from expression (152). A
general expression of the source in the RW convention can be found in Martel and
Poisson (2005), Martel (2004) together with its specification for a point-particle (see
also Andrade and Price 1999; Tominaga et al. 1999; Ferrari and Kokkotas 2000).

The two master functions Q(o) and Ψ (o) are intimately related through the varia-
tional formalism employed by Moncrief (1974), and through the explicit expression
(Martel and Poisson 2005)

∂tΨ
(o) = −Q(o) + 16π

Λ− 2

r

e2b
Lℓm1 . (155)

Note that Eq. (155) highlights an important difference between the two master
functions which is not just a dimensional one (i.e., Ψ (o) has the dimensions of a
length, while Q(o) is dimensionless) and this will have consequences on the asymptotic
expressions for the gravitational waveforms when these are expressed in one or in the
other convention. A detailed discussion of this will be made in Sects. 5.1, 5.3 and 5.4.
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4.4 Gauge-invariant even-parity perturbations

Also in the case of even-parity perturbations, it is possible to express the evolution of
the even-parity perturbations in terms of a wave-like equation in a scattering potential
[cf. the Regge–Wheeler equation (149)]. In particular, following Moncrief (1974), we
define the gauge-invariant functions

κ1 := K + 1

e2b

(
r∂r G − 2

r
h
(e)
1

)
, (156)

κ2 := 1

2

[
e2b H2 − eb∂r

(
reb K

)]
, (157)

and where their linear combination

q1 := rΛκ1 + 4r

e4b
κ2. (158)

is also a gauge-invariant function. Strictly related to expression (158) is the gauge-
invariant function most frequently used in the literature (Seidel 1990; Gundlach and
Martín-García 2001; Martel 2004; Lousto and Price 1997; Ruoff 2001; Ruoff et al.
2001; Martel and Poisson 2002; Nagar et al. 2004; Poisson 2004)

Ψ (e) := rq1

Λ [r (Λ− 2)+ 6M]
, (159)

which is also the solution of the inhomogeneous even-parity master equation or “Zer-
illi” equation

∂2
t Ψ

(e) − ∂2
r∗Ψ

(e) + V
(e)
ℓ Ψ (e) = S(e), (160)

and, again, is a wave-like equation in the scattering Zerilli potential (Zerilli 1970a)

V
(e)
ℓ :=

(
1 − 2M

r

)
Λ(Λ− 2)2r3 + 6(Λ− 2)2 Mr2 + 36(Λ− 2)M2r + 72M3

r3 [(Λ− 2)r + 6M]2 .

(161)
The even-parity matter-source has a rather extended expression given by Martel

(2004), Nagar et al. (2004, 2005)

S(e)=− 8π

Λ [(Λ−2)r+6M]

{Λ
(

6r3 − 16Mr2
)
− r3Λ2 − 8r3+68Mr2 − 108M2r

(Λ− 2)r+6M
T ℓm00

+ 1

e4b

[
2Mr + r2(Λ− 4)

]
T ℓm11 + 2r3∂r∗ T ℓm00 − 2r3

e4b
∂r∗ T ℓm11

+4Λr

e4b
T ℓm1 + 1

e2b

[
2Λ

(
1 − 3M

r

)
−Λ2

]
T ℓm2 + 4r2

e4b
T ℓm3

}
. (162)
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Note that the expressions of the even-parity vector and tensor spherical-harmonics
for the matter-source needed in (162) can be obtained from the orthogonality properties
of the harmonics and are

T ℓma = 1

Λ

∫
dΩ

[
ta2∂θ (Ȳ

ℓm )− ta3
imȲ ℓm

sin2 θ

]
, a = 0, 1, (163)

T ℓm2 = 2

Λ(Λ− 2)

∫
dΩ

[
t22

W̄ ℓm

2
+ t23

2X̄ℓm

sin θ
+ t33

(
ΛȲ ℓm

2
− m2Ȳ ℓm

sin2 θ
+ cot θ∂θ Ȳ ℓm

)]
, (164)

T ℓm3 = 1

2r2

∫
dΩ

(
t22 + t33

1

sin2 θ

)
Ȳ ℓm , (165)

T ℓmab =
∫

dΩ tab Ȳ ℓm , a, b = 0, 1, (166)

where the angular functions W ℓm(θ, φ) and Xℓm(θ, φ) are defined as Regge and
Wheeler (1957)

W ℓm :=
∇(φSℓmθ)

sin θ
= ∂2

θ Y ℓm − cot θ ∂θY ℓm − 1

sin2 θ
∂2
φY ℓm, (167)

Xℓm := − sin θ

(
∇θ Sℓmθ −

∇φSℓmφ

sin2 θ

)
= 2

(
∂2
θφY ℓm − cot θ∂φY ℓm

)
, (168)

and where the overbar stands for complex conjugation.
We should note that even-parity functions can be found in the literature under

different notations. A particularly common choice is that proposed in Moncrief (1974)
for the even parity gauge-invariant master function Q(e) which is related to Zerilli
function (159) simply as Q(e) = ΛΨ (e), while other authors use instead a master
function defined as Z := 2Ψ (e) (Martel 2004; Lousto and Price 1997). Another even-
parity function can be introduced in terms of two new gauge-invariant metric functions
k and χ are defined as Gundlach and Martín-García (2000, 2001)

k = κ1 = K + 1

e2b

[
r∂r G − 2

r
h
(e)
1

]
, (169)

χ + k = H2 − 2

e2b
∂r h

(e)
1 − 2M

r2
h
(e)
1 + 1

e2b
∂r

(
r2∂r G

)
+ M∂r G, (170)

and such that

κ2 = 1

2
e2b

(
χ − r∂r k + M

r
e2bk

)
. (171)

In this case, the Zerilli function (159) can be equivalently defined as Gundlach and
Martín-García (2001)

Ψ (e) := 2r2

Λ [(Λ− 2)r + 6M] e2b

[
χ +

(
Λ

2
+ M

r

)
e2bk − r∂r k

]
. (172)

Finally, the homogeneous odd and even-parity master equations (149) and (160)
can be transformed into each other by means of differential operations (Chandrasekhar
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1983), and that they are connected to the master equation that Bardeen and Press have
derived via the Newman–Penrose formalism (Bardeen and Press 1973).

5 Numerical implementations of the Cauchy-perturbative approach

In the previous section we have reviewed the derivation of the equations describing
the evolution of perturbations of nonrotating black holes induced, for instance, by a
nonzero stress-energy tensor. These perturbations have been assumed to be generic in
nature, needing to satisfy only the condition of having a mass-energy much smaller than
that of the black hole. The solution of these equations with suitable initial conditions
completely specifies the reaction of the black hole to the perturbations and this is
essentially represented by the emission of gravitational waves.

As mentioned in Sect. 4.1, the importance of the gauge-invariant variables used so
far is that they are directly related to the amplitude and energy of the gravitational-wave
signal measured at large distances. The purpose of this Chapter is to review the steps
necessary to obtain the relations between the master functions for the odd and even-
parity perturbations and the “plus” and “cross” polarisation amplitudes h+, h× of a
gravitational wave in the TT gauge. In practice, and following the guidelines tracked
in Cunningham et al. (1978, 1979), we will derive an expression for the perturba-
tion metric h equivalent to that obtained in the standard TT gauge on a Minkowski
spacetime and relate it to the odd and even-parity master functions Ψ (o) and Ψ (e).

To obtain this result a number of conditions need to be met. First, we need to evaluate
each multipole of the decomposed metric perturbations in the tetrad eν̂ of stationary
observers in the background Schwarzschild spacetime, i.e., hμ̂ν̂ = e

μ

μ̂
eν
ν̂
hμν , where e

is diagonal with components

e
μ

μ̂
:=

(
eb, e−b, r−1, (r sin θ)−1

)
, (173)

and where the indices μ̂ refer to the locally “flat” coordinates. Second, all of the
quantities need to be evaluated far away from the source (i.e., in the “wave-zone”)
and in the so-called radiation gauge. In practice, this amounts to requiring that that
components h

θ̂ θ̂
, h

φ̂φ̂
and h

θ̂ φ̂
are functions of the type f (t − r)/r (i.e., they are

outgoing spherical waves), while all the other components have a more rapid decay of
O(1/r2). Finally, we need to impose the condition that the metric is traceless modulo
higher order terms, i.e., h

θ̂ θ̂
+ h

φ̂φ̂
= 0 + O(1/r2).

In the following sections we will discuss the asymptotic expressions from odd- and
even-parity perturbations, and how to implement the Cauchy-perturbative approach
to extract gravitational-wave information within a standard numerical-relativity code.

5.1 Asymptotic expressions from odd-parity perturbations

We first consider odd-parity perturbations and recall that from the radiation-gauge
conditions and since for large r the metric asymptotes that of a flat spacetime, i.e., eb ∼
e−b ∼ 1, we have
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h
(o)
θ̂ t̂

= h
(o)
0

r
eb Sθ ∼ h

(o)
0

r
∼ O

(
1

r2

)
−→ h

(o)
0 ∼ O

(
1

r

)
, (174)

h
(o)
θ̂ r̂

= h
(o)
1

r
eb Sθ ∼ h

(o)
1

r
∼ O

(
1

r2

)
−→ h

(o)
1 ∼ O

(
1

r

)
, (175)

where the ℓ,m indices have been omitted for clarity. Similarly, since h
(o)
θ̂ θ̂

=
2hr−2∇θ Sθ ∼ O(1/r), we can deduce that h ∼ O(r), so that the only components
of the metric having wave-like properties at large r are

h
(o)
+ := 1

2

(
h
(o)
θ̂ θ̂

− h
(o)
φ̂φ̂

)
= h

r2

(
∇θ Sθ −

∇φSφ

sin2 θ

)
+ O

(
1

r2

)
, (176)

h
(o)
× := h

(o)
θ̂ φ̂

= h

r2

∇(φSθ)

sin θ
+ O

(
1

r2

)
. (177)

Note that since h has the dimensions of a length squared, both h+ and h× are
dimensionless. Next, we need to relate the perturbation h to the odd-parity master
functionΨ (o). To do so, we follow the procedure outlined in Cunningham et al. (1978),
and note that (cf. Eq. (III-20)9)

∂t h =
(

1 − 2M

r

)
∂r

(
rΨ (o)

)
+ h

(o)
0 . (178)

Equation (178) represents one of the Hamilton equations as derived by Moncrief in
a Hamiltonian formulation of perturbation equations (Moncrief 1974). The radiation-
gauge conditions on h and h

(o)
0 imply that Ψ (o) ∼ O(1), i.e., in the wave-zone Ψ (o)

has the dimensions of a length, behaves as an outgoing-wave, but it does not depend
explicitly on r .

Exploiting now the outgoing-wave behaviour of h at large distances we can write

∂t h = −∂r h + O

(
1

r

)
, (179)

so that asymptotically Eq. (178) simply becomes

∂r h = −∂r

(
rΨ (o)

)
+ O

(
1

r

)
, (180)

and its integration yields
h

r
∼ −Ψ (o) + O

(
1

r

)
. (181)

9 We recall that in the notation of Cunningham et al. (1978) ψ̃ = Λ(Λ − 2)Ψ (o), and the multipoles in

Cunningham et al. (1978) are related to ours as h̃2 = h2 = −2h, h̃0 = h
(o)
0 and h̃1 = h

(o)
1 .
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As a result, the “+” and “×” polarisation amplitudes of the gravitational wave can
be calculated from Eqs. (177)–(176) as

h
(o)
+ = −1

r
Ψ (o)

(
∇θ Sθ −

∇φSφ

sin2 θ

)
+ O

(
1

r2

)
, (182)

h
(o)
× = −1

r
Ψ (o)

∇(φSθ)

sin θ
+ O

(
1

r2

)
. (183)

Expressions (182) and (183) can be written in a compact form using the s =
−2 spin-weighted spherical harmonics (see also section “Vector and tensor spherical
harmonics” in “Appendix 2”)

−2 Y ℓm(θ, φ) :=
√
(ℓ− 2)!
(ℓ+ 2)!

(
W ℓm − i

Xℓm

sin θ

)
, (184)

so that expressions (182) and (183) can be combined into a single complex expression
given by

(
h
(o)
+ − ih

(o)
×

)
ℓm

= i

r

√
(ℓ+ 2)!
(ℓ− 2)! Ψ

(o)
ℓm −2 Y ℓm(θ, φ)+ O

(
1

r2

)
, (185)

where, for clarity, we have explicitly restored the multipole indices ℓ,m.

5.1.1 The master function Q(o)

As discussed in Sect. 4.3, the odd-parity metric perturbations are sometimes expressed
in terms of the odd-parity Moncrief function Q(o) [cf. Eq. (154)]; indeed it is not
unusual to find in the literature the gravitational-wave amplitudes expressed in terms
of this quantity. However, great care must be paid to the asymptotic relation between
the master function Q(o) and the gravitational-wave amplitudes and, indeed, this is
sometimes a source of confusion (Kawamura and Oohara 2004; Kawamura et al.
2003). To clarify this point, we recall that the derivation of the asymptotic relation
between Q(o) and h proceeds in a way similar to the one discussed above. In the
radiation gauge and at large distances from the black hole, we can use relation (179)
in the definition (154) with h2 = −2h, so that

Q(o) ∼ 1

r
∂t h + O

(
1

r

)
, (186)

which is also a dimensionless quantity. Since h ∼ O(r), the function Q(o) does not
depend on r at leading order and Eq. (186) can be integrated to give

h(t)

r
∼

∫ t

−∞
Q(o)(t ′) dt ′ + O

(
1

r

)
+ const., (187)
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where the integration constant can be defined as

const. := lim
t→−∞

h(t, r)

r
∼ O(1), (188)

and it can be set to zero in the case of asymptotically flat metric perturbations (h = 0)
at earlier times. Combining now expressions (167), (168) and (187), the gravitational-
wave amplitudes in the two polarisations and with the new master function read

(
h
(o)
+ − ih

(o)
×

)
ℓm

= − i

r

√
(ℓ+ 2)!
(ℓ− 2)!

(∫ t

−∞
Q
(o)
ℓm(t

′)dt ′
)

−2 Y ℓm(θ, φ)+ O

(
1

r2

)
.

(189)
Note that in expressions (185) and (189) the quantitiesΨ (o) and Q(o) are both solu-

tions of the Regge–Wheeler equation (149), but they yield two different asymptotic
expressions for the gravitational-wave amplitudes. This difference, which is consis-
tent with Eq. (155) when evaluated in a an asymptotic region of the spacetime where
Lℓm1 = 0, is subtle but important and, as mentioned above, it has led to some inconsis-
tencies in the literature both for the determination of the asymptotic gravitational-wave
amplitudes and for the energy losses. This will be further discussed in Sects. 5.3 and
5.4.

5.2 Asymptotic expressions from even-parity perturbations

A calculation conceptually analogous to the one carried out in Sect. 5.1 leads to the
relation between the gravitational-wave amplitude and the even-parity master function.
In particular, after projecting Eq. (139) along the stationary tetrad, the asymptotic wave
amplitudes in the two polarisation states are

h
(e)
+ = 1

2

(
h
(e)
θ̂ θ̂

− h
(e)
φ̂φ̂

)
= G

2

(
∇θ∇θY ℓm − ∇φ∇φY ℓm

sin2 θ

)
= G

2
W ℓm, (190)

h
(e)
× = h

(e)
θ̂ φ̂

= G
∇θ∇φY ℓm

sin θ
= G

2

Xℓm

sin θ
, (191)

so that we essentially need to relate the metric perturbation G with the even-parity
function Ψ (e). Firstly, it is easy to realize that the even-parity metric projected onto
the tetrad, h

(e)
μ̂ν̂

, is such that

H2 ∼ O

(
1

r2

)
, and h

(e)
1 ∼ O

(
1

r

)
, (192)

so that the terms proportional to these multipoles are of higher order for large r and
can be neglected. Furthermore, from the transverse traceless condition

h
(e)
θ̂ θ̂

+ h
(e)
φ̂φ̂

= 0 + O

(
1

r2

)
, (193)
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we obtain an asymptotic relation between the gauge-invariant functions K and G

2K Y ℓm + G

(
∇θ∇θY ℓm + ∇φ∇φY ℓm

sin2 θ

)
= (2K − GΛ) Y ℓm ∼ O

(
1

r2

)
, (194)

where we have used the definition (135) to derive the right-hand side of expression
(194). As a result, the asymptotic relation between the two components of the even-
parity part of the perturbation metric simply reads

K ∼ Λ

2
G + O

(
1

r2

)
. (195)

Using now the definitions (156)–(157), we have that asymptotically

κ1 ∼ Λ

2
G + r∂r G + O

(
1

r2

)
(196)

κ2 ∼ − 1

2
(K + r∂r K ) ∼ −Λ

4
(G + r∂r G)+ O

(
1

r2

)
, (197)

and their linear combination (157) becomes

q1 ∼ rG

2
Λ(Λ− 2)+ O

(
1

r

)
. (198)

Finally, the asymptotic gauge-invariant even-parity master function reads

Ψ (e) ∼ rq1

Λ [r(Λ− 2)+ 6M]
∼ 1

2
rG + O

(
1

r

)
, (199)

so that, modulo higher-order terms, the even-parity gravitational-wave amplitudes
measured by a distant observer can be written in the compact form

(
h
(e)
+ − ih

(e)
×

)
ℓm

= 1

r

√
(ℓ− 2)!
(ℓ+ 2)!Ψ

(e)
ℓm −2 Y ℓm(θ, φ)+ O

(
1

r2

)
. (200)

5.3 Asymptotic general expressions

It is often convenient to combine the expressions for the asymptotic gravitational-wave
amplitudes related to odd and even-parity perturbations into the single expression

h+ − ih× = 1

r

∑

ℓ,m

√
(ℓ+ 2)!
(ℓ− 2)!

(
Ψ
(e)
ℓm + iΨ

(o)
ℓm

)
−2 Y ℓm(θ, φ)+ O

(
1

r2

)
, (201)
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or, equivalently

h+ − ih×= 1

r

∑

ℓ,m

√
(ℓ+2)!
(ℓ− 2)!

(
Ψ
(e)
ℓm − i

∫ t

−∞
Q
(o)
ℓm(t

′)dt ′
)

−2 Y ℓm(θ, φ)+O

(
1

r2

)
,

(202)

where we have defined h+ := h
(o)
+ + h

(e)
+ and h× := h

(o)
× + h

(e)
× . Note that Xℓ0 = 0

for any value of ℓ, so that in the case of axisymmetry the gravitational-wave signal is
proportional to W ℓ0 only.

It is also useful to underline that while expression (201) resembles the correspond-
ing expression (10) of Kawamura and Oohara (2004), it is indeed different. Firstly,
because in Kawamura and Oohara (2004) the Moncrief function is adopted for the
odd-parity part of the perturbations and hence, modulo a normalisation factor, the
functionΨ (o) appearing there corresponds to our function Q(o) [cf. expression (154)].
Secondly, because with this choice for the odd-parity perturbations a time derivative is
needed in the asymptotic expression for the gravitational-wave amplitudes [cf. the dis-
cussion in the derivation of Eq. (189)]. As a result, expression (10) of Kawamura and
Oohara (2004) (which is also missing the distinction between the real and imaginary
parts) should really be replaced by expression (202). A similar use of the Moncrief
function for the odd-parity part is present also in Shibata et al. (2003), Shibata and
Sekiguchi (2003), Shibata and Sekiguchi (2005), where it is employed to calculate the
gravitational-wave content of numerically simulated spacetimes.

5.4 Energy and angular momentum losses

Using the expressions derived in the previous sections we can now estimate the energy
and angular momentum losses due to gravitational waves propagating outwards to
spatial infinity. More specifically, this can be done by using expression (201) and the
definition of Isaacson’s stress-energy pseudo-tensor τμν for the gravitational-wave

field h propagating in the curved background field g
0

and in a Lorentz gauge (Isaacson
1968; Landau and Lifshitz 1975)

τμν := 1

32π

〈
∇μhαβ∇νhαβ

〉
, (203)

where the brackets 〈· · · 〉 refer to a spatial average over a length much larger than
the typical gravitational wavelength (Isaacson 1968; Misner et al. 1973). The aver-
aged expression (203) is gauge-invariant (Isaacson 1968) and holds in the “limit of
high frequency” (or short-wave approximation), i.e., whenever the wavelength of the
gravitational-wave field is small when compared to the local radius of curvature of the
background geometry. In practice, gravitational radiation from isolated systems is of
high frequency whenever it is far enough away from its source.

Expression (203) accounts for the amount of energy and momentum carried by the
gravitational wave over a certain region of spacetime, but since we are interested in the
energy flux as measured by an inertial observer, we need to project the pseudo-tensor
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on the observer’s locally orthonormal tetrad, where it becomes

τμ̂ν̂ := 1

32π

〈
∂μ̂h̄

α̂β̂
∂ν̂ h̄α̂β̂

〉
, (204)

with h̄μ̂ν̂ := hμ̂ν̂− 1
2 hημ̂ν̂ and h being now the trace of hμ̂ν̂ . As a result, the energy per

unit time and angle carried by the gravitational waves and measured by a stationary
observer at large distance is given by

d2 E

dtdΩ
= r2

16π

[(
dh

θ̂ φ̂

dt

)2

+ 1

4

(
dh

θ̂ θ̂

dt
−

dh
θ̂ φ̂

dt

)2]
= r2

16π

(∣∣∣∣
dh+
dt

∣∣∣∣
2

+
∣∣∣∣
dh×
dt

∣∣∣∣
2
)
, (205)

where the total derivative is made with respect to the asymptotic observer’s time.
Integrating (205) over the solid angle, the total power emitted in gravitational waves
is then given by

d E

dt
= 1

16π

∑

ℓ,m

(ℓ+ 2)!
(ℓ− 2)!

⎛
⎝
∣∣∣∣∣
dΨ

(e)
ℓm

dt

∣∣∣∣∣

2

+
∣∣∣∣∣
dΨ

(o)
ℓm

dt

∣∣∣∣∣

2
⎞
⎠ , (206)

= 1

16π

∑

ℓ,m

⎛
⎝Λ(Λ− 2)

∣∣∣∣∣
dΨ

(e)
ℓm

dt

∣∣∣∣∣

2

+ Λ

Λ− 2

∣∣∣∣∣
d�

(o)
ℓm

dt

∣∣∣∣∣

2
⎞
⎠ , (207)

where expression (207) was first presented in Cunningham et al. (1978, 1979).
Note that as discussed at the end of Sect. 5.3, these expressions need to be suitably

modified when the energy losses are expressed in terms of the odd-parity Moncrief
function Q(o), in which case the energy-loss rate needs to be modified as

d E

dt
= 1

16π

∑

ℓ,m

(ℓ+ 2)!
(ℓ− 2)!

⎛
⎝
∣∣∣∣∣
dΨ

(e)
ℓm

dt

∣∣∣∣∣

2

+
∣∣∣Q(o)

ℓm

∣∣∣
2

⎞
⎠ . (208)

Similarly, the angular momentum flux carried away in the form of gravitational
waves can also be calculated in terms of the energy-momentum tensor (204). In par-
ticular, using spherical coordinates and assuming that the rotation is parametrised by
the angle φ, we have

d2 J

dtdΩ
= r2

32π

〈
∂φ h̄μ̂ν̂∂r h̄μ̂ν̂

〉
= − r2

16π

〈
∂r h

θ̂ θ̂
∂φh

θ̂ θ̂
+ ∂r h

θ̂ φ̂
∂φh

θ̂ φ̂

〉
. (209)

Since the metric components in the radiation-gauge behave like outgoing spherical
waves and since h

θ̂ θ̂
= h+ and h

θ̂ φ̂
= h×, the angular momentum carried away in the

form of gravitational waves (209) is then expressed as

d2 J

dtdΩ
= − r2

16π

(
∂t h+∂φ h̄+ + ∂t h×∂φ h̄×

)
, (210)
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Proceeding in a way similar to the one followed in the calculation of the emitted
power, the total angular momentum lost per unit time to gravitational wave reads
(Martel and Poisson 2005)

d J

dt
= 1

16π

∑

ℓ,m

im
(ℓ+ 2)!
(ℓ− 2)!

[
dΨ

(e)
ℓm

dt

(
Ψ̄
(e)
ℓm

)
+

dΨ
(o)
ℓm

dt

(
Ψ̄
(o)
ℓm

)]
, (211)

or, using the Moncrief master function (154) for the odd-parity perturbations (Poisson
2004)

d J

dt
= 1

16π

∑

ℓ,m

im
(ℓ+ 2)!
(ℓ− 2)!

[
dΨ

(e)
ℓm

dt

(
Ψ̄
(e)
ℓm

)
+ Q

(o)
ℓm

∫ t

−∞

(
Q̄
(o)
ℓm

)
(t ′)dt ′

]
. (212)

To conclude, we report the expression for the energy spectrum d E/dω, which is
readily calculated from Eq. (206) after performing the Fourier transform of the odd
and even-parity master functions, i.e.,

d E

dω
= 1

16π2

∑

ℓ,m

(ℓ+ 2)!
(ℓ− 2)! ω

2
(∣∣∣Ψ̃ (e)ℓm

∣∣∣
2
+

∣∣∣Ψ̃ (o)ℓm
∣∣∣
2
)
, (213)

where we have indicated with f̃ (ω, r) the Fourier transform of the timeseries f (t, r).
Similarly, when using the odd-parity Moncrief function one obtains

d E

dω
= 1

16π2

∑

ℓ,m

(ℓ+ 2)!
(ℓ− 2)!

(
ω2

∣∣∣Ψ̃ (e)ℓm
∣∣∣
2
+

∣∣∣Q̃(o)
ℓm

∣∣∣
2
)
. (214)

5.5 A commonly used convention

A rather popular choice for the gauge-invariant master functions has found successful
application in the extraction of the gravitational-wave content of numerically simu-
lated spacetimes (Abrahams and Price 1996b, a; Abrahams et al. 1998; Rupright et al.
1998; Rezzolla et al. 1999a). For instance, the convention discussed below has been
implemented in the Cactus computational toolkit (Camarda and Seidel 1999; Allen
et al. 1998), a diffused and freely available infrastructure for the numerical solution
of the Einstein equations (Allen et al. 1999; Cactus 2016). Numerous tests and appli-
cations of this implementation have been performed over the years and we refer the
reader to Camarda and Seidel (1999), Allen et al. (1998), Font et al. (2002), Baiotti
et al. (2005) for examples both in vacuum and non-vacuum spacetimes.

The reference work for this convention is the one by Abrahams and Price (1996b, a),
although a similar approach for the even-parity part of the perturbations was also
adopted in previous works (Abrahams et al. 1992; Anninos et al. 1995b). We first
note that the coefficients c0, c1 and c2 introduced in Abrahams and Price (1996b, a)
are related simply to the multipolar coefficients of the odd-parity part introduced
in Sect. 4.2. More specifically, considering that c2 = −2h = h2, c0 = h

(o)
0 , and
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c1 = h
(o)
1 , it is then easy to realise that the odd and even-parity master functions Q×

ℓm

and Q+
ℓm defined in Abrahams and Price (1996b, a) are related to the master functions

discussed so far through the simple algebraic expressions

Q×
ℓm :=

√
2(ℓ+ 2)!
(ℓ− 2)! Q

(o)
ℓm, (215)

Q+
ℓm :=

√
2(ℓ+ 2)!
(ℓ− 2)! Ψ

(e)
ℓm , (216)

so that the asymptotic expression for the gravitational-wave amplitudes in the two
polarisations are given by

h+ = 1√
2r

∑

ℓ,m

√
(ℓ− 2)!
(ℓ+ 2)!

[
Q+
ℓm W ℓm −

(∫ t

−∞
Q×
ℓm(t

′)dt ′
)

Xℓm

sin θ

]
+ O

(
1

r2

)
,

(217)

h× = 1√
2r

∑

ℓ,m

√
(ℓ− 2)!
(ℓ+ 2)!

[
Q+
ℓm

Xℓm

sin θ
+

(∫ t

−∞
Q×
ℓm(t

′)dt ′
)

W ℓm

]
+ O

(
1

r2

)
.

(218)

Similarly, expressions (217) and (218) can be combined into a single one

h+−ih× = 1√
2r

∑

ℓ,m

(
Q+
ℓm − i

∫ t

−∞
Q×
ℓm(t

′)dt ′
)

−2 Y ℓm(θ, φ)+O

(
1

r2

)
, (219)

which closely resembles expression (202) and that in its compactness highlights the
advantage of the normalisation (215)–(216). We should remark that the notation in
Eq. (219) could be misleading as it seems to suggest that h× is always of odd-parity
and h+ is always of even-parity. Indeed this is not true in general and in the absence
of axisymmetry, i.e., when m �= 0, both h× and h+ are a superposition of odd and
even parity modes. It is only for axisymmetric systems, for which only m = 0 modes
are present, that Q×

ℓm and Q+
ℓm are real numbers, that h+ is only even-parity and h×

is only odd-parity.
Also very compact is the expression for the emitted power that, with this convention,

simply reads

d E

dt
= 1

32π

∑

ℓ,m

⎛
⎝
∣∣∣∣∣
d Q+

ℓm

dt

∣∣∣∣∣

2

+
∣∣Q×

ℓm

∣∣2
⎞
⎠ . (220)

Finally, the flux of linear momentum emitted in gravitational waves in the i-direction
can be computed from the Isaacson’s energy-momentum tensor and can be written in
terms of the two polarization amplitudes as Favata et al. (2004)
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Fi := Ṗi = r2

16π

∫
dΩ ni

(
ḣ2
+ + ḣ2

×
)
, (221)

where ni = xi/r is the unit radial vector that points from the source to the observer.
The calculation of this flux in terms of Q+

ℓm and Q×
ℓm can be computed after inserting

Eq. (219) in Eq. (221), decomposing ni in spherical harmonics and performing the
angular integral. This procedure goes along the lines discussed in Thorne (1980b),
where all the relevant formulae are essentially available [cf. Eq. (4.20) there, but see
also Sopuerta et al. (2006), Pollney et al. (2007)], so that we only need to adapt them
to our notation. More specifically, in Thorne (1980b) the even-parity (or electric)
multipoles are indicated with Iℓm and the odd-parity (or magnetic) ones with Sℓm , and
are related to our notation by

(ℓ) Iℓm := Q+
ℓm, (222)

(ℓ+1)Sℓm := Q×
ℓm, (223)

where (ℓ) fℓm := dℓ fℓm/dtℓ. From the property (Q+,×
ℓm )∗ = (−1)m Q

+,×
ℓ−m , where the

asterisk indicates complex conjugation, we rewrite Eq. (4.20) of Thorne (1980b) in
a more compact form. Following Damour and Gopakumar (2006) where the lowest
multipolar contribution was explicitly computed in this way, it is convenient to combine
the components of the linear momentum flux in the equatorial plane in a complex
number as Fx + iFy . The multipolar expansion of the flux vector can be written as
Pollney et al. (2007)

Fx + iFy =
∞∑

ℓ=2

ℓ∑

m=0

δm

(
Fℓm

x + iFℓm
y

)
, (224)

Fz =
∞∑

ℓ=2

ℓ∑

m=0

δmFℓm
z , (225)

where δm = 1 if m �= 0 and δm = 1/2 if m = 0. A more extended representation in
terms of the various multipoles reads

Fℓm
x + iFℓm

y := (−1)m

16πℓ(ℓ+ 1)

{
− 2i

[
a+
ℓm Q̇+

ℓ−m Q×
ℓm−1 + a−

ℓm Q̇+
ℓm Q×

ℓ −(m+1)

]

+

√
ℓ2(ℓ− 1)(ℓ+ 3)

(2ℓ+ 1)(2ℓ+ 3)

[
b−
ℓm

(
Q̇+
ℓ −m Q̇+

ℓ+1 m−1 + Q×
ℓ −m Q̇×

ℓ+1 m−1

)

+ b+
ℓm

(
Q̇+
ℓm Q̇+

ℓ+1 −(m+1) + Q×
ℓm Q̇×

ℓ+1 −(m+1)

) ]}
, (226)

Fℓm
z := (−1)m

8πℓ(ℓ+ 1)

{
2m ℑ

[
Q̇+
ℓ−m Q×

ℓm

]
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+ cℓm

√
ℓ2(ℓ− 1)(ℓ+ 3)

(2ℓ+ 1)(2ℓ+ 3)
ℜ
[
Q̇+
ℓ−m Q+

ℓ+1 m + Q×
ℓ−m Q̇×

ℓ+1 m

] }
,

(227)

where

a±
ℓm :=

√
(ℓ± m)(ℓ∓ m + 1), (228)

b±
ℓm :=

√
(ℓ± m + 1)(ℓ± m + 2), (229)

cℓm :=
√
(ℓ− m + 1)(ℓ− m + 1). (230)

Note that here both Fℓm
x and Fℓm

y are real numbers and are obtained as the real and
imaginary part of the right-hand side of Eq. (226).

5.6 Implementation summary

All of the material presented in the previous sections about the gauge-invariant descrip-
tion of the perturbations of a Schwarzschild black hole has laid the ground for the actual
implementation of the Cauchy-perturbative extraction method in numerical-relativity
calculations. We recall that the goal of the Cauchy-perturbative method is that of
replacing, at least in parts of the three-dimensional numerical domain, the solution
of the full nonlinear Einstein’s equations with the solution of a set of simpler linear
equations that can be integrated to high accuracy with minimal computational cost.
In turn, this provides an unexpensive evolution of the radiative degrees of freedom,
the extraction of the gravitational-wave information, and, if needed, the imposition of
boundary conditions via the reconstruction of the relevant quantities at the edge of the
three-dimensional computational domain.

In order to do this, it is necessary to determine the region of spacetime where a per-
turbative approach can be applied. In general, the three-dimensional numerical grid
(indicated as N in Fig. 7) will comprise an isolated region of spacetime where the
gravitational fields are strong and highly dynamical. In this region, indicated as S in
Fig. 7, the full nonlinear Einstein equations must be solved. Outside of S, however,
in what we will refer to as the perturbative region P , a perturbative approach is not
only possible but highly advantageous. Anywhere in the portion of P covered by Nwe
can place a two-dimensional surface, indicated as Γ in Fig. 7, which will serve as the
surface joining numerically the highly dynamical strong-field region S and the pertur-
bative one P . In practice, it is easier to choose this surface to be a 2-sphere of radius
rΓ , where rΓ can either be the local coordinate radius, the corresponding Schwarz-
schild radial coordinate, or some more sophisticated radial coordinate deduced from
the local values of the metric (cf. discussion in Sect. 4.2).10 It is important to empha-
size that the 2-sphere Γ need not be in a region of spacetime where the gravitational

10 Note that in principle the gauge invariant quantities are independent of radius [cf. Eq. (219)]. In practice,
however, their amplitudes may reach the correct asymptotic value only at sufficiently large distances. For
this reason the extraction is in practice performed at different extraction radii and the amplitudes compared
for convergence to an asymptotic value (Rupright et al. 1998; Rezzolla et al. 1999a).
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Fig. 7 Schematic illustration of a perturbative Cauchy extraction on a single spacelike hypersurface.
Schematic picture of the Cauchy-perturbative matching procedure for a spacelike slice of spacetime (one
spatial dimension has been suppressed). N is the three-dimensional numerical grid on the spacelike hyper-
surfaceΣt in which the full Einstein equations are solved, and B its two-dimensional outer boundary. The
interior (dark shaded) region S shows the strong-field highly dynamical region of spacetime fully covered
by N. P is the region of spacetime where a perturbative solution can be performed and extends from the
2-sphere Γ (of radius rΓ ) to the 2-sphere A (of radius r

A
) located in the asymptotically flat region of

spacetime. P is covered entirely by a one-dimensional grid L and partially by the three-dimensional grid N

fields are weak or the curvature is small. In contrast to approaches which matched Ein-
stein’s equations onto a Minkowski background (Abrahams and Evans 1988, 1990),
the matching is here made on a Schwarzschild background, so that the only require-
ment is that the spacetime outside of S approaches a Schwarzschild one. Of course,
even in the case of a binary black-hole merger, it will be possible to find a region of
spacetime, sufficiently distant from the black holes, where this requirement is met to
the desired precision (Price and Pullin 1994; Abrahams and Cook 1994; Abrahams
and Price 1996b, a; Abrahams et al. 1995).

In a practical implementation of the Cauchy-perturbative approach (Rupright et al.
1998; Rezzolla et al. 1999a), a numerical code provides the solution to the full nonlinear
Einstein equations everywhere in the three-dimensional grid N except at its outer
boundary surface B. At the extraction 2-sphereΓ , a different code (i.e., the perturbative
module) “extracts” the gravitational wave information and transforms it into a set
of multipole amplitudes which are chosen to depend only on the radial and time
coordinates of the background Schwarzschild metric (Rupright et al. 1998; Rezzolla
et al. 1999a).

In this way, two of the three spatial dimensions of the problem are suppressed
and the propagation of gravitational waves on a curved background is reduced to a
one-dimensional problem. During each timestep, information about the gravitational
field read-off at Γ is propagated by the perturbative module out to the 2-sphere A

in the asymptotic flat region of spacetime. This is done by solving a set of coupled
one-dimensional linear differential equations (one for each of the multipoles extracted
at Γ ) on the one-dimensional grid L covering the perturbative region P and ranging
between rΓ and r

A
≫ rΓ . From a computational point of view, this represents an

enormous advantage: with a few straightforward transformations, the computationally
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Fig. 8 Schematic illustration of a perturbative Cauchy extraction. The Cauchy evolution is shown with
green slices, comprising hypersurfacesΣt on each of which is constructed a three-dimensional grid N The
outer-boundary surface B of the three-dimensional grid is shown in dark blue, and is subject to a boundary
condition that excludes incoming gravitational waves. Data from the Cauchy evolution on the worldtube
Γ supplies boundary data to the perturbative equations, whose solution leads to the gravitational waves on
the asymptotic boundary A. Note the difference between the asymptotic values of the gravitational waves
extracted at A (filled blue circles) with the boundary values that can instead be injected on B

expensive three-dimensional evolution of the gravitational waves via the nonlinear
Einstein equations is replaced with a set of one-dimensional linear equations that can
be integrated to high accuracy with minimal computational cost. Although linear, these
equations account for all of the effects of wave propagation in a curved spacetime and,
in particular, automatically incorporate the effects of backscatter off the curvature.

Note that as a result of this construction, (and as shown in Fig. 7), the perturbative
region P is entirely covered by a one-dimensional grid L and only partially by a
three-dimensional grid in the complement to S in N. The overlap between these two
grids is essential. In fact, the knowledge of the solution on P allows the perturbative
approach to provide boundary conditions at the outer boundary surface B and, if
useful, Dirichlet data on every gridpoint of N outside the strong region S. This is also
illustrated in Fig. 8, which represents a one-dimensional cut of Fig. 7, and highlights
the difference between the asymptotic values of the gravitational waves extracted at
the boundary A of the one-dimensional grid (filled blue circles) with and the boundary
values that can be instead specified (i.e., “injected”) on the outer boundary surface B

of the three-dimensional grid.
The freedom to specify boundary data on a 2-surface of arbitrary shape as well as

on a whole three-dimensional region of N represents an important advantage of the
perturbative approach over similar approaches to the problem of gravitational-wave
extraction and imposition of boundary conditions.
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In what follows we briefly review the main steps necessary for the numerical imple-
mentation of the Cauchy-perturbative approach in a numerical-relativity code solving
the Einstein equations in a 3+1 split of spacetime. This approach, which follows closely
the discussion made in Rupright et al. (1998), Rezzolla et al. (1999a), basically con-
sists of three steps: (1) extraction of the independent multipole amplitudes on Γ ; (2)

evolution of the radial wave equations (247)–(249) on L out to the distant wave zone;
(3) reconstruction of Ki j and ∂t Ki j at specified gridpoints at the outer boundary of N.
We next discuss in detail each of these steps.

5.6.1 Perturbative expansion

The first step is to linearize the Einstein equations around a static Schwarzschild back-
ground by separating the gravitational quantities of interest into background (denoted
by a tilde) and perturbed parts: the three-metric γi j = γ̃i j +hi j , the extrinsic curvature
Ki j = K̃i j + κi j , the lapse N = Ñ + α, and the shift vector β i = β̃ i + vi . Note
that the large majority of modern numerical-relativity codes implement the BSSNOK
(Nakamura et al. 1987; Shibata and Nakamura 1995; Baumgarte and Shapiro 1999)
or the CCZ4 (Alic et al. 2012) formulation of the Einstein equations. As mentioned in
Sect. 3.2, in these formulations, the extrinsic curvature tensor is not evolved directly,
but rather a traceless tensor extrinsic curvature tensor related to a conformal decompo-
sition of the three-metric (Alcubierre 2008; Bona et al. 2009; Baumgarte and Shapiro
2010; Gourgoulhon 2012; Rezzolla and Zanotti 2013). Of course, also in these for-
mulations it is possible to reconstruct the physically related extrinsic curvature tensor
Ki j and we will therefore continue to make use of Ki j hereafter.

In Schwarzschild coordinates (t, r, θ, φ), the background quantities are given by

Ñ =
(

1 − 2M

r

)1/2

, (231)

g̃i j dx i dx j = Ñ−2dr2 + r2(dθ2 + sin2 θdφ2), (232)

β̃ i = 0, (233)

K̃i j = 0, (234)

while the perturbed quantities have arbitrary angular dependence. The background
quantities satisfy the dynamical equations ∂t γ̃i j = 0, ∂t Ñ = 0, and thus remain
constant for all time. The perturbed quantities, on the other hand, obey the following
evolution equations

∂t hi j = − 2Ñκi j + 2∇̃(iv j), (235)

∂tα = vi ∇̃i Ñ − Ñ 2κ, (236)

Ñ−1∂2
t κi j − Ñ ∇̃k∇̃kκi j = − 4∇̃(iκk

j)∇̃k Ñ + Ñ−1κi j ∇̃k Ñ ∇̃k Ñ + 3∇̃k Ñ ∇̃kκi j

+ κi j ∇̃k∇̃k Ñ − 2κk
(i ∇̃ j)∇̃k Ñ − 2Ñ−1κk

(i ∇̃ j) Ñ ∇̃k Ñ

+ 2κ∇̃i ∇̃ j Ñ + 4∂(iκ∂ j) Ñ + 2Ñ−1κ∇̃i Ñ ∇̃ j Ñ

− 2Ñ R̃k(iκ
k
j) − 2Ñ R̃ki jmκ

km, (237)
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where κ := κ i
i and, as mentioned above, the tilde denotes a spatial quantity defined

in terms of the background metric, γ̃i j . Note that the wave equation for κi j involves
only the background lapse and curvature.

Next, it is possible to simplify the evolution equation (237) by separating out the
angular dependence, thus reducing it to a set of one-dimensional equations. This is
accomplished by expanding the extrinsic curvature in Regge–Wheeler tensor spherical
harmonics (Regge and Wheeler 1957) and substituting this expansion into (237). Using
the notation of Moncrief (1974) we express the expansion as

κi j = a×(t, r)(ê1)i j + rb×(t, r)(ê2)i j + Ñ−2a+(t, r)( f̂2)i j + rb+(t, r)( f̂1)i j

+ r2c+(t, r)( f̂3)i j + r2d+(t, r)( f̂4)i j , (238)

where (ê1)i j , . . . , ( f̂4)i j are the Regge–Wheeler harmonics, which are functions of
(θ, φ) and have suppressed angular indices (ℓ,m) for each mode. Explicit expressions
for these tensors are given in section “Regge–Wheeler harmonics” in “Appendix 2”.

The odd-parity multipoles (a× and b×) and the even-parity multipoles (a+, b+, c+,
and d+) also have suppressed indices for each angular mode and there is an implicit
sum over all modes in (238). The six multipole amplitudes correspond to the six
components of κi j . However, using the linearized momentum constraints

∇̃ j (κ
j
i − δ

j
iκ) = 0, (239)

we reduce the number of independent components of κi j to three. An important rela-
tion is also obtained through the wave equation for κ , whose multipole expansion is
simply given by κ = h(t, r)Y

ℓm
. Using this expansion, in conjunction with the momen-

tum constraints (239), we derive a set of radial constraint equations which relate the
dependent amplitudes (b×)ℓm , (b+)ℓm , (c+)ℓm and (d+)ℓm to the three independent
amplitudes (a×)ℓm , (a+)ℓm , (h)

ℓm

(b×)ℓm = − 1

(ℓ+ 2)(ℓ− 1)
[(1 + 3Ñ 2)+ 2Ñ 2r ∂r ] (a×)ℓm , (240)

(b+)ℓm = 1

ℓ(ℓ+ 1)
[(3 + r∂r ) (a+)ℓm − (1 + r∂r ) (h)ℓm ], (241)

(c+)ℓm = 1

2(ℓ+ 2)(ℓ− 1)
{2(1 − ℓ− ℓ2) (a+)ℓm − 2 (h)

ℓm

+ ℓ(ℓ+ 1)[(1 + 5Ñ 2)+ 2Ñ 2r ∂r ] (b+)ℓm }, (242)

(d+)ℓm = 1

ℓ(ℓ+ 1)
[(a+)ℓm + 2(c+)ℓm − (h)

ℓm
], (243)

for each (ℓ,m) mode.

5.6.2 Extraction

Taking the extraction 2-sphere Γ as the surface joining the evolution of the highly
dynamical, strong field region (dark shaded area of Fig. 7) and the perturbative regions
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(light shaded areas), at each timestep, Ki j and ∂t Ki j are computed on N as a solution to
Einstein’s equations. Assuming that N uses topologically Cartesian coordinates,11 the
Cartesian components of these tensors are then transformed into their equivalents in a
spherical coordinate basis and their traces are computed using the inverse background
metric, i.e., H = γ̃ i j Ki j , ∂t H = γ̃ i j∂t Ki j . From the spherical components of Ki j and
∂t Ki j , the independent multipole amplitudes for each (ℓ,m) mode are then derived
by an integration over the 2-sphere:

(a×)ℓm = 1

ℓ(ℓ+ 1)

∫
1

sin θ

[
Krφ ∂θ − Krθ ∂φ

]
Y ∗
ℓm

dΩ, (244)

(a+)ℓm =
∫

Ñ 2 Krr Y ∗
ℓm dΩ, (245)

(h)
ℓm

=
∫

H Y ∗
ℓmdΩ. (246)

Their time derivatives are computed similarly. Rather than performing the inte-
grations (244)–(246) using spherical polar coordinates, it is useful to cover Γ with
two stereographic coordinate “patches”. These are uniformly spaced two-dimensional
grids onto which the values of Ki j and ∂t Ki j are interpolated using either a three-linear
or a three-cubic polynomial interpolation scheme. As a result of this transformation,
the integrals over the 2-sphere in (244)–(246) are computed avoiding polar singulari-
ties (see discussion in section “Stereographic coordinates” in “Appendix 2”).

5.6.3 Perturbative evolution

Substituting (238) into (237) and using the constraint equations (240), we obtain a set
of linearized radial wave equations for each independent amplitude. For each (ℓ,m)
mode we have one odd-parity equation

{
∂2

t − Ñ 4∂2
r − 2

r
Ñ 2∂r − 2M

r3

(
1 − 3M

2r

)
+ Ñ 2

[
ℓ(ℓ+ 1)

r2
− 6M

r3

]}
(a×)ℓm = 0,

(247)

and two coupled even-parity equations,

[
∂2

t − Ñ 4∂2
r − 6

r
Ñ 4∂r + Ñ 2 ℓ(ℓ+ 1)

r2
− 6

r2
+ 14M

r3
− 3M2

r4

]
(a+)ℓm

+
[

4

r
Ñ 2

(
1 − 3M

r

)
∂r + 2

r2

(
1 − M

r
− 3M2

r2

)]
(h)

ℓm
= 0, (248)

11 This is a standard choice in modern numerical-relativity codes but there are no restrictions on the choice
of the coordinate system.
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[
∂2

t − Ñ 4∂2
r − 2

r
Ñ 2∂r + Ñ 2 ℓ(ℓ+ 1)

r2
+ 2M

r3
− 7M2

r4

]
(h)

ℓm

− 2M

r3

(
3 − 7M

r

)
(a+)ℓm = 0. (249)

These equations are related to the standard Regge–Wheeler and Zerilli equations
(Regge and Wheeler 1957; Zerilli 1970a).

Once the multipole amplitudes, (a×)ℓm , (a+)ℓm , (h)
ℓm

and their time derivatives
are computed on Γ in the timeslice t = t0, they are imposed as inner boundary
conditions on the one-dimensional grid. Using a suitably accurate integration scheme,
the radial wave equations (247)–(249) can be evolved for each (ℓ,m)mode forward to
the next timeslice at t = t1. The outer boundary of the one-dimensional grid is always
placed at a distance large enough that background field and near-zone effects are
unimportant, and a radial Sommerfeld condition for the wave equations (247)–(249)
can be imposed there. The evolution equations for hi j [Eq. (235)] and α [Eq. (236)]
can also be integrated using the data for Ki j computed in this region. Note also that
because hi j and α evolve along the coordinate time axis, these equations need only be
integrated in the region in which their values are desired, not over the whole region L.

Of course, the initial data on L must be consistent with the initial data on N, and
this can be determined by applying the aforementioned extraction procedure to the
initial data set at each gridpoint of L in the region of overlap with N. In the latter case,
initial data outside the overlap region can be set by considering the asymptotic fall-off
of each variable.

5.6.4 Reconstruction

An important side product of the evolution step discussed above is that outer boundary
values for N can now be computed, although, to the best of our knowledge, this pro-
cedure has not been implemented yet as a way to obtain outer boundary conditions.
In particular, for codes using the BSSNOK (Nakamura et al. 1987; Shibata and Naka-
mura 1995; Baumgarte and Shapiro 1999) or the CCZ4 (Alic et al. 2012) formulation
of the Einstein equations, it is sufficient to provide boundary data only for Ki j , since
the interior code can calculate γi j at the outer boundary by integrating in time the
boundary values for Ki j .

In order to compute Ki j at an outer boundary point of N (or any other point in the
overlap between N and P), it is necessary to reconstruct Ki j from the multipole ampli-
tudes and tensor spherical harmonics. The Schwarzschild coordinate values (r, θ, φ)
of the relevant gridpoint are first determined. Next, (a×)ℓm , (a+)ℓm , and (h

ℓm
) for each

(ℓ,m)mode are interpolated to the radial coordinate value of that point. The dependent
multipole amplitudes (b×)ℓm , (b+)ℓm , (c+)ℓm , and (d+)ℓm are then computed using the
constraint equations (240). Finally, the Regge–Wheeler tensor spherical harmonics
(ê1)i j –( f̂4)i j are computed for the angular coordinates (θ, φ) for each (ℓ,m) mode
and the sum in Eq. (238) is performed. This leads to the reconstructed component of
κi j (and therefore Ki j ). A completely analogous algorithm can be used to reconstruct
∂t Ki j in formulations in which this information is needed.
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It is important to emphasize that this procedure allows one to compute Ki j at any
point of N which is covered by the perturbative region. As a result, the numerical
module can reconstruct the values of Ki j and ∂t Ki j on a 2-surface of arbitrary shape,
or any collection of points outside of Γ .

6 Gravitational waves in the characteristic approach

The formalism for expressing Einstein’s equations as an evolution system based on
characteristic, or null-cone, coordinates is based on work originally due to Bondi
(1960) and Bondi et al. (1962) for axisymmetry, and extended to the general case by
Sachs (1962). The formalism is covered in the review by Winicour (2005), to which
the reader is referred for an in-depth discussion of its development and the associated
literature.

Most work on characteristic evolution uses, or is an adpatation of, a finite differ-
ence code that was originally developed at the University of Pittsburgh and has become
known as the PITT null code. The early work that eventually led to the PITT code
was for the case of axisymmetry (Isaacson et al. 1983; Bishop et al. 1990; Gómez
et al. 1994), and a general vacuum code was developed in the mid-1990s (Bishop et al.
1996b, 1997b; Lehner 1998, 1999, 2001). Subsequently, the code was extended to
the non-vacuum case (Bishop et al. 1999b, 2005), and code adaptations in terms of
variables, coordinates and order of accuracy have been investigated (Gómez 2001;
Gómez and Frittelli 2003; Reisswig et al. 2007, 2013a). Spectral, rather than finite
difference, implementations have also been developed, for both the axially symmetric
case (de Oliveira and Rodrigues 2009) and in general (Handmer and Szilágyi 2015).
One potential difficulty, although in practice it has not been important in character-
istic extraction, is the development of caustics during the evolution, and algorithms
to handle the problem have been proposed (Stewart and Friedrich 1982; Corkill and
Stewart 1983). There are also approaches that use outgoing null cones but for which
the coordinates are not Bondi–Sachs (Bartnik 1997; Bartnik and Norton 2000).

Shortly after the publication of the Bondi and Bondi–Sachs metrics and formalism,
the idea of conformal compactification was introduced. This led to the well-known
asymptotic description of spacetime, and the definitions of asymptotic flatness, past,
future and spacelike infinity (I+, I−, I 0), and of past and future null infinity (J −,J +)
(Penrose 1963); see also Penrose (1964, 1965b) and Tamburino and Winicour (1966);
and the reviews by Adamo et al. (2012) and Frauendiener (2004). The key result is that
gravitational radiation can be defined unambiguously in an asymptotically flat space-
time only at null infinity. The waves may be expressed in terms of the Bondi news N

(see Eq. (271) below), the Newman–Penrose quantityψ4, or the wave strain (h+, h×).
After a characteristic code has been run using a compactified radial coordinate as

in Eq. (259), the metric is known at J +, and so it would seem to be straightforward
to calculate the emitted gravitational radiation. Unfortunately, this is not in general
the case because of gauge, or coordinate freedom, issues. The formulas do take a
very simple form when expressed in terms of coordinates that satisfy the Bondi gauge
condition in which the asymptotic flatness property is obviously satisfied, and for which
conditions set at J + are propagated inwards along radial null geodesics. However,
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in a numerical simulation that is not the case: coordinate conditions are fixed on an
extraction worldtube (in the case of characteristic extraction), or perhaps on a worldline
(Siebel et al. 2003) or ingoing null hypersurface, and then propagated outwards to J +.
The result is that the geometry at and near J + may appear very different to one that
is foliated by spherical 2-surfaces of constant curvature. Of course, the Bondi gauge
and the general gauge are related by a coordinate transformation, and formulas for N

and ψ4 are obtained by constructing the transformation.
An explicit formula in the general gauge for the news was obtained in Bishop et al.

(1997b) (“Appendix 2”); and a calculation of ψ4 was reported in Babiuc et al. (2009),
but the formula produced was so lengthy that it was not published. These formulas
have been used in the production of most waveforms calculated by characteristic
codes. An alternative approach, in which the coordinate transformation is explicit,
rather than partially implicit, was suggested (Bishop and Deshingkar 2003) but has
not been further used or developed. Recently, a formula for the wave strain (h+, h×),
which is the quantity used in the construction of templates for gravitational-wave data
analysis, was derived (Bishop and Reisswig 2014). An important special case is that
of the linearized approximation, in which deviations from the Bondi gauge are small.
The resulting formulas for N , ψ4 and (h+, h×), are much simpler and so much easier
to interpret than in the general case. Further these formulas are widely used because
the linearized approximation often applies to the results of a waveform computation
in a realistic scenario.

We set the context for this section by summarizing the Einstein equations in char-
acteristic coordinates, and outlining the characteristic evolution procedure. The focus
of this section is formulas for gravitational waves, and we next present the formulas
in the simplest case, when the coordinates satisfy the Bondi gauge conditions. Much
of the remainder of the section will be devoted to formulas for gravitational waves
in the general gauge, and will include a discussion of conformal compactification.
This section makes extensive use of spin-weighted spherical harmonics and the eth
formalism, which topics are discussed in “Appendix 2”.

6.1 The Einstein equations in Bondi–Sachs coordinates

We start with coordinates based upon a family of outgoing null hypersurfaces. Let
u label these hypersurfaces, φA

(A = 2, 3) be angular coordinates labelling the null
rays, and r be a surface area coordinate. In the resulting xα = (u, r, φ

A
) coordinates,

the metric takes the Bondi–Sachs form

ds2 = −
(

e2β(1 + Wcr)− r2h
AB

U
A

U
B
)

du2

−2e2β du dr − 2r2h
AB

U
B

du dφ
A + r2h

AB
dφ

A
dφ

B
, (250)

where h
AB

hBC = δ
A

C and det(h
AB
) = det(q

AB
), with q

AB
a metric representing a unit

2-sphere; Wc is a normalized variable used in the code, related to the usual Bondi–
Sachs variable V by V = r + Wcr2. It should be noted here that different references
use various notations for what is here denoted as Wc, and in particular (Bishop et al.
1997b) uses W with W := r2Wc. As discussed in Sect. 1, we represent q

AB
by
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means of a complex dyad q
A
, then h

AB
can be represented by its dyad component

J := h
AB

q
A

q
B
/2. We also introduce the fields K :=

√
1 + J J̄ and U := U

A
q

A
. The

spin-weight s of a quantity is defined and discussed in section “Spin-weighted fields”
in “Appendix 2”; for the quantities used in the Bondi–Sachs metric

s(Wc) = s(β) = 0, s(J ) = 2, s( J̄ ) = −2,

s(K ) = 0, s(U ) = 1, s(Ū ) = −1. (251)

We would like to emphasize two matters: (a) The metric Eq. (250) applies quite
generally, and does not rely on the spacetime having any particular properties. (b) There
are many different metrics of the form Eq. (250) that describe a given spacetime, and
changing from one to another is known as a gauge transformation (about which more
will be said later).

The form of the Einstein equations for the general Bondi–Sachs metric has been
known for some time, but it was only in 1997 (Bishop et al. 1997b) that they were used
for a numerical evolution. [see also Gómez and Frittelli 2003 for an alternative semi-
first-order form that avoids second angular derivatives (ð2, ð̄2, ð̄ð)]. The equations
are rather lengthy, and only the hypersurface and evolution equations are given in that
paper, in an “Appendix”.12 See also section “Computer algebra” in “Appendix 3”.
Here, in order to make the discussion of the Einstein equations precise but without
being overwhelmed by detail, we give the equations in vacuum in the linearized case,
that is when any second-order term in the quantities J, β,U,Wc can be ignored. The
Einstein equations are categorized into three classes, hypersurface, evolution, and
constraint. The hypersurface equations are

R11 : 4

r
∂rβ = 0, (252)

q
A

R1A : 1

2r

(
4ðβ − 2rð∂rβ + r ð̄∂r J + r3∂2

r U + 4r2∂r U
)
= 0, (253)

h
AB

R
AB

: (4 − 2ðð̄)β + 1

2
(ð̄2 J + ð

2 J̄ )+ 1

2r2
∂r (r

4
ðŪ + r4

ð̄U )

− 2r2∂r Wc − 4r Wc = 0. (254)

The evolution equation is

q
A

q
B

R
AB

: −2ð
2β + ∂r (r

2
ðU )− 2r∂r J − r2∂2

r J + 2r∂r∂u(r J ) = 0. (255)

The constraint equations are Reisswig et al. (2007)

R00 : 1

2r2

(
r3∂2

r Wc + 4r2∂r Wc + 2r Wc + rðð̄Wc + 2ðð̄β

− 4r∂uβ − r2∂u(ðŪ + ð̄U )+ 2r2∂u Wc

)
= 0, (256)

12 There is a misprint in Eq. (A3) of the journal version of the reference, which has been corrected in the
version on the arXiv, and also in Reisswig et al. (2013a).
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Fig. 9 Schematic illustration of the boundary data required for the characteristic code. The data required
is J at u = 0 and β, J,U, ∂r U,Wc on the worldtube Γ

R01 : 1

4r2

(
2r3∂2

r Wc + 8r2∂r Wc + 4r Wc + 4ðð̄β − ∂r (r
2
ðŪ + r2

ð̄U )

)
= 0,

(257)

q
A

R0A : 1

4

(
2rð∂r Wc + 2ðWc + 2r(4∂r U + r∂2

r U )+ 4U + (ðð̄U − ð
2Ū )

+ 2ð̄∂u J − 2r2∂r∂uU − 4ð∂uβ

)
= 0. (258)

An evolution problem is normally formulated in the region of spacetime between
a timelike or null worldtube Γ and future null infinity (J +), with (free) initial data
J given on u = 0, and with boundary data for β,U, ∂r U,Wc, J satisfying the con-
straints given on Γ (Fig. 9). (In characteristic extraction, the data satisfies the Einstein
equations inside Γ , and so the issue of ensuring that the boundary data must satisfy
the characteristic constraint equations does not arise). The hypersurface equations are
solved to find β,U,Wc, and then the evolution equation gives ∂u J and thence J on
the “next” null cone. See Kreiss and Winicour (2011) and Babiuc et al. (2014) for a
discussion of the well-posedness of the problem.

We extend the computational grid to J + by compactifying the radial coordinate
r by means of a transformation r → x = f (r) where limr→∞ f (r) is finite. In
characteristic coordinates, the Einstein equations remain regular at J + under such a
transformation. In practice, in numerical work the compactification is usually

r → x = r

r + rΓ
. (259)

However, for the purpose of extracting gravitational waves, it is more convenient to
express quantities as power series about J +, and so we compactify using
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r → ρ = 1/r. (260)

(Common practice has been to use the notation ℓ for 1/r , but since we will have
expressions involving the compactified radial coordinate and spherical harmonics such
a notation would be confusing). Starting from the Bondi–Sachs metric Eq. (250), we
make the coordinate transformation (260) to obtain

ds2 = ρ−2
(
−

(
e2β (ρ2 + ρWc)− h

AB
U

A
U

B
)

du2 + 2e2β du dρ − 2h
AB

U
B

du dφ
A

+h
AB

dφ
A

dφ
B
)
. (261)

In contravariant form,

g11 = e−2βρ3(ρ + Wc), g1A = ρ2e−2βU
A
, g10 = ρ2e−2β , g

AB = ρ2h
AB
, g0A = g00 = 0.

(262)

Later, we will need to use the asymptotic Einstein equations, that is the Einstein
equations keeping only the leading order terms when the limit r → ∞, or equivalently
ρ → 0, is taken. We write the metric variables as J = J(0) + J(1)ρ, and similarly for
β,U and Wc. Each Einstein equation is expressed as a series inρ and only leading order
terms are considered. There is considerable redundancy, and instead of 10 independent
relations we find (see section “Computer algebra” in “Appendix 3”)

R11 = 0 → β(1) = 0, (263)

q
A

R1A = 0 → −2ðβ(0) + e−2β(0)K(0)U(1) + e−2β(0) J(0)Ū(1) = 0, (264)

h
AB

R
AB

= 0 → 2Wc(0) − ðŪ(0) − ð̄U(0) = 0, (265)

q
A

q
B

R
AB

= 0 → 2K(0)ðU(0) + 2∂u J(0) + Ū(0)ðJ(0) + U(0)ð̄J(0)

+J(0)ðŪ(0) − J(0)ð̄U(0) = 0. (266)

The above are for the fully nonlinear case, with the linearized approximation obtained
by setting K(0) = e−2β(0) = 1, and ignoring products of J and U terms.

6.2 The Bondi gauge

In the Bondi gauge, the form of the Bondi–Sachs metric is manifestly asymptotically
flat since it tends to Minkowskian form as r → ∞. In order to see what conditions
are thus imposed, the first step is to write the Minkowskian metric in compactified
Bondi–Sachs coordinates. Starting from the Minkowski metric in spherical coordinates
(t, r, φ

A
), we make the coordinate transformation (t, r)→ (u, ρ) where

u = t − r, ρ = 1

r
(267)

to obtain
ds2 = ρ−2

(
−ρ2du2 + 2du dρ + q

AB
dφ

A
dφ

B
)
. (268)
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We use the notation ˜ to denote quantities in the Bondi gauge. The metric of Eqs. (261)
and (262) still applies, with the additional properties as ρ̃ → 0,

J̃ = 0, K̃ = 1, β̃ = 0, Ũ = 0, W̃c = 0,

∂ρ̃ K̃ = 0, ∂ρ̃ β̃ = 0, ∂ρ̃Ũ = 0, ∂ρ̃W̃c = 0. (269)

The undifferentiated conditions can be regarded as defining the Bondi gauge, being
motivated by the geometric condition that the metric Eq. (261) should take the form
Eq. (268) in the limit as ρ → 0. The conditions on ∂ρ̃ β̃, ∂ρ̃Ũ and ∂ρ̃ K̃ follow from
the asymptotic Eqs. (263), (264), and (423) respectively; and the condition on ∂ρ̃W̃c

is obtained from the asymptotic Einstein equation h
AB

R
AB

= 0 to second order in
ρ and applying the Bondi gauge conditions already obtained. The null tetrad in the
Bondi gauge will be denoted by ℓ̃α, ñα[N P] , m̃

α , with components to leading order in ρ̃
[obtained by applying the coordinate transformation (267) to Eq. (96)]

ℓ̃α =
(

0,− ρ̃2

√
2
, 0, 0

)
, ñα[N P] =

(√
2,
ρ̃2

√
2
, 0, 0

)
, m̃α =

(
0, 0,

ρ̃q
A

√
2

)
.

(270)
The gravitational news was defined by Bondi et al. (1962) and is

N = 1

2
∂ũ∂ρ̃ J̃ , (271)

evaluated in the limit ρ̃ → 0, and is related to the strain in the TT gauge by

N = 1

2
∂ũ lim

r̃→∞
r̃ (h+ + ih×) =

1

2
∂ũ H, (272)

where the rescaled strain H is

H := lim
r̃→∞

r̃ (h+ + ih×) = ∂ρ̃ J̃ , (273)

which result is a straightforward consequence of the relation J̃ = h++ ih× discussed
in section “Spin-weighted representation of deviations from spherical symmetry” in
“Appendix 2”. When using the Newman–Penrose formalism to describe gravitational
waves, it is convenient to introduce

ψ0
4 = lim

r̃→∞
r̃ψ4

(
= lim
ρ̃→0

ψ4

ρ̃

)
, (274)

since it will be important, when considering conformal compactification (Sect. 6.5),
to have a quantity that is defined at ρ̃ = 0. In the Bondi gauge, as shown in section
“Computer algebra” in “Appendix 3”, ψ0

4 simplifies to

ψ0
4 = ∂2

ũ∂ρ̃
¯̃
J, (275)
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evaluated in the limit ρ̃ → 0. Thus ψ0
4 , N and H are related by

ψ0
4 = 2∂ũN̄ = ∂2

ũ H̄ . (276)

6.3 General gauge

We construct quantities in the general gauge by means of a coordinate transformation
to the Bondi gauge, although this transformation is largely implicit because it does
not appear in many of the final formulas. The transformation is written as a series
expansion in ρ with coefficients arbitrary functions of the other coordinates. Thus it is
a general transformation, and the requirements that gαβ must be of Bondi–Sachs form,
and that g̃αβ must be in the Bondi gauge, impose conditions on the transformation
coefficients. The transformation is (Fig. 10)

u → ũ = u+u0+ρAu, ρ → ρ̃ = ρω+ρ2 Aρ, φ
A → φ̃

A = φ
A +φA

0 +ρA
A
,

(277)
where the transformation coefficients u0, Au, ω, Aρ, φ

A

0 , A
A are all functions of u and

φ
A only. Conditions on the coefficients are found by applying the tensor transformation

law

g̃αβ = ∂ x̃α

∂xμ

∂ x̃β

∂xν
gμν, and gαβ = ∂ x̃μ

∂xα

∂ x̃ν

∂xβ
g̃μν, (278)

for specific cases of α, β, using the form of the metric in Eqs. (261) and (262) and
also applying the conditions in Eq. (269) to g̃αβ and g̃μν (Bishop et al. 1997b; Bishop
and Deshingkar 2003; Bishop and Reisswig 2014). The procedure is shown in some
detail for one case, with the other cases being handled in a similar way. The actual
calculations are performed by computer algebra as discussed in section “Computer
algebra” in “Appendix 3”.

Fig. 10 Illustration of the relation between the Bondi and general gauges in Minkowski spacetime. In
the Bondi gauge the unit sphere r̃ = 1 has constant curvature (left panel). Now consider a coordinate
transformation θ̃ → θ with dθ/d θ̃ > 1 near where θ̃ is 0 and π , and with dθ/d θ̃ < 1 near where θ̃ is π/2.
In these coordinates, the surface of constant surface area r = 1 will be as shown in the right panel, and will
not be a spherical surface of constant curvature
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From Eqs. (262) and (269), g̃01 = ρ̃2 + O(ρ̃4). Then using the contravariant
transformation in Eq. (278) with α = 0, β = 1, we have

ρ̃2 + O(ρ̃4) = ρ2ω2 + O(ρ4) = ∂ ũ

∂xμ

∂ρ̃

∂xν
gμν . (279)

Evaluating the right hand side to O(ρ2), the resulting equation simplifies to give

(∂u + U
B
∂

B
)u0 = ωe2β − 1. (280)

The remaining conditions follow in a similar way

0 + O(ρ̃4) = g̃ A1, so that to O(ρ2), (∂u + U
B
∂

B
)φ

A

0 = −U
A
, (281)

0 + O(ρ̃4) = g̃11, so that to O(ρ3), (∂u + U
B
∂

B
)ω = −ωWc/2, (282)

0 = g̃00, so that to O(ρ2), 2ωAu = J ð̄2u0 + J̄ð2u0

2
− Kðu0ð̄u0.

(283)

In the next equations, X0 = q
A
φ

A

0 , A = q
A

A
A ; the introduction of these quantities

is a convenience to reduce the number of terms in the formulas, since φA

0 , A
A do not

transform as 2-vectors. As a result, the quantity ζ = q + i p also appears, and the
formulas are specific to stereographic coordinates. We find

0 = q̃
A

g̃0A, (284)

so that to O(ρ2)

0 = 2Aω + 2Au X0U ζ̄e−2β + Kðu0(2 + ð̄X0 + 2X0ζ̄ )

+ K ð̄u0ðX0ð̄u0(2 + ð̄X0 + 2X0ζ̄ )− J̄ðu0ðX0, (285)

det(q
AB
) = det(g

AB
)ρ4, (286)

so that at ρ = 0

ω = 1 + q2 + p2

1 + q̃2 + p̃2

√
1 + ∂qq0 + ∂p p0 + ∂qq0∂p p0 − ∂pq0∂q p0, (287)

and

J = q
A

q
B

g
AB

2
ρ2, (288)
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so that at ρ = 0

J = (1 + q2 + p2)2

2(1 + q̃2 + p̃2)2ω2
ðX0(2 + ðX̄0 + 2X̄ζ ). (289)

Explicit expressions for the null tetrad vectors nα[N P] and mα (but not ℓα) will be
needed. nα[N P] is found by applying the coordinate transformation Eq. (278) to ñ[N P]α
(Eq. (270)) and then raising the index, giving to leading order in ρ

nα[N P] =
(

e−2β
√

2

ω
, ρ

e−2β(2∂uω + Ūðω + U ð̄ω + 2Wcω)√
2ω2

,
U

A
e−2β

√
2

ω

)
. (290)

The calculation of an expression for mα is indirect. Let F
A be a dyad of the angular

part of the general gauge metric, so it must satisfy Eq. (384), then Bishop et al. (1997b);
Babiuc et al. (2009),

F
A =

(
q

A
√

K + 1

2
− q̄

A
J

2
√
(K + 1)

)
, (291)

with F
A undetermined up to an arbitrary phase factor e−iδ(u,x

A
). We then define mα

[G]

mα
[G] = e−iδρ(0, 0, F

A
). (292)

The suffix [G] is used to distinguish the above form from that defined in Eq. (270)
since mα

[G] �= mα . However, it will be shown later (see Sects. 6.5.1, 6.5.2 and section
“Computer algebra” in “Appendix 3”) that the value of gravitational-wave descriptors
is unaffected by the use of mα

[G] rather than mα in its evaluation; thus it is permissible,
for our purposes, to approximate mα by mα

[G] . We now transform mα
[G] in Eq. (292) to

the Bondi gauge,

m̃α
[G] =

∂ x̃α

∂xβ
mβ

[G] =
(
∂

B
u0e−iδ ρ̃

ω
F

B
, ∂

B
ωe−iδ ρ̃

2

ω2
F

B
, ∂

B
φ

A

0 e−iδ ρ̃

ω
F

B

)
. (293)

The component m̃1
[G] is of the same order as ℓ̃1, and so m̃α

[G] and m̃α are not equivalent.
It can be checked (see section “Computer algebra” in “Appendix 3”) (Bishop and
Reisswig 2014) that the angular part of m̃α

[G] is equivalent to m̃α , since m̃α
[G]m̃α = 0

and
m̃α

[G]
¯̃mα = ν, (294)

where |ν| = 1.
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Since we actually require ν = 1, Eq. (294) can be used to set the phase factor δ
explicitly. The result is

eiδ= F
B ¯̃q

A

ω
√

2
∂

B
φ

A

0 = 1 + q2 + p2

4ω(1+q̃2 + p̃2)

√
2

K + 1

(
(K + 1)(2 + ðX̄0 + 2X̄0ζ )− J ð̄X̄0

)
.

(295)

An alternative approach (Bishop et al. 1997b; Babiuc et al. 2009), to the phase factor
δ uses the condition that mα

[G] is parallel propagated along J + in the direction nα[N P] ,
yielding the evolution equation

2i(∂u + U A∂
A
)δ = ∇

A
U A + h

AC
F̄C ((∂u + U B ∂

B
)F A − F B ∂

B
U A), (296)

where ∇
A

is the covariant derivative with respect to the angular part of the metric h
AB

.

6.4 The gravitational-wave strain

An expression for the contravariant metric g̃αβ in the Bondi gauge is obtained from
Eqs. (262) and (269), and each metric variable is expressed as a Taylor series about
ρ̃ = 0 (e.g., J̃ = 0 + ρ̃∂ρ̃ J̃ + O(ρ̃2)). Applying the coordinate transformation (277)
we find gαβ , then use ρ̃ = ωρ + Aρρ2 to express each component as a series in ρ;
note that the coefficients are constructed from terms in the Bondi gauge, e.g., ∂ρ̃ J̃ .
Then both sides of

J = q
A
q

B
g

AB

2ρ2
, (297)

with g
AB given in Eq. (262), are expressed as series in ρ, and the coefficients of

ρ1 are equated. This leads to an equation in which ∂ρ J depends linearly on ∂ρ̃ J̃

(= H = limr̃→∞ r̃ (h+ + ih×), the rescaled strain defined in Eq. (273) (Bishop and
Reisswig 2014),

C1∂ρ J = C2∂ρ̃ J̃ + C3∂ρ̃
˜̄J + C4, (298)

which may be inverted to give

H = ∂ρ̃ J̃ = C1C̄2∂ρ J − C3C̄1∂ρ J̄ + C3C̄4 − C̄2C4

C̄2C2 − C̄3C3
, (299)

where the coefficients are

C1 = 4ω2(1 + q̃2 + p̃2)2

(1 + q2 + p2)2
, C2 = ω(2 + ðX̄0 + 2X̄0ζ )

2, (300)

C3 = ω(ðX0)
2, C4 = ðA(4 + 2ðX̄0 + 4X̄0ζ )+ ðX0(2ð Ā + 4 Āζ )+ 4ðωðu0.

(301)

These results are obtained using computer algebra as discussed in section “Com-
puter algebra” in “Appendix 3”. The above formula for the wave strain involves
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intermediate variables, and the procedure for calculating them is to solve equations for
the variable indicated in the following order: Eq. (281) for x

A

0 and thus X0, Eq. (287)
for ω, Eq. (280) for u0, Eq. (283) for Au , and Eq. (285) for A.

6.5 Conformal compactification

Here we give only a brief introduction to this topic, as these matters are discussed
more fully in many standard texts and reviews, e.g., Wald (1984) and Frauendiener
(2004). We have made a coordinate compactification, resulting in the metric and null
tetrad being singular at ρ = 0, which is therefore not included in the manifold. Thus,
quantities are not evaluated at ρ = 0, but in the limit as ρ → 0. Introducing a
conformal transformation has the advantage that this technical issue is avoided and
J + at ρ = 0 is included in the manifold; but also that the resulting formulas for N

and ψ0
4 are simpler. (Of course, it should be possible to use the asymptotic Einstein

equations to simplify expressions derived in physical space, but due to the complexity
of the formulas this approach has not been adopted).

We use the notation ˆ for quantities in conformal space. In the general gauge, the
conformal metric ĝαβ is related to the metric Eq. (261) by gαβ = ρ−2 ĝαβ so that

dŝ2 = −
(

e2β(ρ2 + ρWc)− h
AB

U
A

U
B
)

du2 + 2e2β du dρ − 2h
AB

U
B

du dφ
A

+h
AB

dφ
A

dφ
B
. (302)

In a similar way, the Bondi gauge conformal metric ˆ̃gαβ is related to the Bondi gauge

metric g̃αβ by g̃αβ = ρ̃−2 ˆ̃gαβ . Thus ĝαβ and ˆ̃gαβ are regular at ρ = 0 (or equivalently
at ρ̃ = 0) and so in the conformal picture ρ = 0 is included in the manifold. The
conformal metrics ĝαβ and ˆ̃gαβ are related by

ĝαβ = ρ2gαβ = ρ2 ∂ x̃γ

∂xα

∂ x̃δ

∂xβ
g̃γ δ =

ρ2

ρ̃2

∂ x̃γ

∂xα

∂ x̃δ

∂xβ
ˆ̃gγ δ =

1

ω2

∂ x̃γ

∂xα

∂ x̃δ

∂xβ
ˆ̃gγ δ + O(ρ),

(303)
which at ρ = 0 is the usual tensor transformation law with an additional factor ω−2.
A quantity that obeys this property is said to be conformally invariant with weight n

where n is the power ofω in the additional factor; thus the metric tensor is conformally
invariant with weight −2. In practice, it is not necessary to establish a relation of the
form Eq. (303) to prove conformal invariance. The key step is to be able to show that a
tensor quantity T a···

b··· satisfies T̂ a···
b··· = ρ−nT a···

b··· , then conformal invariance with weight
n easily follows. In Eq. (303) the error term O(ρ) is shown explicitly, although it turns
out to be irrelevant since the relation is evaluated at ρ = 0. This is generally the case,
so from now on the error terms will not be taken into account; the one exception will
be in the News calculation Sect. 6.5.1 which in places involves off-J + derivatives
(since ∂ρO(ρ) = O(1)).
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It is important to note that not all tensor quantities are conformally invariant, and
in particular this applies to the metric connection and thus covariant derivatives

Γ̂
γ
αβ = Γ

γ
αβ +

δ
γ
α ∂βρ + δγβ ∂αρ − ĝαβ ĝγ δ∂δρ

ρ
, (304)

and to the Ricci scalar in n-dimensions

R̂ = ρ−2
[

R − 2(n − 1)gab∇a∇b ln ρ − (n − 1)(n − 2)gab(∇a ln ρ)(∇b ln ρ)
]
.

(305)
The Weyl tensor, however, is conformally invariant,

Ĉαβγ δ = Cαβγ δ, and Ĉαβγ δ = ρ2Cαβγ δ, (306)

so that the forms Cαβγ δ and Cαβγ δ are conformally invariant with weights 0 and −2
respectively. The construction of the conformal null tetrad vectors is not unique. It
is necessary that orthonormality conditions analogous to Eq. (97) be satisfied, and it
is desirable that the component of leading order in ρ should be finite but nonzero at
ρ = 0. These conditions are achieved by defining

n̂α[N P] = nα[N P] , m̂α
[G] =

mα
[G]

ρ
. (307)

Thus n̂α[N P] and ˆ̃na
[N P] are related by the usual tensor transformation law, and

ˆ̃mα
[G] =

m̃α
[G]

ρ̃
= 1

ωρ

∂ x̃α

∂xβ
mβ

[G] =
1

ω

∂ x̃α

∂xβ
m̂β

[G] . (308)

With these definitions, nα[N P] ,m
α
[G] are conformally invariant with weights 0 and 1

respectively.
Considering the conformally compactified metric of the spherical 2-surface

described by the angular coordinates (φ̃A or φA ) at J +, we have

ds2 = ρ̃−2d ˆ̃s2 = ρ̃−2q
AB

dφ̃
A

dφ̃
B = ρ−2dŝ2 = ρ−2h

AB
dφ

A
dφ

B
, (309)

so that
q

AB
dφ̃

A
dφ̃

B = ω2h
AB

dφ
A

dφ
B
, (310)

sinceω = ρ̃/ρ. The curvature of J + is evaluated in two different ways, and the results
are equated. The metric on the LHS is that of a unit sphere, and therefore has Ricci
scalar R(x̃

A
) = 2; and the metric on the RHS is evaluated using Eq. (305)with n = 2.

Thus,

2 = 1

ω2

(
R(φ

A
)− 2h

AB ∇
A
∇

B
log(ω)

)
, (311)
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leading to

2ω2 + 2h
AB ∇

A
∇

B
log(ω) = 2K − ð̄ðK + 1

2

(
ð

2 J̄ + ð̄
2 J

)

+ 1

4K

(
(ð̄ J̄ )(ðJ )− (ð̄J )(ð J̄ )

)
, (312)

where the relationship between R(φ
A
) and J, K is derived in Gómez et al. (1997),

and where h
AB ∇

A
∇

B
log(ω) is given in terms of the ð operator in Eq. (B1) of Bishop

et al. (1997b). Eq. (312) is a nonlinear elliptic equation, and in practice is not actually
solved. However, it will be used later, when considering the linearized approximation,
since in that case it has a simple analytic solution.

6.5.1 The news N

A difficulty with evaluating the gravitational radiation by means of Eq. (271) is that it
is valid only in a specific coordinate system, so a more useful approach is to use the
definition (Penrose 1963; Bishop et al. 1997b; Babiuc et al. 2009)

N = lim
ρ̃→0

ˆ̃mα ˆ̃mβ ˆ̃∇α ˆ̃∇β ρ̃
ρ̃

. (313)

At first sight Eqs. (271) and (313) do not appear to be equivalent, but the relationship
follows by expanding out the covariant derivatives in Eq. (313)

N = lim
ρ̃→0

ˆ̃mα ˆ̃mβ(∂α∂β ρ̃ − ˆ̃
Γ
γ
αβ∂γ ρ̃)

ρ̃
= − lim

ρ̃→0

q
A

q
B ˆ̃
Γ 1

AB

2ρ̃
, (314)

then expressing the metric coefficients J̃ etc. as power series in ρ̃ as introduced
just before Eq. (263). Using the Bondi gauge conditions Eq. (269), it quickly fol-

lows that −q
A

q
B ˆ̃
Γ 1
(0)AB/2 = ∂ũ J̃/2, which is zero, and the result follows since

−q
A

q
B ˆ̃
Γ 1
(1)AB/2 = ∂ũ∂ρ̃ J̃/2. Computer algebra has been used to check that replac-

ing ˆ̃mα in Eq. (313) by ˆ̃mα
[G] (with m̃α

[G] defined in Eq. (293)) has no effect.13

Because covariant derivatives are not conformally invariant, transforming Eq. (313)
into the general gauge is a little tricky. We need to transform to physical space, where
tensor quantities with no free indices are invariant across coordinate systems, and then
to conformal space in the general gauge. From Eq. (304), and using ρ̃ = ρω and
∇̃γ ρ̃ = δ1

γ ,

∇̂α∇̂β ρ̃ = ∇α∇β ρ̃ +
ĝαβ ĝγ 1 − δγα δ1

β − δγβ δ1
α

ρ
∇γ (ρω), (315)

ˆ̃∇α ˆ̃∇β ρ̃ = ∇̃α∇̃β ρ̃ +
ˆ̃gαb

ˆ̃g11 − 2δ1
αδ

1
β

ρ̃
. (316)

13 This result applies only to conformal space, not to physical space.
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Now consider m̃α
[G]m̃

β
[G]× Eq. (316) − mα

[G]m
β
[G]× Eq. (315). Using the conditions

that (a) scalar quantities are invariant in physical space so that m̃α
[G]m̃

β
[G]∇̃α∇̃β ρ̃ −

mα
[G]m

β
[G]∇α∇β ρ̃ = 0, (b) ˆ̃g11 is zero to O(ρ̃2), (c) mα

[G]δ
1
α = 0, and (d) from Eq. (293)

m̃α
[G]δ

1
α = e−iδρ2 F A∂Aω = ρmα

[G]∂αω, (317)

it follows that

m̃α
[G]m̃

β
[G]

ˆ̃∇α ˆ̃∇β ρ̃=mα
[G]m

β
[G]

(
∇̂α∇̂β(ρω)− ĝαβ

(
ĝ11ω

ρ
+ ĝ1γ ∂γω

)
− 2ρ∂αω∂βω

ω

)
.

(318)

Since mα
[G] and ∇̂αρ are orthogonal, we may write ∇̂α∇̂β(ρω) = ω∇̂α∇̂βρ+ρ∇̂α∇̂βω,

so that

m̃α[G] m̃
β
[G]

ˆ̃∇α ˆ̃∇β ρ̃ = mα[G]m
β
[G]

(
ω∇̂α∇̂βρ + ρ∇̂α∇̂βω − ĝαβ

(
ĝ11ω

ρ
+ ĝ1γ ∂γ ω

)
−

2ρ∂αω∂βω

ω

)
.

(319)

This expression is simplified by (a) expanding out the covariant derivatives, (b)
expressing the metric as a power series in ρ and using mα

[G]m
β
[G] ĝ(0)αβ = 0, and

(c) using Eq. (282),

m̃α[G] m̃
β
[G]

ˆ̃∇α ˆ̃∇β ρ̃=mα[G]m
β
[G]

(
−ωΓ̂ 1

aβ + ρ∂α∂βω − ρ∂γ ωΓ̂ γαβ −
ρωe−2βWc∂ρ ĝαβ

2
−

2ρ∂αω∂βω

ω

)
.

(320)

Finally, Eq. (292) is used to replace mα
[G] in terms of F

A , and the whole expression is

divided by ρ̃3, yielding (Bishop et al. 1997b; Babiuc et al. 2009)

N = lim
ρ̃→0

ˆ̃mα ˆ̃mβ ˆ̃∇α ˆ̃∇β ρ̃
ρ̃

= lim
ρ̃→0

ˆ̃mα
[G]

ˆ̃mβ
[G]

ˆ̃∇α ˆ̃∇β ρ̃
ρ̃

= e−2iδ

ω2

[
− lim
ρ→0

F
A

F
B
Γ̂ 1

AB

ρ

+ F
A

F
B

(
∂

A
∂

B
ω

ω
−
Γ̂ γ

AB
∂γω

ω
− ∂ρ ĝ

AB
e−2βWc

2
− 2∂

A
ω∂

B
ω

ω2

)]
. (321)

The limit is evaluated by expressing each metric coefficient as a power series in ρ,
e.g., J = J(0)+ρ J(1), and then writing F

A
F

B
Γ̂ 1

AB
= F

A
F

B
Γ̂ 1

AB (0)
+ρF

A
F

B
Γ̂ 1

AB (1)
.

Direct evaluation combined with use of the asymptotic Einstein Eq. (266) shows that
F

A
F

B
Γ̂ 1

AB (0)
= 0 (see section “Computer algebra” in “Appendix 3”), so that the

limit evaluates to F
A

F
B
Γ̂ 1

AB (1)
. Further evaluation of Eq. (321) into computational ð

form is handled by computer algebra, as discussed in section “Computer algebra” in
“Appendix 3”.

The attentive reader may have noticed that the derivation above used ρ̃ = ρω

rather than ρ̃ = ρ(ω + ρAρ), so that ∂ρω should not be taken as 0 but as Aρ .

123



Living Rev Relativ (2016) 19:2 Page 73 of 117 2

However, the corrections that would be introduced remain O(ρ) since (a) m̂1
[G] = 0,

(b) in Eq. (319) the term ĝ11 Aρ contained in ĝ1γ ∂γω is O(ρ)Aρ , and (c) in Eq. (321)
the term F A F B Γ̂ 1

AB
Aρ contained in F A F B Γ̂ γ

AB
∂γω is also O(ρ)Aρ .

6.5.2 The Newman–Penrose quantity ψ0
4

The Newman–Penrose quantity ψ4, and its re-scaled version ψ0
4 , were introduced in

Sect. 3.3, and defined there for the case of physical space. Because the Weyl tensor is
conformally invariant, it is straightforward to transform the earlier definition into one
in the conformal gauge. Thus, in the conformal Bondi gauge,

ψ0
4 = lim

ρ̃=0

ˆ̃
Cαβμν ˆ̃nα[N P]

¯̃̂
mβ ˆ̃nμ[N P]

¯̃̂
mν

ρ̃
, (322)

and again, as in the case of the news N , the limiting process means that the metric
variables need to be expressed as power series in ρ̃. Calculating the Weyl tensor
is discussed in section “Computer algebra” in “Appendix 3”, and the result is ψ0

4 =
∂2

ũ
∂ρ̃

¯̃
J as given in Eq. (275). The “Appendix” also checks that replacing ˆ̃mα in Eq. (322)

by ˆ̃mα
[G] (with m̃α

[G] defined in Eq. (293)) does not affect the result for ψ0
4 .

In this case, transforming Eq. (322) to the conformal general gauge is straightfor-
ward, since the tensor quantities are conformally invariant and the net weight is 0. The
result is

ψ0
4 = 1

ω
lim
ρ=0

Ĉαβμν n̂α[N P]
¯̂mβ
[G] n̂

μ
[N P]

¯̂mν
[G]

ρ
, (323)

where m̂α
[G] = e−iδ(0, 0, F A), and is further evaluated, by directly calculating the

Weyl tensor, in section “Computer algebra” in “Appendix 3” (Babiuc et al. 2009) (but
note that this reference uses a different approach to the evaluation of ψ0

4 ).

6.6 Linearized case

In the linearized case the Bondi–Sachs metric variables β, J,U,Wc and the coor-
dinate transformation variables u0, Au, (ω − 1), Aρ, x

A

0 , A
A are regarded as small.

Algebraically, the approximation is implemented by introducing a parameter ǫ =
max(|β|, |J |, |U |, |Wc|) in a neighbourhood of J +. Then, the metric variables are
re-written as β → ǫβ etc., and quantities such as N , ψ0

4 are expressed as Taylor series
in ǫ with terms O(ǫ2) ignored, leading to considerable simplifications. It is common
practice to assume that the error in the approximation is about ǫ2. While computa-
tional results do not contradict this assumption, a word of caution is needed: no work
on establishing a formal error bound for this problem has been reported.

Equations (280)–(282) and Eq. (285), simplify to

∂uu0 = (ω − 1)+ 2β, ∂uφ
A

0 = −U
A
, ∂uω = −Wc/2, A = −ðu0. (324)
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It will also be useful to note the linearized form of Eq. (289),

J = ðX0. (325)

In the linearized case, Eq. (312) takes the form (Bishop 2005)

2 + 4(ω − 1)+ 2ð̄ðω = 2 + 1

2

(
ð

2 J̄ + ð̄
2 J

)
, (326)

which is solved by decomposing ω and J into spherical harmonic components

ω = 1 +
∑

ℓ≥2,|m|≤ℓ
Y ℓmωℓm, J =

∑

ℓ≥2,|m|≤ℓ
2Y ℓm Jℓm, (327)

leading to

ωℓm(4 − 2Λ) = −ℜ(Jℓm)Λ(2 −Λ)
√

1

(ℓ+ 2)Λ(ℓ− 1)
, (328)

[recall that Λ = ℓ(ℓ+ 1)] so that

ωℓm = −Λ
2

√
1

(ℓ+ 2)Λ(ℓ− 1)
ℜ(Jℓm). (329)

Evaluating Eq. (321) for the news, and using Eq. (325), is discussed in section
“Computer algebra” in “Appendix 3”. The result is Bishop (2005)

N = 1

2ρ
(∂u J + ðU )+ 1

2

(
ð

2ω + ∂u∂ρ J + ∂ρðU
)
. (330)

Now from the linearized asymptotic Einstein equations, ∂u J + ðU = 0 and ∂ρU −
2ðβ = 0, so we get

N = 1

2

(
ð

2ω + ∂u∂ρ J + 2ð
2β

)
. (331)

The result is more convenient on decomposition into spherical harmonics, N =∑
2Y ℓmNℓm ,

Nℓm = −Λℜ(Jℓm)

4
+ ∂u∂ρ Jℓm

2
+

√
(ℓ+ 2)Λ(ℓ− 1)βℓm . (332)

In the linearized case, the evaluation of ψ0
4 is straightforward, because the Weyl

tensor is a first-order term so the null tetrad vectors need be correct only to zeroth
order. As discussed in section “Computer algebra” in “Appendix 3”, we find (Babiuc
et al. 2009)
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ψ0
4 = lim

ρ̃→0

[
∂u ð̄Ū + ∂2

u J̄

ρ̃
+ ρ

ρ̃

(
−ð̄Ū + ∂u∂ρ ð̄Ū − ∂u J̄ + ∂2

u∂ρ J̄ − 1

2
ð̄

2Wc

)]
.

(333)
It would appear that ψ0

4 is singular, but applying the asymptotic Einstein equation
Eq. (266) we see that these terms cancel; further, to linear order the deviation of ω
from unity is ignorable, so that

ψ0
4 =

(
−ð̄Ū + ∂u∂ρ ð̄Ū − ∂u J̄ + ∂2

u∂ρ J̄ − 1

2
ð̄

2Wc

)
. (334)

Eq. (276) stated a relationship between ψ0
4 and the news N which should remain true

in this general linearized gauge. In order to see this, we modify Eq. (334) by applying
Eq. (324), Eq. (264) and Eq. (266) to the terms Wc, ∂ρŪ and ∂u J̄ , respectively, yielding

ψ0
4 = 2∂u ð̄

2β + ð̄
2∂uω + ∂2

u∂ρ J̄ , (335)

from which it is clear that ψ0
4 = 2∂uN̄ .

In the linearized approximation, the wave strain Eq. (301) simplifies to Bishop and
Reisswig (2014)

H = ∂ρ J − ðA, (336)

and using Eq. (324) to replace A,

H = ∂ρ J + ð
2u0. (337)

An expression for u0 is obtained using the first relationship in Eq. (324), ∂uu0 =
(ω− 1)+ 2β, which is integrated to give u0. It is clear that u0 is subject to the gauge
freedom u0 → u′

0 = u0 + u
G

, provided that ∂uu
G

= 0 so that u
G

= u
G
(x A ). Thus

the wave strain H is subject to the gauge freedom H → H ′ = H + H
G

, where
H

G
= ð2u

G
(x A ). Decomposing H into spherical harmonics, H =

∑
2Y ℓm Hℓm , it

follows that

Hℓm(u) = ∂ρ Jℓm(u)+
√
(ℓ+ 2)Λ(ℓ− 1)

∫ u

ωℓm(u
′)+ 2βℓm(u

′)du′, (338)

with ωℓm given by Eq. (329). The gauge freedom now appears as a constant of inte-
gration for each spherical harmonic mode in Eq. (338). This freedom needs to be
fixed by a gauge condition. Normally the spacetime is initially dynamic but tends to a
final state that is static, for example the Kerr geometry. In such a case, we impose the
condition Hℓm(u)→ 0 as u → ∞. The same gauge freedom would occur if the wave
strain H were obtained by time integration of the news N , in this case appearing as
an arbitrary “constant” of integration f (x̃ A ).
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7 Numerical implementations of the characteristic approach

The idea of combining the “3+1” and characteristic approaches to extract the
gravitational-wave signal from a numerical simulation was introduced in the 1990s
(Bishop 1992, 1993). However, this early work focused on using the combination for
the whole spacetime and was called Cauchy-characteristic matching (CCM). Subse-
quently, implementation difficulties with CCM led to the development of something
less ambitious known as characteristic extraction (CE). Under certain conditions
(which in practice are achievable), CE is just as accurate as CCM. The advantage
of CCM, if it can be implemented, is that it has the potential to make a significant
contribution to overall code efficiency (Bishop et al. 1996b). An outline of what is
meant by CCM and CE, and the differences between the two approaches, is illustrated
in Fig. 11 and described in the caption.

As first steps towards CCM in relativity, it was implemented for the model prob-
lem of a nonlinear scalar wave equation (Bishop et al. 1996a, 1997a) without any
symmetries, and for the Einstein equations with a scalar field under the condition of
spherical symmetry (Gómez et al. 1996; Lehner 2000). There has been a series of
papers on CCM under axial symmetry (Clarke and d’Inverno 1994; Clarke et al. 1995;
d’Inverno and Vickers 1997; d’Inverno et al. 2000; d’Inverno and Vickers 1996; Dubal
et al. 1995, 1998). A detailed algorithm for CCM in relativity in the general case was

Fig. 11 Schematic illustration of Cauchy-characteristic matching (CCM) and characteristic extraction(CE).
In both cases there is a Cauchy evolution green slices, and a characteristic evolution light blue slices between
rΓ and J +. The difference is that in CCM the outer boundary of the Cauchy evolution is at the worldtube
rΓ with boundary data supplied by the characteristic evolution; and in CE the outer boundary of the Cauchy
evolution is as shown in dark blue and is subject to a boundary condition that excludes incoming gravitational
waves
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presented in Bishop et al. (1999a). The stable implementation of matching is quite
a challenge, and this goal has not yet been achieved (Szilágyi et al. 2000; Szilágyi
2000); although a stable implementation without symmetry has been reported with
the Einstein equations linearized and using harmonic “3+1” coordinates (Szilágyi and
Winicour 2003; Szilágyi et al. 2002). The issue of progress towards CCM is much
more fully discussed in the review by Winicour (2005).

As a consequence of the difficulties with a stable implementation of CCM, in
the 2000s attention shifted to the issue of developing CE, for which stability is not
expected to be an issue. Further, although CCM has the advantage of high computa-
tional efficiency (Bishop et al. 1996b), it was realized that CE can be as accurate as
CCM, provided the outer boundary of the Cauchy evolution is sufficiently far from
the worldtube Γ that the two are not causally related, as indicated in Fig. 12. The
implementation of CE for a test problem was described in 2005 (Babiuc et al. 2005).
Subsequently, codes have been developed that yield useful results for the astrophys-
ical problem of the inspiral and merger of two black holes (Reisswig et al. 2009;
Reisswig 2010; Reisswig et al. 2010; Babiuc et al. 2011a, b). Work that uses, rather
than develops, characteristic extraction includes (Ott 2011; Reisswig et al. 2011,
2013b). There is an alternative approach (Helfer 2010) that yields the emitted energy,
momentum, and angular momentum, although it has not been implemented numeri-
cally.

The key feature of characteristic extraction is just a coordinate transformation, from
Cauchy to characteristic coordinates in a neighbourhood of the worldtubeΓ . However,
it is a more complicated procedure than it might appear, because the Bondi–Sachs
radial coordinate r is a surface area coordinate, so it cannot be expressed explicitly in
terms of the “3+1” coordinates. This complicates the matter in two ways

Fig. 12 Portions of the Kruskal diagram that are determined numerically. The green horizontal lines

indicate the region of spacetime that is determined by the Cauchy evolution and which has finite spatial
extent with artificial outer boundary at r

B
. The light blue diagonal lines indicate the region that is determined

by characteristic evolution, and which starts off from a worldtube Γ located at rΓ using boundary data
from the Cauchy evolution. The future Cauchy horizon of the Cauchy initial data is indicated by the dotted

diagonal line L parallel to J +. As long as the worldtube Γ is located within the future Cauchy horizon,
the numerically evolved subset of the spacetime is consistently determined
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1. The coordinate transformation has to be made in two steps, firstly to a null coordi-
nate system in which the radial coordinate is an affine parameter on the outgoing
null radial geodesics, and secondly to Bondi–Sachs coordinates.

2. In general Γ is not a worldtube of constant r , so setting data at the innermost radial
grid point of the Bondi–Sachs system requires special care.

Implementations of characteristic extraction mainly follow Bishop et al. (1999a),
but do differ in certain aspects. Further, the field clearly needs to develop since most
implementations are second-order accurate. This is a significant limitation since codes
with higher order accuracy have existed for some time on the Cauchy side; and recently
the first fourth order characterictic code has been reported (Reisswig et al. 2013a), as
well as a spectral characteristic code (Handmer and Szilágyi 2015). An important
recent development is the implementation of spectral characteristic extraction (Hand-
mer et al. 2015, 2016), so that the whole computation is spectrally convergent. Below
we outline the characteristic extraction procedure including some of the variations
currently in use.

7.1 Worldtube boundary data

Characteristic extraction is conceptually a post-processing procedure, as opposed to
CCM in which the “3+1” and characteristic codes must run in step with each other.
The transformation to Bondi–Sachs coordinates will require of the “3+1” data the
full four-metric and all its first derivatives on the extraction worldtube Γ . Thus the
first issue is to consider precisely what data the “3+1” code should dump to file, for
subsequent processing by the characteristic extraction code. The simplistic solution
of just dumping everything is not practical, because the data set is too large, and this
is even the case should the data dump be restricted to those grid-points that are close
to Γ . Some form of data compaction is required. On a given timeslice the extraction
surface is spherical, so the natural compaction procedure is decomposition in terms
of spherical harmonics. It turns out that this procedure also has some beneficial side-
effects

1. It filters out high frequency noise.
2. It greatly simplifies the process of interpolation onto a regular angular grid.

Assuming that the “3+1” spacelike coordinates are approximately Cartesian x i
[C] =

(x, y, z), the extraction worldtube Γ is defined by

R2 = x2 + y2 + z2, (339)

for some fixed radius R. Of course the above is a simple coordinate-specific, rather
than a geometric, definition; but in practice the definition has worked well and Γ has
not exhibited any pathologies such as becoming non-convex. As indicated above, the
extraction code will need the full four-metric and its first-derivatives, and it is a matter
of choice as to whether conversion from the “3+1” variables (such as lapse, shift and
three-metric) to four-metric is performed in the “3+1” code or in the extraction routine;
for simplicity, this discussion will be on the basis that the conversion is performed in
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the “3+1” code. The conversion formulas are given in Eq. (75). The time derivatives
of the four-metric could be found by finite differencing, but the results are likely to
be less noisy if they can be expressed in terms of other variables in the “3+1” code—
e.g., the “1+log” slicing condition and the hyperbolic Γ̃ -driver condition (Pollney et al.
2011), if being used, would mean that time derivatives of the lapse and shift are known
directly, and the time derivative of the three-metric may be obtainable from the extrinsic
curvature. For the spatial derivatives of the four-metric, it is sufficient to calculate and
write to file only the radial derivative, since ∂x , ∂y , ∂z can later be reconstructed from
the radial derivative and angular derivatives of the spherical harmonics which are
known analytically. The radial derivative in terms of the Cartesian derivatives is

∂R = 1

R

(
x∂x + y∂y + z∂z

)
. (340)

Having calculated the above variables and derivatives at “3+1” grid points in a neigh-
bourhood of Γ , they must each be interpolated onto points on the coordinate sphere
Γ using (at least) fourth-order interpolation. Then each quantity A, whether scalar,
vector or tensor, is decomposed as

Aℓm =
∫

S2
dΩ Ȳ ℓm A(Ω), (341)

and the Aℓm are written to file. The decomposition is performed for ℓ ≤ ℓmax, and in
practice ℓmax ≈ 8.

A variation of the above procedure was introduced by Babiuc et al. (2011a). Instead
of calculating the radial derivative of a quantity A, the idea is to decompose A into a
product of spherical harmonics and Chebyshev polynomials in r . More precisely, we
consider a “thick” worldtube R1 < R < R2 and the idea is to seek coefficients Ak,ℓ,m

such that we may write

A =
∑

k,ℓ,m

AkℓmU k(τ (R))Y ℓm, (342)

where U k is a Chebyshev polynomial of the second kind, and

τ(R) = 2R − R1 − R2

R2 − R1
, (343)

so that, within the thick worldtube, the argument of U k has the required range of −1
to 1. The coefficients Ak,ℓ,m are then determined by a least squares fit to the data at
each “3+1” grid point within the thick worldtube. The decomposition is carried out for
k ≤ kmax, and in practice (Babiuc et al. 2011a) takes kmax = 6. Thus, this procedure
involves writing three times as much data to file compared to that of calculating the
radial derivative, but is probably more accurate and has the flexibility of being able to
reconstruct data, including radial derivatives, at any point within the thick worldtube.
Babiuc et al. (2011a) also introduced the option of calculating time derivatives via a
Fourier transform process, so being able to filter out high frequency noise.
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7.2 Reconstruction from spectral modes

The variables are reconstructed via

A =
∑

ℓm

AℓmY ℓm (344)

in the case of decomposition only into angular modes, or via Eq. (342) in the case
of decomposition into both angular and radial modes. The radial derivatives at the
extraction worldtube R = RΓ are obtained either directly, or by analytic differentiation
in the case that the reconstruction is in terms of Chebyshev polynomials. We then need
to obtain the Cartesian derivatives in terms of radial and angular derivatives, and by
the chain rule

∂i A =
∑

ℓm

(
Y ℓm∂i R∂

R
Aℓm + Aℓm∂iφ

2∂φ2 Y ℓm + Aℓm∂iφ
3∂φ3 Y ℓm

)
, (345)

where φA = φ2, φ3 are the angular coordinates. The angular derivatives of the Y ℓm

may be re-expresed in terms of spin-weighted spherical harmonics, and ∂iφA expressed
explicitly in terms of the Cartesian coordinates. The details depend on the specific
angular coordinates being used, and in the common case of stereographic coordinates
the formulas are Reisswig et al. (2010)

∂i A =
∑

ℓm

(
Aℓm

√
ℓ(ℓ+ 1)

1 + q2 + p2

[
1Y ℓm (∂i q − i∂i p)− −1Y ℓm (∂i q + i∂i p)

]
+ ∂i R∂

R
AℓmY ℓm

)
,

(346)
where

∂i R = ∂i

√
x2 + y2 + z2 = (x, y, z)

R
, (347)

∂i q = ∂i

(
x√

x2 + y2 + z2 ± z

)

= 1

(R ± z)2

(
R ± z − x2/R, −xy/R, −xz/R ∓ x

)
, (348)

∂i p=∂i

(
±y√

x2+y2+z2 ± z

)
= 1

(R ± z)2

(
∓xy, ±R + z ∓ y2/R, −y ∓ yz/R

)
,

(349)

where the upper sign is valid for the north patch and the lower sign is valid for the
south patch.

7.3 Transformation to null affine coordinates

In this section we construct the coordinate transformation from the Cartesian like
“3+1” coordinates to a null coordinate system in which the radial coordinate is an
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Fig. 13 Schematic illustration of the (first stage) construction of characteristic coordinates and metric

affine parameter rather than the Bondi–Sachs surface area coordinate. As already
mentioned, we need this intermediate step because the surface area coordinate cannot
be expressed as a function of only the “3+1” coordinates, but would also need terms
involving the three-metric γi j . The procedure is illustrated schematically in Fig. 13.

On the extraction worldtube Γ we can simply define the coordinate transfor-
mation, but off Γ it will need to be calculated. The null affine coordinates are
xα[N ] = (u, λ, q, p), and the relation to the “3+1” coordinates xα[C] = (t, x, y, z) on
Γ is defined to be

u = t, λ = 0, (350)

with q, p given by Eq. (406) for r = RΓ .
Although the above is given in terms of stereographic angular coordinates (q, p),

rather than general angular coordinatesφA , the formulas that follow will not be specific
to stereographic coordinates.

The unit normal nμ to the hypersurfaceΣt is determined from the lapse and shift as
stated in Eq. (71). Let sα = (si , 0) be the outward pointing unit normal to the section
St of the worldtube at time tn . By construction, si lies in the slice Σt , and is given
by Eq. (94). The generators ℓα of the outgoing null cone through St are given on the
worldtube by

ℓα = nα + sα

α − γi jβ i s j
, (351)

which is normalized so that ℓα tα = −1, where tα = (1, 0, 0, 0) is the Cauchy evolution
vector.
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We may now build the coordinate transformation between the “3+1” Cartesian
coordinates xα and the (null) affine coordinates yα . As already discussed, we need
this in a neighborhood of the worldtube, not just on the worldtube. Along each outgoing
null geodesic emerging from St , angular and time coordinates are defined by setting
their values to be constant along the rays, and equal to their values on the worldtube.
Geometrically, the idea is that we define (u, q, p) to be constant on each null geodesic
generator. Algebraically, given (u, λ, q, p), the “3+1” coordinates are given by

xα[C] = x
(0)
[C]
α + ℓαλ+ O(λ2), (352)

where x
(0)
[C]
α is given by Eq. (350), and where ℓα is given by Eq. (351). This expression

determines xα[C](u, λ, q, p) to O(λ2). Consequently, the calculation of any quantity
off-Γ is restricted to be be second-order accurate. If higher order is required, we
would need to take into account how the geodesic generators, i.e., the ℓα , vary off-Γ ,
which would mean using information provided by the geodesic equation.

Then the metric g[N ]αβ in null affine coordinates xα[N ] = (u, λ, q, p) is expressed in
terms of the “3+1” metric as

g[N ]αβ = ∂x
μ
[C]

∂xα[N ]

∂xν[C]

∂x
β
[N ]

gμν . (353)

The Jacobian of the coordinate transformation is now expressed as a series expan-
sion in the parameter λ. We do not need the ∂λx

μ
[C] because the coordinate λ is an affine

parameter of the null geodesics, which fixes the g[N ]λμ:

g[N ]λλ = g[N ]λA = 0, g[N ]λu = −1, (354)

with the numerical value of the last condition a consequence of the normalization
condition tαℓα = −1. The relevant part of the coordinate transformation is then

∂ξ x
μ
[C] :=

∂x
μ
[C]

∂x
ξ
[N ]

=∂ξ x
(0)
[C]
μ+∂ξ x

(1)
[C]
μλ+O(λ2), ∂ξ x

(1)
[C]
μ=∂ξℓ(0)μ, for ξ = (u, q, p).

(355)
The order O(λ0) part of the Jacobian is evaluated by analytic differentation of

Eq. (350). From Eq.(355), the O(λ1) part of the Jacobian is obtained from ∂ξℓ
(0)μ

with ξ = (u, q, p); since ℓ(0)μ is known on the worldtube analytically in the angu-
lar directions from the spherical harmonic decomposition, and analytically or on a
regular (q, p, u) grid in the time direction, ∂ξℓ(0)μ can easily be found by analytic
differentiation or finite differencing.

7.4 Null affine metric

The λ-derivative of the Cauchy 4-metric at the worldtube can be expressed as

(∂λgαβ)|Γ = ∂μg
(0)
αβ ℓ

(0)μ, (356)
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so that the null affine metric takes the form

g[N ]αβ = g
(0)
[N ]αβ + ∂λg[N ]αβλ+ O(λ2). (357)

In the above Eq., the (0) coefficients are

g
(0)
[N ]uu = gt t |Γ ,

g
(0)
[N ]u A =

(
∂

A
x i
[C]gi t

)
|Γ
,

g
(0)
[N ]AB =

(
∂

A
x i
[C]∂B

x
j
[C]gi j

)
|Γ
, (358)

and the λ derivative coefficients are

∂λg[N ]uu =
[
∂λgt t + 2 ∂uℓ

μgμt

]
|Γ + O(λ),

∂λg[N ]u A =
[
∂

A
xk
[C]

(
∂uℓ

μgkμ + ∂λgkt

)
+ ∂

A
ℓk gkt + ∂A

ℓt gt t

]
|Γ

+ O(λ),

∂λg[N ]AB =
[
∂

A
xk
[C]∂B

x l
[C]∂λgkl +

(
∂

A
ℓμ∂

B
x l
[C] + ∂B

ℓμ∂
A

x l
[C]

)
gμl

]
|Γ

+ O(λ),

(359)

and where the λ-derivatives of the Cauchy metric are evaluated as

∂λgαβ = ℓγ ∂γ gαβ . (360)

The contravariant null affine metric, g
αβ
[N ], is also expressed as an expansion in λ,

g
μν
[N ] = g

(0)
[N ]
μν + ∂λg

μν
[N ]λ+ O(λ2). (361)

The coefficients are obtained from the conditions

g
(0)
[N ]
μαg

(0)
[N ]αν = δμν , ∂λg

μν
[N ] = −gμα g

βν
[N ] ∂λg[N ]αβ , (362)

as well as the requirement that certain components are fixed (which follows from
Eq. (354))

gλu
[N ] = −1, gu A

[N ] = guu
[N ] = 0. (363)

Thus the contravariant null affine metric and its λ derivative are

gAB
[N ] g[N ]BC = δA

C
,

gλA

[N ] = gAB
[N ] g[N ]u B,

gλλ[N ] = −g[N ]uu + gλA

[N ]g[N ]u A,

∂λgAB
[N ] = −gAC

[N ] g
B D
[N ] ∂λg[N ]C D,

∂λgλA

[N ] = gAB
[N ]∂λ

(
g[N ]u B − gλC

[N ]∂λg[N ]C B

)
,

∂λgλλ[N ] = −∂λg[N ]uu + 2 gλA
[N ] ∂λg[N ]u A − gλA

[N ]g
λB

[N ]∂λg[N ]AB . (364)
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7.5 Metric in Bondi–Sachs coordinates

We are now able to construct the surface area coordinate r(u, λ, φA )

r =
(

det(g[N ]AB)

det(q
AB
)

)1/4

. (365)

In order to make the coordinate transformation xα[N ] = (u, λ, φA )→ xα[B] = (u, r, φA ),
we need expressions for ∂λr , ∂

A
r and ∂ur . From Eq. (365),

∂λr = r

4
gAB
[N ]∂λg[N ]AB, (366)

∂
C

r = r

4

(
gAB
[N ]∂C

g[N ]AB − q
AB
∂

C
q

AB

)
, (367)

where

∂
C

g[N ]AB =
(
∂

A
∂

C
x i
[C] ∂B

x
j
[C] + ∂A

x i
[C] ∂B

∂
C

x
j
[C]

)
gi j + ∂A

x i
[C] ∂B

x
j
[C] ∂C

xk
[C] ∂k gi j ,

(368)
in which the ∂

A
∂

C
x i
[C] are evaluated analytically in terms of φA . An expression for ∂ur

will be required later but only on the worldtube Γ , so that Eq. (358) may be used when
simplifying ∂u applied to Eq. (365); further on Γ , ∂u = ∂t , and by construction ∂

A
x i
[C]

is independent of time. Thus,

∂ur = r

4
gAB

[N ]∂u g[N ]AB

= r

4
gAB

[N ]∂u

(
∂

A
x i
[C] ∂B

x
j
[C] gi j

)

= r

4
gAB

[N ]∂A
x i
[C] ∂B

x
j
[C] ∂t gi j . (369)

The metric g
αβ
[B] in Bondi–Sachs coordinates is obtained from the coordinate trans-

formation

g
αβ
[B] =

∂xα[B]

∂x
μ
[N ]

∂x
β
[B]

∂xν[N ]
g
μν
[N ] . (370)

Note that the spherical part of the metric is unchanged, i.e., gAB
[B] = gAB

[N ], and only the
components g11

[B], g1A
[B] and g01

[B] on Γ need to be determined. From Eq. (363),

g11
[B] = ∂α ∂βr g

αβ
[N ] = (∂λr)

2 g11
[N ] + 2 ∂λr

(
∂

A
r g1A

[N ] − ∂ur
)
+ ∂

A
r ∂

B
r gAB

[N ] ,

g1A

[B] = ∂αr gαA

[N ] = ∂λr g1A

[N ] + ∂B
r gAB

[N ] ,

g01
[B] = ∂αr g0α

[N ] = −∂λr. (371)

As discussed in Sect. 6.1, the characteristic Einstein equations are not formulated
directly in terms of the metric components, but in terms of quantities derived from the
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metric, specifically J, β,U and Wc. Explicitly, the relations between these quantities
and the contravariant metric components are

J = −
q

A
q

B
g

AB

[B]

2r2
, β = −1

2
log(g01

[B]), U =
g1A
[B]

g01
[B]

q
A
, Wc = −

g11
[B] + g01

[B]

g01
[B]r

.

(372)

7.6 Starting up the null code at the worldtube

As already mentioned, a difficulty faced is that Eq. (372) gives metric quantities on
the worldtube Γ , which is not in general a hypersurface at a constant value of the
r -coordinate. The original method for tackling the problem makes use of a Taylor
series in λ (Bishop et al. 1999a), and has been implemented in Szilágyi et al. (2000),
Szilágyi (2000), Babiuc et al. (2005), Reisswig et al. (2009) and Reisswig et al. (2010).
Recently, a method that uses a special integration algorithm between the worldtube
and the first characteristic grid-point, has been proposed and tested (Babiuc et al.
2011a, b). Both approaches are outlined below.

7.6.1 Taylor series method

The Taylor series method is based on writing, for some quantity A,

A(u, λ, q, p) = A(u, 0, q, p)+ λ∂λA(u, 0, q, p)+ O(λ2), (373)

where A represents J, β,U and Wc. A needs to be written as a function of null affine
coordinates, so that ∂λA can be evaluated. Also, using Eqs. (365) and (367) evaluated on
the worldtube, we need to find the value of λ at which r(λ) = ri , where ri is an r -grid-
point near the worldtube; this needs to be done for each grid-point in both the angular
and time domains. The derivation of the Taylor expansions is straightforward, with
second λ-derivatives eliminated using the Einstein equations (Bishop et al. 1999a).
The results are

∂λ J = − 1

2 r2
q

A
q

B
∂λg

AB

[N ] − 2
∂λr

r
J, (374)

∂λβ = r

8
∂λr

(
∂λ J∂λ J̄ − 1

1 + J J̄

(
J̄∂λ J + ∂λ J̄ J

)2
)
. (375)

∂λU = −
(
∂λg1A

[N ] +
∂λ∂B

r

∂λr
gAB
[N ] +

∂
B
r

∂λr
∂λgAB

[N ]

)
q

A
+ 2 ∂λβ

(
U + g1A

[N ]qA

)
, (376)

∂λWc = −∂λr
r

((
∂λr

r
+ 2 ∂λβ

)
g11
[N ] − ∂λg11

[N ] −
1

r

)
+ 2

r

(
∂λr∂ur

r
− ∂λ∂ur

)

+2

r

(
∂λ∂A

r − ∂λr∂A
r

r

)
g1A

[N ] + 2
∂

A
r

r
∂λg1A

[N ]

+ ∂
B
r

r ∂λr

(
2 ∂λ∂A

rgAB
[N ] + 2 ∂λβ∂A

r + ∂
A
r∂λgAB

[N ]
)
− ∂

A
r ∂

B
r

r2
gAB
[N ] . (377)
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7.6.2 Special evolution routine between the worldtube and the first radial grid-point

In this approach, on a null cone say u = un , we need only the values of the Bondi–
Sachs metric variables at the angular grid-points on the worldtube. We also suppose
that the value of J is known at all grid-points of the Bondi–Sachs coordinate system
on the given null cone, either as initial data or from evolution from the previous null
cone. A mask is set to identify those radial grid-points for which xi − xΓ < Δx , and
these points will be called “B points”. The special algorithm is concerned with setting
data at the points i = B + 1, called “B+1 points”. The first hypersurface equation in
the hierarchy is the one for β, and is the simplest one to hadle. The algorithm is

βB+1 = βΓ +Δr

rB+1 + rΓ

16Δ2
r

(
(JB+1 − JΓ )( J̄B+1 − J̄Γ )− (K B+1 − KΓ )

2
)
, (378)

where Δr = rB+1 − rΓ . The local truncation error associated with this algorithm
is O(Δ3

r ). The remaining hypersurface equations involve angular derivatives, which
cannot be evaluated on the worldtube because it is not, in general, a hypersurface of
constant r . Consequently, the right hand sides of these equations are evaluated at the
B+1 points rather than at the points mid-way between rB+1 and rΓ . Schematically, the
hypersurface equations are of the form (rn A),r = f , and the algorithm is

AB+1 = rn
Γ

AΓ +Δr fB+1

rn
B+1

. (379)

The result is that the local truncation error for these equations is reduced to O(Δ2
r ).

Even so, one start-up step with error O(Δ2
r ) is consistent with the global error of

O(Δ2
x ).

Since the value of r varies on the worldtube, it may happen that the angular neigh-
bour of a B+1 point is a B point. Thus, the code must also set data for the metric
variables at the B points, even though much of this data will not be needed.

7.7 Initial data

The above discussion has shown how data should be set at, or on a neighbourhood
of, the inner worldtube Γ , but in order to run a characteristic code data for J is also
required on an initial null cone u = constant. Earlier work has adopted the simplistic
but unphysical approach of just setting J = 0, assuming that the error so introduced
would quickly be eliminated from the system. Babiuc et al. (2011a) and Bishop et al.
(2011) investigated the matter. It was found that the error due to simplistic initial data
is usually small, but it can take a surprisingly long time, up to 800 M, until saturation
by other effects occurs. In terms of observations by a gravitational-wave detector, the
effect of the error in search templates is not relevant. However, if a signal is detected,
the effect would be relevant for accurate parameter estimation at large SNR (signal to
noise ratio), but no quantitative estimates have been given.
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Two methods for setting physically realistic initial data for a characteristic evolution
have been proposed and tested. In Bishop et al. (2011) the initial data is set by means
of fitting the boundary data to a general form of a linearized solution to the vacuum
Einstein equations. On the other hand, Babiuc et al. (2011a) sets the initial data by
means of the simple condition

J = J |Γ
rΓ

r
, (380)

as in this case there should be no incoming radiation since the Newman–Penrose
quantity ψ0 = 0.

7.8 Implementation summary

The issues summarized here are: (1) setting up a characteristic code that starts from
the output of a “3+1” code; (2) estimating the gravitational waves from metric data in a
compactified domain output by a characteristic code; (3) estimating quantities derived
from the gravitational waves, i.e., the energy, momentum and angular momentum.

7.8.1 Setting worldtube boundary data for the characteristic code

The coding of characteristic extraction is a complex process, and is not simply a matter
of implementing a few of the formulas derived earlier in this section. Below, we outline
the key steps that are required. The reader is also referred to section “Numerical codes”
in “Appendix 3” for information about computer code that implements characteristic
extraction.

1. Within the “3+1” code, write a routine that uses Eq. (342) to perform a spec-
tral decomposition of the three-metric, lapse and shift, and outputs the data to
file.

2. In a front-end to the characteristic code, write a routine that reads the data from
the file created in the previous step, and reconstructs the four-metric and its first
derivatives at the angular grid-points of the extraction worldtube.

3. Construct the generators ℓα of the outgoing null cone using Eq. (351), and then
the Jacobian ∂x

μ
[C]/∂xα[N ] as a series expansion in the affine paramenter λ, for each

angular grid-point on the worldtube.
4. As described in Sect. 7.4, construct the null affine metric g[N ]αβ and its first λ-

derivative at the angular grid-points of the extraction worldtube; then construct the
contravariant forms g

αβ
[N ] and ∂λg

αβ
[N ].

5. From Eq. (365), determine the surface area coordinate r and its first derivatives at
the angular grid-points of the extraction worldtube.

6. Construct the Jacobian ∂x
μ
[B]/∂xα[N ], and thus the Bondi–Sachs metric g

αβ
[N ] and then

the metric coefficients β, J,U,Wc at the angular grid-points of the extraction
worldtube.

7. Implement either of the special start-up procedures described in Sect. 7.6.
8. The construction of a characteristic code is not described in this review, but see

section “Numerical codes” in “Appendix 3” for information about the availability
of such codes.
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7.8.2 Estimation of gravitational waves

In Sect. 6, many formulas used ρ (=1/r ) as the radial coordinate, but that is unlikely
to apply in practice. In the case that the radial code coordinate is x given by Eq. (259),
the relation between ∂x and ∂ρ at J + is

∂ρ = − ∂x

rΓ
. (381)

If all the metric coefficients near J + are small (which, in practice, is often but not
always the case), then the linearized formulas apply, and:

– ψ0
4 is evaluated using Eq. (334).

– The news N is evaluated, decomposed into spherical harmonics, using Eq. (332).
– The strain H is evaluated, decomposed into spherical harmonics, using Eq. (338).

In the general (nonlinear) case, it is first necessary to evaluate the coordinate trans-
formation functionsφA

0 (u, x A ),ω(u, x A ) and u0(u, x A ). The reason for doing so is that
it is then possible to determine, at each (u, φA ) grid point, the corresponding values
of the Bondi gauge coordinates (ũ, φ̃A ). Thus the gravitational-wave quantities can be
expressed as functions of the (physically meaningful) Bondi gauge coordinates, rather
than as functions of the code coordinates. This issue did not arise in the linearized case
because it is a second-order effect and thus ignorable. The procedure for evaluating
these functions is:

– φA

0 (u, x A ). Solve the evolution problem Eq. (281) with initial data φA

0 (0, x A ) = 0.
This initial condition assumes that the initial data for J has been set with J = 0
at J +.

– ω(u, x A ). Either solve the evolution problem Eq. (282) with initial dataω(0, x A ) =
1, or evaluate the explicit formula Eq. (287).

– u0(u, x A ). Solve the evolution problem Eq. (280). In this case, there is a gauge
freedom to set the initial data u0(0, x A ) arbitrarily.

In the cases of N andψ0
4 , the phase factor δ(u, x A ) also needs to be evaluated. This

can be done either explicitly, Eq. (295), or by solving the evolution problem Eq. (296)
with initial data δ(0, x A ) = 0. Then:

– ψ0
4 is evaluated using Eq. (323).

– The news N is evaluated using Eq. (321).
– The strain H is evaluated using Eq. (301).

7.8.3 Energy, momentum and angular momentum in the waves

The formulas for the energy, momentum and angular momentum have already been
given in terms of ψ4 in Sect. 3.3.3, and these formulas are directly applicable here on
substituting ψ4 by ψ0

4 /r . The resulting formulas involve one or two time integrals of
ψ0

4 , and it is useful to note that here all such integration can be avoided by using

∫ t

−∞

∫ t ′

−∞
ψ0

4 dt ′ dt ′′ = H̄ ,

∫ t

−∞
ψ0

4 dt ′ = 2N̄ . (382)
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8 A comparison among different methods

This review has described the following methods for extracting the gravitational-wave
signal from a numerical simulation

– The quadrupole formula, including various modifications, leading to the wave
strain (h+, h×);

– ψ4 (fixed radius) andψ4 (extrapolation), leading to the Newman–Penrose quantity
ψ4;

– Gauge-invariant metric perturbations, leading to the wave strain (h+, h×);
– Characteristic extraction, leading to the wave strain (h+, h×), the gravitational

news N , or the Newman–Penrose quantity ψ4.

There are a number of factors that need to be taken into account in deciding the
appropriate method for a particular simulation. In outline, these factors are:

– Physical problem motivating the simulation. The most appropriate method for
extracting gravitational waves is affected by how the result is to be used. It may
be that only moderate accuracy is required, as would be the case for waveform
template construction for use in searches in detector data; on the other hand, high
accuracy would be needed for parameter estimation of an event in detector data
at large SNR. Further, the purpose of the simulation may be not to determine a
waveform, but to find the emitted momentum of the radiation and thus the recoil
velocity of the remnant.

– Domain and accuracy of the simulation. The domain of the simulation may restrict
the extraction methods that can be used. All methods, except that using the quadru-
pole formula, require the existence of a worldtube, well removed from the domain
boundary, on which the metric is Minkowskian (or Schwarzschild) plus a small cor-
rection. As discussed in Sect. 3.3.2, extrapolation methods need these worldtubes
over an extended region. Further, the accuracy of the simulation in a neighbour-
hood of the extraction process clearly limits the accuracy that can be expected
from any gravitational-wave extraction method.

– Ease of implementation of the various extraction methods. All the methods
described in this review are well understood and have been applied in differ-
ent contexts and by different groups. Nevertheless, the implementation of a new
gravitational-wave extraction tool will always require some effort, depending on
the method, for coding, testing and verification.

– Accuracy of the various extraction methods. Theoretical estimates of the expected
accuracy of each method are known, but precise data on actual performance is
more limited because suitable exact solutions are not available. In a simulation of
a realistic astrophysical scenario, at least part of the evolution is highly nonlinear,
and the emitted gravitational waves are oscillatory and of varying amplitude and
frequency. On the other hand, exact solutions are known in the linearized case
with constant amplitude and frequency, or in the general case under unphysical
conditions (planar or cylindrical symmetry, or non-vacuum). One exception is the
Robinson–Trautman solution (Robinson and Trautman 1962), but in that case the
gravitational waves are not oscillatory and instead decay exponentially.
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Thus, in an astrophysical application, the accuracy of a computed waveform is
estimated by repeating the simulation using a different method; then the difference
between the two waveforms is an estimate of the error, provided that it is in line
with the theoretical error estimates. In some work, the purpose of comparing results
of different methods is not method testing, but rather to provide validation of the
gravitational-wave signal prediction. The only method that is, in principle, free of
any systematic error is characteristic extraction, but the method was not available
for general purpose use until the early 2010s. It should also be noted that there
remains some uncertainty about factors that could influence the reliability of a
computed waveform (Boyle 2016).

8.1 Comparisons of the accuracy of extraction methods

A number of computational tests have been reported, in which the accuracy of vari-
ous extraction methods is compared. Such tests are, of course, specific to a particular
physical scenario, and to the choice of “3+1” evolution code, initial data, gauge con-
ditions, etc. Some of the tests reported are now outlined, together with the results
that were obtained. While it is natural to want to generalize these results, a word of
caution is needed since the testing that has been undertaken is quite limited. Thus any
generalization should be regarded as providing only a guide to which there may well
be exceptions.

– Nagar et al. (2005) investigates various modifications of the standard quadrupole
formula in comparison to results obtained using gauge-invariant metric perturba-
tions for the case of oscillating accretion tori. Good results are obtained when
back-scattering is negligible, otherwise noticeable differences in amplitude occur.

– Balakrishna et al. (2006) computes ψ4 (fixed radius) and gauge-invariant metric
perturbations for gravitational waves from boson star perturbations, but detailed
comparisons between the two methods were not made.

– Pollney et al. (2007) compares gauge-invariant metric perturbations to ψ4 (fixed
radius) extraction for the recoil resulting from a binary black hole merger. It was
found that results for the recoil velocities are consistent between the two extraction
methods.

– Shibata et al. (2003) and Baiotti et al. (2009) compare gauge-invariant metric
perturbations, modified quadrupole formula and ψ4 (fixed radius) extraction for
a perturbed neutron star. While the results are generally consistent, each method
experienced some drawback. The gauge-invariant method has a spurious initial
junk component that gets larger as the worldtube radius is increased. Inψ4 extrac-
tion, fixing the constants of integration that arise in obtaining the wave strain can
be a delicate issue, although such problems did not arise in this case. The gener-
alized quadrupole formula led to good predictions of the phase, but to noticeable
error in the signal amplitude.

– Reisswig et al. (2009, 2010) compare ψ0
4 from characteristic extraction and from

ψ4-extrapolation for Binary Black Hole (BBH) inspiral and merger in spinning
and non-spinning equal mass cases. The “3+1” evolution was performed using
a finite difference BSSNOK code (Pollney et al. 2011). A comparison was also

123



Living Rev Relativ (2016) 19:2 Page 91 of 117 2

made in Babiuc et al. (2011a) for the equal mass, non-spinning case. Recently, a
more detailed investigation of the same problem and covering a somewhat wider
range of BBH parameter space, was undertaken (Taylor et al. 2013) using SpEC
for “3+1” evolution (Szilágyi et al. 2009).
These results lead to two main conclusions. (1) The improved accuracy of char-
acteristic extraction is not necessary in the context of constructing waveform
templates to be used for event searches in detector data. (2) Characteristic extrac-
tion does provide improved accuracy over methods that extract at only one radius.
The ψ4-extrapolation method performs better, and there are results for ψ0

4 that are
equivalent to characteristic extraction in the sense that the difference between the
two methods is less than an estimate of other errors. However, that does not apply
to all modes, particularly the slowly varying m = 0 “memory” modes.

– A study of gravitational-wave extraction methods in the case of stellar core col-
lapse (Reisswig et al. 2011) compared characteristic extraction, ψ4 extraction
(fixed radius), gauge-invariant metric perturbations, and the quadrupole formula.
In these scenarios, the quadrupole formula performed surprisingly well, and gave
results for the phase equivalent to those obtained by characteristic extraction, with a
small under-estimate of the amplitude. However, quadrupole formula methods fail
if a black hole forms and the region inside the horizon is excised from the space-
time. The gauge-invariant metric perturbation method gave the poorest results,
with spurious high frequency components introduced to the signal. In character-
istic extraction and ψ4 extraction the waveform was obtained via a double time
integration, and the signal was cleaned up using Fourier methods to remove spu-
rious low frequency components.

– It is only very recently (Bishop and Reisswig 2014) that a method was developed in
characteristic extraction to obtain the wave strain directly instead of via integration
of N or ψ0

4 . That work also compared the accuracy of the waveform obtained to
that found from integration of ψ0

4 using ψ4-extrapolation, in two cases—a binary
black hole merger, and a stellar core collapse simulation. When comparing the
wave strain from characteristic extraction to that found by time integration of ψ0

4 ,
good agreement was found for the dominant (2,2) mode, but there were differences
for ℓ ≥ 4.
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Appendix 1: Notation

Latin symbols

Aμν, A+, A× Wave amplitude tensor and coefficients
A, AA, Au, Aρ Coefficients in transformation between Bondi and general gauges
a Term in Schwarzschild metric
b Term in Schwarzschild metric
Cabcd Weyl tensor
dΩ Surface area element of a sphere
E Energy
Eℓm

A
Vector spherical harmonic

e+, e×, eL , eR Polarization tensors
ex Unit vector in the direction of the coordinate x

F A Dyad of general Bondi–Sachs gauge metric
F Fourier transform operator
Gab Einstein tensor
G Quantity in Cauchy-perturbative matching
gαβ four-metric

g
0
μν Background metric

H Re-scaled wave strain, i.e., limr̃→∞ r(h+ + ih×)
H0, H1 Quantity in Cauchy-perturbative matching
h

AB
Angular part of metric

hμν Metric perturbation

h
TT

μν Metric perturbation in TT gauge

h̄μν Trace-free metric perturbation
h(0)

A
, h Quantity in Cauchy-perturbative matching

I− jk Trace-less mass quadrupole
J + Future null infinity
J Bondi–Sachs metric variable
Ji Angular momentum
K Bondi–Sachs metric variable
K Quantity in Cauchy-perturbative matching
Ki j Extrinsic curvature
k

A
Quantity in Cauchy-perturbative matching

L Lie derivative operator
Lℓm, Lℓm

A
Quantities in Cauchy-perturbative matching

ℓα Newman–Penrose tetrad vector, tangent to outgoing null geodesic
mα Newman–Penrose tetrad vector
mα

[G] Approximation to mα

N Gravitational news
N
μ
ν Time projection operator

nα[N P] Newman–Penrose tetrad vector
nα Unit normal to Σt

Pi three-momentum
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p Stereographic coordinate
Q(0) Quantity in Cauchy-perturbative matching
q Stereographic coordinate
q

A Complex dyad vector
q

AB
Unit sphere metric

R “3+1” radial coordinate, R =
√

x2 + y2 + z2

R, Rab, Rabcd Ricci scalar, Ricci tensor, Riemann tensor
R Intrinsic 2-curvature
r Bondi–Sachs radial coordinate
r Radial coordinate in Cauchy perturbative approach
r∗ “Tortoise” radial coordinate
S(0) Quantity in Cauchy-perturbative matching
St Γ ∩Σt

Sℓmc , Sℓmcd Vector spherical harmonic, tensor spherical harmonic
s Radial like coordinate
si Unit normal to St

Tab Stress-energy tensor
T ℓm, T ℓm

A
Quantities in Cauchy-perturbative matching

tab Stress-energy tensor of gravitational waves (averaged)
t “3 + 1” time coordinate
U Bondi–Sachs metric variable
U k(x) Chebyshev polynomial of the second kind
u Bondi–Sachs time coordinate
uμ Fluid four-velocity
V
(0)
ℓ Quantity in Cauchy-perturbative matching

W Lorentz factor
W ℓm Quantities in Cauchy-perturbative matching
Wc Bondi–Sachs metric variable
xα, x i Coordinates
xα[B] Bondi–Sachs coordinates
xα[C] Minkowski-like coordinates
xα[N ] Null affine coordinates
Xℓm Quantities in Cauchy-perturbative matching
Y ℓm, sY ℓm Spherical harmonic, spin-weighted version
Zℓm

s Zℓm “Real” spherical harmonic, spin-weighted version
Zℓm

C D
Tensor spherical harmonic

Greek symbols

α Lapse
β Bondi–Sachs metric variable
β i Shift
Γ Extraction worldtube
γi j three-metric
δ Phase factor

123



2 Page 94 of 117 Living Rev Relativ (2016) 19:2

ημν Metric of special relativity
θ Spherical polar coordinate
κα Wave propagation vector
κ1, κ2 Quantities in Cauchy-perturbative matching
Λ ℓ(ℓ+ 1)
λ Affine parameter
ξα Vector defining gauge transformation
ξ (u, q, p)

ρ Compactified radial coordinate
Σt Timelike slice
�(o),�(e) Quantities in Cauchy-perturbative matching
φ

A Angular coordinates
φ Spherical polar coordinate
ϒ −q Aq̄ B∇AqB/2, factor in definition of ð

χ Quantity in Cauchy-perturbative matching
Ψ (o), Ψ (e) Quantities in Cauchy-perturbative matching
ψ0 · · ·ψ4 Newman–Penrose quantities
ψ0

4 Re-scaled ψ4, i.e., limr→∞ rψ4

Ωμ ∇μt

ω Relation between the radial coordinate in the general and Bondi gauges
ω Wave frequency

Operators

∇α Covariant derivative operator
∂α Partial derivative operator
� Wave operator
ð Spin-weighted angular derivative operator
ˆ Quantity in conformally compactified gauge
ˆ Index in another coordinate system
˜ Quantity in Bondi gauge
˜ Fourier transformed quantity
¯ Complex conjugate (except see above for h̄μν)

Indexing conventions

α,β,... (0, 1, 2, 3) Spacetime indices
i, j,... (1, 2, 3) Spacelike indices
A,B,... (2, 3) Angular indices
a,b,... (0, 1) Non-angular indices
ℓm Spherical harmonic indices
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Appendix 2: Spin-weighed spherical harmonics and the ð operator

A convenient way to represent vector and tensor quantities over the sphere, including
their angular derivatives, is to use spin-weighted quantities and the ð operator. The
formalism was introduced by Newman and collaborators in the 1960s (Newman and
Penrose 1966; Goldberg et al. 1967), and has been described in textbooks such as
Penrose and Rindler (1984, 1986) and Stewart (1990). Even so, the theory is not well
known and there are variations in notation and conventions (which topic is discussed
further in Sect. 1), so the theory will be presented here in some detail based on the
conventions of Gómez et al. (1997). We will describe the theory, both in general
terms and with specific reference to the coordinates commonly used, i.e., spherical
polar and stereographic. Further, the spin-weighted spherical harmonic functions will
be introduced, as well as the vector and tensor spherical harmonics (Newman and
Silva-Ortigoza 2006). All of these can be used as basis functions on the sphere.

The complex dyad

Let φA , q
AB

and q
AB (2 ≤ A, B ≤ 3) be coordinates and the associated metric of a

unit sphere. For example, in standard spherical polars, φA = (θ, φ) and

q
AB

=
(

1 0
0 sin2 θ

)
. (383)

The first step is to introduce a complex dyad q
A . Geometrically, the dyad is a 2-

vector that can be written as q
A = ℜ(q A

) + iℑ(q A
) where ℜ(q A

), ℑ(q A
) are real

and orthonormal. In other words, the real and imaginary parts of q
A are unit vectors

at right-angles to each other. From this definition, it is straightforward to verify the
following properties

q
A

q
A
= 0, q

A
q̄

A
= 2, q

AB
= 1

2

(
q

A
q̄

B
+ q̄

A
q

B

)
. (384)

Clearly, the dyad q
A is not unique being arbitary up to a rotation and/or reflection,

so that p
A = eiγ q

A and p
A = q̄

A are also dyads. Even so, it is convenient to write
the dyad in a way that is natural to the coordinates being used, which for a diagonal
metric means that the real part of the dyad should be aligned to the φ2 direction, and
the imaginary part to the φ3 direction. Thus, the dyad usually used in spherical polar
coordinates is

q
A =

(
1,

i

sin θ

)
, and q

A
= (1, i sin θ). (385)

The possibility of different parities, i.e., of a reflection, introduces an additional
complication, which can be avoided by convention: All the coordinate systems used
in this review are right-handed, and we will not consider dyads that are related by
complex conjugation. This is equivalent to embedding the sphere into Euclidean space
with coordinates (r, φ2, φ3) that are always right-handed, i.e., the vector product
ℜ(q)× ℑ(q) points in the positive r -direction.
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The dyad q
A resembles the angular components of the tetrad vector mα given in

Eq. (96) when evaluated on a unit sphere, but there is a difference of a factor of
√

2.
This is an example of different conventions used by different authors, which matter is
discussed further in Sect. 1.

Spin-weighted fields

Having defined the dyad q
A , we are now in a position to construct spin-weighted fields

from vector and tensor fields. In the simplest case, suppose that μ(φ2, φ3) is a scalar
field. Thenμ is also a spin-weighted field with spin-weight s = 0. Given a vector field
v

A
(φ2, φ3), we define

V = q
A
v

A
(386)

to be a field with spin-weight s = 1. Since V is a complex quantity, it contains two
independent fields and thus uniquely represents the two components of v

A
. We can also

define the quantity V̄ = q̄
A
v

A
with spin-weight s = −1, but of course it is not inde-

pendent of V . From a second-rank tensor t
AB

we can construct two independent fields

T = q
A

q
B

t
AB
, τ = q

A
q̄

B
t

AB
, (387)

with spin-weights s = 2 and s = 0 respectively. Together T and τ have 4 independent
fields to represent the 4 components of t

AB
. In general, given a tensor field wA···D , the

quantity
W = w

A···BC ···D q
A · · · q

B
q̄

C · · · q̄
D
, (388)

with m factors q and n factors q̄ is defined to be a quantity with spin-weight s = m−n.
Spin-weighted quantities may also be defined in terms of their transformation prop-

erties. However, here, we use the definition above and later derive the transformation
rule Eq. (398).

Differentiation and the ð operator

We would now like to define derivative operators ð and ð̄ that act on spin-weighted
fields, and that are consistent with covariant differentiation. This means that if W is
defined as in Eq. (388), then we would like

ðW = ∇
E
w

A···BC ···D q
A · · · q

B
q̄

C · · · q̄
D

q
E
, ð̄W = ∇

E
w

A···BC ···D · · · q
B

q̄
C · · · q̄

D
q̄

E
.

(389)
We see immediately that, if W has spin-weight s, then ðW has spin-weight s + 1 and
ð̄W has spin-weight s − 1. We achieve the desired effect by the definition

ðW = q
A
∂

A
W + sϒW, ð̄W = q̄

A
∂

A
W − sϒ̄W (390)

where

ϒ = −1

2
q

A
q̄

B ∇
A

qB . (391)
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(Normally, the quantity denoted here by ϒ is given the notation Γ ; but we use the
notation ϒ because Γ is used to represent the extraction worldtube). We demonstrate
the above for a spin-weight 1 field V = q

A
v

A
. Starting from the definition Eq. (389)

and the ansatz Eq. (390) with ϒ to be determined, we obtain

q
A
∂

A
(q

B
v

B
)+ϒq

C
v

C
= q

A
q

B
∂

B
v

A
− q

A
q

B
v

C
Γ

C

AB
, (392)

and thus
v

C

(
q

C
ϒ + q

A
(
∂

A
q

C + q
B
Γ

C

AB

))
= 0 (393)

after renaming some dummy indices. This must be true for all v
C

, and the bracketed
term is just a covariant deriavtive, so we have

q
C
ϒ + q

A ∇
A

q
C = 0. (394)

We lower the free superscript C and then contract with q̄
C to obtain the desired result.

It should be noted that, in general, ð and ð̄ do not commute. The commutator is

(ð̄ð − ðð̄)W = 2sW, (395)

so that the operators commute only in the case of a quantity with spin-weight s = 0.

Coordinate transformation of spin-weighted quantities: Rotation factors exp(iγ )

Spin-weighted quantities are defined in a way that they have no free tensorial indices so
it would appear that they are scalars, but this is misleading because different dyads are
used in the different coordinate systems. Suppose that we have two coordinate systems
S(q) and S(p) with natural dyads q and p respectively. Each dyad has components in
each of the coordinate systems, and so we define q

A

(q), q
A

(p) to mean the components

of q in S(q), S(p) respectively; and similarly for p
A

(q) and p
A

(p). Assuming that S(q) and
S(p) have the same parity, then their dyads are related by a rotation and, as discussed
just after Eq. (384),

p
A

(p) = exp(iγ )q A

(p). (396)

Suppose that v is a vector and that V(q), V(p) are the corresponding spin-weighted
quantities with respect to the dyads q, p respectively. Thus

V(p) = p
A

(p)v(p)A = exp(iγ )q A

(p)v(p)A = exp(iγ )q A

(q)v(q)A = exp(iγ )V(q).

(397)

Generalizing to the case where V is defined with m factors q A and m − s factors q̄ A

so that the spin-weight is s, we find

V(p) = V(q) exp(imγ ) exp(−i(m − s)γ )

= V(q) exp(isγ ). (398)
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Specific coordinate systems

It is very convenient to define coordinate systems on the unit sphere in terms of a coordi-
nate transformation from a Cartesian system. The Cartesian coordinates are denoted by
xa
[C] = (x, y, z), and the spherical coordinates by xa = (r, φ2, φ3). We use computer

algebra to construct the Jacobian of the transformation bewteen spherical and Cartesian
coordinates, and then to find the components of the dyad with respect to the Cartesian
system. We use the notation Qi to denote the components of a dyad with respect to
Cartesian coordinates. The computer algebra also evaluates the quantityϒ used in the
definition of the ð operator Eq. (391), see section “Computer algebra” in “Appendix 3”.

Spherical polar coordinates

We use coordinates (r, θ, φ) for standard spherical polar coordinates. Only one coor-
dinate patch is required, but the coordinate system is singular at the poles θ = 0 and
θ = π . The relation to Cartesian coordinates is

x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ (399)

and the inverse transformation is

r =
√

x2 + y2 + z2, θ = arccos

(
z√

x2 + y2 + z2

)
, φ = arctan

( y

x

)
.

(400)
Transforming the Cartesian metric to (r, θ, φ) coordinates, we find, as is well known,

ds2 = dr2 + r2(dθ2 + sin2 θdφ2), (401)

which is normally represented by the dyad

q
A =

(
1,

i

sin θ

)
, or q

A
= (1, i sin θ). (402)

The components of the dyad with respect to the Cartesian coordinates are

Qi = (cos θ cosφ − i sin φ, cos θ sin φ + i cosφ,− sin θ) , (403)

and the quantity ϒ is
ϒ = − cot θ. (404)

Stereographic coordinates

In stereographic coordinates, the sphere is described by means of two patches, called
North and South, with local coordinates xa

[N ] = (r, q, p) and xa
[S] = (r, q, p) defined

on each patch. Where it is necessary to distinguish between (q, p) on the North and
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Fig. 14 Illustration of stereographic coordinates. Consider a unit sphere with centre at the origin of Cartesian
(x, y, z) coordinates. Construct a straight line from the north pole N of the sphere (at x = y = 0, z = 1)
to a point P on the sphere, and let the line meet the plane z = 0 at X . Let the Cartesian coordinates of X

be (x, y, z) = (q[S] , p[S] , 0), then the southern patch stereographic coordinates of P are (q[S] , p[S] ). The
northern patch stereographic coordinates are constructed in a similar way, with the straight line in this case
starting from the south pole

South patches, we will use the suffix [N ] or [S] , but otherwise the suffix will be omitted.
The relation to Cartesian coordinates is (Fig. 14)

North: x = 2qr

1 + q2 + p2
, y = 2pr

1 + q2 + p2
, z = r(1 − q2 − p2)

1 + q2 + p2
,

South: x = 2qr

1 + q2 + p2
, y= −2pr

1 + q2 + p2
, z=−r(1 − q2 − p2)

1 + q2 + p2
. (405)

The inverse transformation is

North: r =
√

x2 + y2 + z2, q = x√
x2 + y2 + z2 + z

, p = y√
x2 + y2 + z2 + z

,

South: r =
√

x2 + y2 + z2, q = x√
x2 + y2 + z2 − z

, p = − y√
x2 + y2 + z2 − z

.

(406)

It is then straightforward to construct the Jacobian and to transform the Cartesian
metric into the metric in (r, q, p) coordinates. We find, on both patches,

ds2 = dr2 + 4r2

(1 + q2 + p2)2

(
dq2 + dp2

)
, (407)

which is normally represented by the dyad

q
A = 1 + q2 + p2

2
(1, i), or q

A
= 2

1 + q2 + p2
(1, i). (408)

123



2 Page 100 of 117 Living Rev Relativ (2016) 19:2

The relationship between (r[N ] , q[N ] , p[N ]) and (r[S], q[S] , p[S]) is found by going via
the Cartesian coordinates. We apply Eq. (405) to find values for (x, y, z), and then
apply Eq. (406) to find the corresponding values for (r[S], q[S] , p[S]). The result is

r[S] = r[N ] , q[S] =
q[N ]

q2
[N ] + p2

[N ]
, p[S] = −

p[N ]

q2
[N ] + p2

[N ]
, (409)

which may be expressed more compactly and informatively as

q[S] + i p[S] =
1

q[N ] + i p[N ]
. (410)

The components of the dyads with respect to the Cartesian coordinates are

Qi
[N ] =

(
1 − q2 + p2 − 2iqp

1 + q2 + p2
,

i + iq2 − i p2 − 2qp

1 + q2 + p2
, − 2(q + i p)

1 + q2 + p2

)
, (411)

Qi
[S] =

(
1 − q2 + p2 − 2iqp

1 + q2 + p2
, − i + iq2 − i p2 − 2qp

1 + q2 + p2

2(q + i p)

1 + q2 + p2

)
. (412)

The rotation factor between the dyads on the North and South patches, as defined in
Eq. (396), is

exp(iγ ) =
Qi

[S] Q̄
j
[N ]δi j

2
= −

q[N ] − i p[N ]

q[N ] + i p[N ]
, (413)

where Eq (410) has been used. The quantity ϒ is

ϒ = q + i p. (414)

The spin-weighted spherical harmonics sY ℓ m

The standard, i.e., spin-weight zero, spherical harmonics are given in Cartesian coor-
dinates by

Y ℓ 0 =
√

2ℓ+ 1

4π
2−ℓ

⌊ℓ/2⌋∑

k=0

(−1)k
(2ℓ− 2k)!

k!(ℓ− k)!(ℓ− 2k)!
( z

r

)ℓ−2k

, (415)

and

(
Y ℓm

Y ℓ−m

)
=

(
(−1)m(Am + i Bm)

(Am − i Bm)

)√
2ℓ+ 1

4π
2−ℓ

√
(ℓ− m)!
(ℓ+ m)!

×
⌊(ℓ−m)/2⌋∑

k=0

(−1)k(2ℓ− 2k)!
k!(ℓ− k)!(ℓ− 2k − m)!

zℓ−2k−m

rℓ−2k
, (416)
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where in the above formula m > 0, and where

Am(x, y) =
m∑

k=0

m!
k!(m − k)! xk ym−k cos

(
π(m − k)

2

)
,

Bm(x, y) =
m∑

k=0

m!
k!(m − k)! xk ym−k sin

(
π(m − k)

2

)
. (417)

The symbol ⌊ ⌋ means truncation to an integer; for example, ⌊4/2⌋ = ⌊5/2⌋ = 2.
The (spin-weight zero) spherical harmonics in angular coordinates are then obtained
by simply substituting the appropriate coordinate transformation xa

[C] = xa
[C](x

a
[S]) into

the above formulas for Y ℓm , and it will be found that r cancels out of the result,
leaving a formula in terms only of the angular coordinates. The constant factors in the
definitions are chosen so that the Y ℓm satisfy the orthonormality condition

∫

S2
Y ℓm Ȳ ℓ

′m′
dΩ = δℓℓ

′
δmm′

, (418)

where integration is over the unit sphere, and where dΩ =
√

det(q
AB
)dφ2dφ3—

e.g., in spherical polars dΩ = sin θdθdφ.
The spin-weighted spherical harmonics are found by repeated application of the

operators ð or ð̄:

sY ℓm =
√
(ℓ− s)!
(ℓ+ s)!ð

sY ℓm, s > 0,

sY ℓm = (−1)s

√
(ℓ+ s)!
(ℓ− s)! ð̄

−sY ℓm, s < 0. (419)

The sY ℓm are defined only in the cases that |s| ≤ ℓ and |m| ≤ ℓ, and in the spin-
weight zero case it is usual to omit the s , i.e., 0Y ℓm = Y ℓm . The sY ℓm satisfy the
same orthonormality condition as the Y ℓm in Eq. (418) and this is the origin of the
square root factors in Eq. (419). However orthonormality does not fix the phase, and
this raises issues that are pursued in Sect. 1. The sY ℓm constitute a large number of
different cases, and are obtained from computer algebra scripts, see section “Computer
algebra” in Appendix 3.

The Y ℓm satisfy the property

ðð̄Y ℓm = ð̄ðY ℓm = −ΛY ℓm, where Λ = ℓ(ℓ+ 1), (420)

so that ðð̄ is the Laplacian operator on the sphere. Using Eqs. (420) and (395), it
follows that

ð
2
ð̄

2Y ℓm = ð̄
2
ð

2Y ℓm = (Λ2 − 2Λ)Y ℓm . (421)
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Spin-weighted representation of deviations from spherical symmetry

As already discussed, any quantity that can be regarded as a vector or tensor on the
2-sphere can be given a spin-weighted representation, and this includes quantities
that describe the angular part of the metric in a curved spacetime. Suppose that a
general metric has angular part ds2 = r2h

AB
dx

A
dx

B (Bishop et al. 1996b); for the
applications considered here we restrict attention to the case that r is a surface area
coordinate (see Gómez et al. 1997 for the general case), so that det(h

AB
) = det(q

AB
)

for some unit sphere metric q
AB

. Then we define

J = 1

2
q

A
q

B
h

AB
= −1

2
q

A
q

B
h

AB
, and K = 1

2
q

A
q̄

B
h

AB
= 1

2
q

A
q̄

B
h

AB
,

(422)
with the spherically symmetric case characterized by J = 0. From the determinant
condition, it follows that

K 2 = 1 + J J̄ . (423)

The metric can be written interms of J and K . We find in spherical polars

h
AB

=

⎛
⎜⎜⎜⎝

1

2
(J + J̄ + 2K )

i

2
( J̄ − J ) sin θ

i

2
( J̄ − J ) sin θ

1

2
(2K − J − J̄ ) sin2 θ

⎞
⎟⎟⎟⎠ ,

h
AB =

⎛
⎜⎜⎜⎝

1

2
(2K − J − J̄ )

i

2 sin θ
(J − J̄ )

i

2 sin θ
(J − J̄ )

1

2 sin2 θ
(2K + J + J̄ )

⎞
⎟⎟⎟⎠ , (424)

and in stereographic coordinates (Bishop et al. 1997b)

h
AB

= 2

(1 + q2 + p2)2

⎛
⎝

J + J̄ + 2K i( J̄ − J )

i( J̄ − J ) 2K − J − J̄

⎞
⎠ ,

h
AB = (1 + q2 + p2)2

8

⎛
⎝

2K − J − J̄ i(J − J̄ )

i(J − J̄ ) 2K + J + J̄

⎞
⎠ . (425)

The quantity J is simply related to the strain in planar coordinates, J = h+ + ih×.
To see this, suppose that a plane with Cartesian-like coordinates (x, y) is tangent
to the unit sphere at a given point (θ0, φ0) (The argument is simpler when using
specific, rather than general, angular coordinates). In a neighbourhood of (θ0, φ0),
the coordinate transformation is x = θ − θ0, y = (φ − φ0)/ sin θ0. Now, h+, h×
are weak field quantities, and in this case |J | ≪ 1. Further, J + J̄ = 2ℜ(J ) and
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i( J̄ − J ) = 2ℑ(J ), and thus Eq. (424) may be simplified to

h
AB

=

⎛
⎝

1 +ℜJ ℑ(J ) sin θ

ℑ(J ) sin θ 1 − ℜ(J ) sin2 θ

⎞
⎠ . (426)

Then transforming from (θ, φ) to (x, y) coordinates, and in a neighbourhood of
(x, y) = (0, 0), gives

h
AB

=

⎛
⎝

1 + ℜJ ℑ(J )

ℑ(J ) 1 −ℜ(J )

⎞
⎠ , (427)

which is the expected form in the TT gauge.

Zℓ m, the “real” Y ℓ m

Since metric quantities are real, a decomposition in terms of the Y ℓm may introduce
mode mixing between±m modes. This can be avoided by making use of the formalism
described in Zlochower et al. (2003) and Bishop (2005), and using basis functions
which, in the spin-weight 0 case, are purely real; following Bishop (2005), these are
denoted as s Zℓm .

s Zℓm = 1√
2

[
sY ℓm + (−1)m sY ℓ−m

]
for m > 0,

s Zℓm = i√
2

[
(−1)m sY ℓm − sY ℓ−m

]
for m < 0,

s Zℓ 0 = sY ℓ 0. (428)

The s Zℓm obey orthonormal properties similar to those of the Y ℓm in Eq. (418), and
have a relationship with ðs Zℓm similar to that for the sY ℓm in Eq. (419).

Vector and tensor spherical harmonics

Particularly within the context of gauge invariant perturbation theory, it is common
practice to use vector and tensor spherical harmonics rather than spin-weighted spheri-
cal harmonics (Nagar and Rezzolla 2006). The vector spherical harmonics are defined,
in the even parity case

Eℓm
A

= ∇
A
Y ℓm, (429)

and in the odd parity case
Sℓm

C
= ǫ

C D
q

DE ∇
E

Y ℓm, (430)

where ǫ
C D

is the Levi-Civita completely antisymmetric tensor on the 2-sphere; for
example, in spherical polars ǫθθ = ǫφφ = 0, ǫθφ = −ǫφθ = sin θ . The tensor
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spherical harmonics are defined, in the even parity case

Zℓm
C D

= ∇
C
∇

D
Y ℓm + 1

2
ℓ(ℓ+ 1)q

C D
Y ℓm, (431)

and in the odd parity case

Sℓm
C D

= 1

2

(
∇

D
Sℓm

C
+ ∇

C
Sℓm

D

)
. (432)

The vector and tensor spherical harmonics are related to the ð operator and thereby
to the spin-weighted spherical harmonics

q
A

Eℓm
A

= ðY ℓm =
√
(ℓ+ 1)ℓ 1Y ℓm, (433)

q
C

Sℓm
C

= −iðY ℓm = −i
√
ℓ(ℓ+ 1) 1Y ℓm, (434)

q
C

q
D

Zℓm
C D

= ð
2Y ℓm =

√
(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1) 2Y ℓm, (435)

Sℓm
C D

q
C

q
D = −ið2Y ℓm = −i

√
(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1) 2Y ℓm . (436)

Regge–Wheeler harmonics

We report below the explicit expressions of the Regge–Wheeler harmonics, (ê1)i j , . . . ,

( f̂4)i j , which have been introduced in Sect. 5.6.2 when discussing the numerical
implementation of the Cauchy-perturbative method. In particular, the tensor spherical
harmonics (ê1)i j and (ê2)i j in have the rather lengthy but otherwise straightforward
expressions

(
ê1
)

i j
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1

sin θ
∂φYℓm sin θ∂θYℓm

− 1

sin θ
∂φYℓm 0 0

sin θ∂θYℓm 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (437)

and

(
ê2
)

i j
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0
1

sin θ

(
∂2
θφ − cot θ∂φ

)
Yℓm

1

2

(
1

sin2 θ
∂2
φ − cos θ∂θ − sin θ∂2

θ

)
Yℓm

0
1

2

(
1

sin2 θ
∂2
φ − cos θ∂θ − sin θ∂2

θ

)
Yℓm −

(
sin θ∂2

θφ − cos θ∂φ
)

Yℓm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(438)
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Similarly, the tensor spherical harmonics ( f̂1)i j − ( f̂4)i j which enter in the decom-
position of even-parity perturbations have the form

(
f̂1

)
i j

=

⎛
⎜⎜⎜⎜⎝

0 ∂θYℓm ∂φYℓm

∂θYℓm 0 0

∂φYℓm 0 0

⎞
⎟⎟⎟⎟⎠
, (439)

(
f̂2

)
i j

=

⎛
⎜⎜⎜⎜⎝

Yℓm 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎠
, (440)

(
f̂3

)
i j

=

⎛
⎜⎜⎜⎜⎝

0 0 0

0 Yℓm 0

0 0 sin2 θYℓm

⎞
⎟⎟⎟⎟⎠
, (441)

and

(
f̂4

)
i j

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 ∂2
θ Yℓm

(
∂2
θφ − cot θ∂φ

)
Yℓm

0
(
∂2
θφ − cot θ∂φ

)
Yℓm

(
∂2
φ − sin θ cos θ∂θ

)
Yℓm

⎞
⎟⎟⎟⎟⎟⎟⎠
. (442)

Issues of convention in the definitions of spin-weighted quantities

The reader needs to be aware that different authors use different conventions in the
definitions of quantities discussed in this section, and that it is therefore inadvisable to
use expressions from different sources without first carefully checking the conventions
used.

Fortunately, the definitions of the Y ℓm do seem to be standard throughout the
mathematical-physics community. However, there are differences in the definition of
the complex dyad, here denoted by q

A and normalized so that q
A

q̄
A

= 2; much
other work uses m

A with normalization m
A

m̄
A
= 1 so that q

A =
√

2m
A . Clearly the

dyad definition—q
A or m

A —affects the definition of spin-weighted quantities. The
ð operator is defined so that for a spin-weight 0 scalar V , ðð̄V = ∇2V where ∇2 is
the Laplacian operator on the unit sphere, and the various definitions of ð all have the
same magnitude. However, there can be a variation in sign. For example, the definition
used in Alcubierre (2008) is −1 times that used here. This implies that the definition
of sY ℓm is −1 times that used here for any odd s, positive or negative. However, for
even s definitions of sY ℓm are consistent.

123



2 Page 106 of 117 Living Rev Relativ (2016) 19:2

The definitions of the even vector and tensor spherical harmonics seem to be con-
sistent, although the notation can vary. However, there are sign differences in the
definition of the odd vector and tensor spherical harmonics, for example Alcubierre
(2008) and Baumgarte and Shapiro (2010).

Appendix 3: Computer codes and scripts

Computer algebra

This appendix describes the computer algebra (Maple) files used to derive a number
of equations in the main text. The files are available in the online version at doi:10.
1007/s41114-016-0001-9. The maple script files are named name.map with output
in name.out. In some cases the main script files call auxilliary scripts as detailed
below.

The files gamma.map, gamma.out, R.map and contraint.map are used
to derive the vacuum nonlinear Einstein equations for the Bondi–Sachs metric in
Sect. 6.1. The linearized Einstein equations were given as Eqs. (253) to (258). The
file gamma.map calculates the Christoffel symbols, and then the script R.map reads
gamma.out and calculates the hypersurface and evolution equations, confirming
the formulas given in Bishop et al. (1997b). The files J.map, k.map, U.map and
W.map are auxilliary scripts used by R.map. The script constraint.map uses
gamma.out and k.map, and evaluates R00, R01 and q A R0A. The asymptotic Ein-
stein Eqs. (263) to (266), as well as the condition ∂ρ̃W̃c = 0 in Eq. (269), are derived
in the script asympt.map, and using the auxilliary files gamma-asympt.map,
gamma-asympt.out.

The script C_trans.map uses compactified.map and derives Eqs. (280) to
(285) and (290). The script J_om_Jrho_delta.map uses compactified.map
and derives Eqs. (295), (301) and (336). The script JK.map also uses
compactified.map and derives Eqs. (287) and (289), and checks that |ν| = 1 in
Eq. (294) and that m̃α

0 m̃α = 0. The script NewsBondi.map usesconformal.map
and evaluates the news N in the Bondi gauge, confirming that Eq. (313) reduces
to ∂ũ∂ρ̃ J̃/2 independently of whether ˆ̃mα

(0) or ˆ̃mα is used in Eq. (313). The
script checkFA_FB_GamAB1_0.map usesgamma-asympt.map and shows that
F

A
F

B
Γ̂ 1

AB (0)
= 0, as discussed just after Eq. (321). The script NewsGen.map uses

conformal.map for the further evaluation of Eq. (321) to obtain an expression for
N in the general case. The script psi4Bondi.map uses weyl_asympt.map

to evaluate Eq. (322) confirming that, in the Bondi gauge, ψ0
4 = ∂2

ũ
∂ρ̃

¯̃
J , inde-

pendently of whether ˆ̃mα
(0) or ˆ̃mα is used. The script psi4Gen.map again uses

weyl_asympt.map to reduce, in the general gauge, Eq. (323) to computational ð

form. In the linearized case, NewsLin.map uses news.map and conformal.map
to derive Eq. (330) for N , and psi4_lin.map uses weyl_asympt.map to derive
Eq. (333) for ψ0

4 .
The files polars.map and stereo.map are used in Appendix 2. They specify

the coordinate transformation between spherical and Cartesian coordinates, as well as
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the metric, dyad andϒ (used in the evaluation of the operator ð) in the spherical coordi-
nates. Each file passes these quantities to the procedure “C2P” in the file procs.map,
which checks that all the relations given in Eqs. (384) and (391) are satisfied; this pro-
cedure also calculates and outputs the dyad transformed into Cartesian coordinates,
i.e., Qa . The procedure “sYlm” in procs.map requires as input the various quan-
tities defined in the coordinate-specific files, together with values for s, ℓ and m; it
then calculates sY ℓm in the appropriate coordinate patch using the equations given in
Appendix 2. The file sYlm.map reads each of the driver files in turn, and for each
coordinate patch calculates all the sY ℓm for ℓ ≤ ℓmax, |s| ≤ min(ℓmax, smax), with
default values ℓmax = 3, smax = 2. The output is written to polars-sYlm.out,
stereoNorth-sYlm.out and stereoSouth-sYlm.out.

Numerical codes

The Einstein toolkit (http://einsteintoolkit.org) contains a wide range of numerical
relativity codes using the Cactus code framework (http://cactuscode.org). In par-
ticular, it contains the following thorns relevant to gravitational-wave extraction:
“Extract” which implements the Cauchy-perturbative method, “WeylScal4”
which implements ψ4 extraction. The process of characteristic extraction is started
in “NullSHRExtract” which constructs the worldtube boundary data, and then
the various thorns listed under “PITTNullCode” are used for the characteristic
evolution and the determination of gravitational-wave descriptors at J +.
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