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Heart rate variability (HRV) is a useful clinical tool for autonomic function assessment and cardiovascular diseases diagnosis. It is
traditionally calculated from a dedicated medical electrocardiograph (ECG). In this paper, we demonstrate that HRV can also be
extracted from photoplethysmograms (PPG) obtained by the camera of a smartphone. Sixteen HRV parameters, including time-
domain, frequency-domain, and nonlinear parameters, were calculated fromPPG captured by a smartphone for 30 healthy subjects
and were compared with those derived from ECG. �e statistical results showed that 14 parameters (AVNN, SDNN, CV, RMSSD,
SDSD, TP, VLF, LF, HF, LF/HF, nLF, nHF, SD1, and SD2) from PPG were highly correlated (� > 0.7, � < 0.001) with those from
ECG, and 7 parameters (AVNN, TP, VLF, LF, HF, nLF, and nHF) from PPG were in good agreement with those from ECG within
the acceptable limits. In addition, �ve di�erent algorithms to detect the characteristic points of PPG wave were also investigated:
peak point (PP), valley point (VP), maximum �rst derivative (M1D), maximum second derivative (M2D), and tangent intersection
(TI). �e results showed that M2D and TI algorithms had the best performance. �ese results suggest that the smartphone might
be used for HRV measurement.

1. Introduction

�e heart rate (HR) of human is not constant but varies
from one heartbeat to the next. Heart rate variability (HRV)
is the physiological phenomenon of tiny uctuations in the
time intervals between heartbeats. It reects the tenseness
and the balance of the sympathetic and the vagus nerve
activities and their e�ects on cardiovascular motion [1]. It is
a noninvasive method for assessing the autonomic functions
[1]. Numerous publications have validated that abnormal
changes of HRV are related to several cardiological and
noncardiological diseases likemyocardial infarction, diabetic
neuropathy, myocardial dysfunction, and tetraplegia [2].

�erefore, HRV is of signi�cant importance and is widely
used in clinical application.

HRV is traditionally determined by digital processing
of electrocardiograms (ECG). �e R-wave peaks of QRS
complexes in ECGs are detected by computer algorithms
and R-to-R intervals (RRI) are calculated. �en, HRV
parameters are computed using time-domain, frequency-
domain, and nonlinear methods [2]. However, the tradi-
tional measurement of ECG has several limitations: (1)
ECG instruments generally require three electrodes attached
to speci�c anatomical positions, which limit the subjects’
activities and make them uncomfortable; (2) the electrodes
may cause skin irritations for some special subjects with

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 516826, 11 pages
http://dx.doi.org/10.1155/2015/516826



2 Computational and Mathematical Methods in Medicine

allergies; (3) the ECG instruments are usually operated by
specially trained nurses in the hospital and are not suitable
for daily use at home.�erefore, new technologies have been
developed to measure HRV without ECG, such as photo-
plethysmography (PPG) [3–5], Finapres (continuous blood
pressure monitoring) [6, 7], impedance plethysmography
[8, 9], ballistocardiography [10], optical vibrocardiography
[11], a microwave sensor [12], or a webcam [13, 14]. In this
paper, we demonstrate that HRV can also be extracted from
a smartphone.

Mobile phones have already shown promising applica-
tions in healthcare service [15]. As the new generation smart-
phones are becoming more powerful and more popular and
with more built-in sensors, the smartphone-based healthcare
applications are being rapidly developed [16]. In recent years,
a new method was proposed to acquire PPG signals from the
built-in camera of a smartphone, in which one only needs to
press a �nger on the camera lens and capture a video record
with the built-in LED ash on [17]. �is method is based on
the principle that the intensity changes of video frames are
associated with the variations of light absorption of blood.
When the heart systoles and the capillaries in the �ngertip are
full of blood, more light is absorbed and the frame becomes
darker; likewise, when the heart diastoles and the capillaries
in the �ngertip are full of less blood, less light is absorbed
and the frame becomes brighter. PPG signals can thus be
obtained by calculating the intensity changes of the frames,
and then several physiological parameters such asHR [17–21],
respiratory rate [19], pulse volume [21], and oxygen saturation
[19] can be extracted from the PPG signals.With the addition
of amicrophone to detect the phonocardiogram signal, blood
pressure can also be estimated [22]. �is method is simple,
low-cost, and easy-to-use, with great potential to be used in
the healthcare service in the future.

However, to our best knowledge, the extraction of HRV
from the smartphone PPG signals has not been well investi-
gated, especially compared with ECG—the golden standard.
�erefore, we comprehensively studied the extraction ofHRV
from smartphone PPG signals and compared the results
with an ECG in order to assess the accuracy. Speci�cally,
we used �ve algorithms to detect the characteristic points
of the smartphone PPG signals: peak point (PP), valley
point (VP), maximum �rst derivative (M1D), maximum
second derivative (M2D), and tangent intersection (TI). �e
performances of these algorithms were also compared.

2. Methods

2.1. Data Acquisition. �e experiment was approved by the
Institutional Review Board of Shenzhen Institutes of Ad-
vanced Technology (registration number: SIAT-IRB-140215-
H0040). �irty subjects participated in the experiment (20
males and 10 females, age: 20–32 years, height: 150–183 cm,
and weight: 40–90 kg). All the subjects were healthy and
provided their informed consent. �ey were asked to refrain
from ca�eine, alcohol, cigarette, or strenuous exercise for 2
hours prior to the study.

In the experiment, all the subjects were instructed to lie
in the supine position on a mattress and place their right

index �nger on the camera lens of anHTC S510e smart phone
with the built-in LED ash turned on. A camera application
(APP) in the smart phone was used to record the video of
the �ngertip with a resolution of 320 × 240 pixels at an
un�xed sampling rate of 20–30 frames per second (fps). �e
sampling rate is un�xed due to theCPUprocessing load. ECG
electrodes in the standard con�guration were attached to the
subjects to measure the ECG signals with a Finometer MIDI
(Model II, Finapres Medical Systems B.V., �e Netherlands).
�e ECG signals were digitalized at 200Hz and automatically
stored in the computer by BeatScope Easy so�ware (Finapres
Medical Systems B.V., �e Netherlands). �e experiment
lasted at least 5 minutes for each subject and the subject was
asked to keep still during this period.

2.2. Smartphone PPG Processing. All the data were processed
o�ine. �e 3GP format videos recorded by the HTC S510e
smart phone were converted into AVI format using Pazera
Free 3GP to AVI Converter 1.3 (http://www.pazera-so�ware
.com/). All further analysis was performed on the AVI videos
in MatLab 7.0 (�e Mathworks Inc., USA).

First, an 80 × 80 pixel region in the center of the video
image was selected as the region of interesting (ROI). �en,
the average intensity of the red channel in the ROI for
each individual frame was calculated to generate a time-
series waveform (the raw PPG signal). �e red channel
was chosen because the intensity values of the green and
blue channels were o�en tending to zero and contained no
valuable information in most situations. As the smartphone
PPG worked in the reection mode, the generated waveform
should be inverted to “normal” mode for further processing
[23].

�e raw PPG signals were o�en corrupted by ran-
dom noise, baseline dri�ing, and baseline abrupt changes
(increase/decrease). Baseline abrupt changes were possibly
caused by sudden moves of the �nger or sudden changes of
the light illumination, or by other unknown reasons. �ey
could not be completely removed by general digital �lters as
they contained wide-band frequency components. We used
a statistics method to solve this problem. First, we calculated
the di�erence of the raw signal and then removed the outliers
out of the range mean ± 5 × standard deviation (SD) and
interpolated new values using cubic spline interpolation. At
last, we reconstructed the new PPG signal by summation,
the inverse of the di�erence. �e range mentioned above was
determined empirically, which meant that the probability of
the outliers was 5.7330 × 10−7 if the di�erence of the PPG was
normally distributed. It was the best range according to our
data and could be adjusted if required.

�e randomnoise and baseline dri�ingwere reduced by a
zero-phase Butterworth low-pass �lter with cuto� frequency
of 10Hz and a zero-phase Butterworth high-pass �lter with
cuto� frequency of 0.5Hz, respectively. Zero phase �lters
were implemented by �ltering the signal both forward and
backward to eliminate phase distortion.

�e PPG signals were then resampled to 800Hz with
cubic spline interpolation to increase the temporal resolution.
For each cardiac circle, �ve algorithms were used to obtain
the pulse-to-pulse interval (PPI) by detection of �ve di�erent
characteristic points, as illustrated in Figure 2.
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Figure 1: An example of outlier removal. (a) A raw smartphone photoplethysmogram with abrupt change. (b) �e di�erence of the signal
in panel (a). �e circle shows the location of the outlier. (c) �e outlier was removed and replaced with a new value using cubic spline
interpolation. (d) �e new smartphone photoplethysmogram without abrupt change.
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Figure 2: Illustration of �ve characteristic points including A, the peak point; B, the valley point; C, the maximum �rst derivative; D, the
maximum second derivative; and E, the tangent intersection.
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Table 1: Commonly used HRV parameters.

Parameter Description

Time-domain

AVNN Average of all NN intervals

CV Coe�cient of variation of NN intervals. �e ratio of the standard deviation to the mean.

SDNN Standard deviation of all NN intervals.

SDANN Standard deviation of the averages of NN intervals in all 5-minute segments of the entire recording.

RMSSD Root mean square of successive di�erences between adjacent NN intervals.

SDSD Standard deviation of successive di�erences between adjacent NN intervals.

NN50 Number of pairs of successive NN intervals that di�er by more than 50minutes.

pNN50 Proportion of NN50 divided by total number of NN intervals.

Frequency-domain (5 minutes)

TP Total power (≤0.4Hz)

VLF Very low frequency power (≤0.04Hz)

LF Low frequency power (0.04–0.15Hz)

HF High frequency power (0.15–0.4Hz)

LF/HF Ratio of LF to HF

nLF Normalized LF = LF/(TP − VLF)
nHF Normalized HF = HF/(TP − VLF)
Nonlinear Analysis

SD1 Standard deviation of short diagonal axis in Poincaré plot

SD2 Standard deviation of long diagonal axis in Poincaré plot

(i) Maximum First Derivative (M1D). It is the location of the
maximum value of the �rst derivative of the PPG signal [24].
�e derivative is calculated by a �ve-point central di�erence
equation (1).

(ii) Peak Point (PP). It is the location of the maximum
amplitude in the PPG signal following the M1D point [24].

(iii) Valley Point (VP). It is the location of the minimum
amplitude in the PPG signal preceding the M1D point [24].

(iv) Maximum Second Derivative (M2D). It is the location of
themaximumvalue of the secondderivative of the PPG signal
[25]. �e second derivative is calculated using a �ve-point
central di�erence equation (1) and a subsequent seven-point
central di�erence equation (2). Consider

� (�) = [−2� (� − 2) − � (� − 1) + � (� + 1) + 2� (� + 2)]10 (1)

� (�) = [−3� (� − 3) − 2� (� − 2) − � (� − 1) + � (� + 1) + 2� (� + 2) + 3� (� + 3)]28 , (2)

where �(�) is the input signal and �(�) is the output signal.
(v) Tangent Intersection (TI). It is the location of the intersec-
tion of the tangent line at the M1D point and the horizontal
line passing the valley point [25].�e tangent line is the �tted
line of �ve points centered at the M1D point.

2.3. ECG Processing. �e ECG signals were �rst passed
through a �nite impulse response (FIR) low-pass �lter with
cuto� frequency of 11Hz and then a FIR high-pass �lter with
cuto� frequency of 5Hz to reduce most of the noise and
interference [26]. �erea�er, they were resampled to 800Hz
with cubic spline interpolation to increase the temporal
resolution. R-wave peak detection was performed using Pan
and Tompkins’ algorithm [26] and RRIs were obtained as the
di�erence of successive R-wave peak locations. For both PPG

and ECG signals, missed beats and false beats were manually
identi�ed and adjusted. An example of the obtained RRI and
PPIs is shown in Figure 3.

2.4. HRV Parameters Calculation. Table 1 lists some com-
monly usedHRV parameters.�ese parameters o�en refer to
a professional term, NN intervals (“normal-to-normal inter-
vals”), which means that only regular heartbeats should be
considered [2]. �erefore, ectopic beats of the RRI/PPI series
were removed and replaced by cubic spline interpolation
before HRV parameters calculation.

(i) Time-Domain Parameters. Seven parameters were calcu-
lated from RRI and PPI series in time domain: AVNN, CV,
SDNN, RMSSD, SDSD, NN50, and pNN50, as described in
Table 1.
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Figure 3: Comparison of HRV derived from the smartphone and the electrocardiograph for one subject. (a) R-to-R intervals (RRI)
derived from the electrocardiogram. (b)–(f) Pulse-to-pulse intervals (PPI) derived from the smartphone photoplethysmogram, using the
characteristic points determined by (b) peak point, (c) valley point, (d) maximum �rst derivative, (e) maximum second derivative, and (f)
tangent intersection.

(ii) Frequency-Domain Parameters. �e RRI and PPI series
were evenly resampled at 4Hz using cubic spline interpo-
lation, and the DC component was removed by subtracting
the mean of the series. �en, a 16th order autoregressive
(AR) model was employed to estimate the power spectral
density. Seven parameters were calculated: TP, VLF, LF, HF,
LF/HF, nLF, and nHF, as described in Table 1. �e ranges
of di�erent frequency bands were in accordance with the
standard de�nition [2].

(iii) Poincaré Parameters.�ePoincaré plot is one of the most
widely used methods for nonlinear HRV analysis. It is a plot
of each RRI/PPI against its previous one. Two parameters
were calculated from the Poincaré plot, SD1 and SD2, as
described in Table 1.

2.5. Statistics Analysis. HRV parameters derived from smart-
phone PPG were compared with the corresponding parame-
ters derived from ECG. �e Pearson correlation coe�cients
were calculated and the linear regression equations were
obtained. A � value < 0.05 was considered statistically
signi�cant.

�e agreement between the two devices (smartphone and
ECG) was assessed using Bland-Altman method [27]. �e
limit of agreement (LOA) was de�ned as bias ± 1.96 × SD
(3)–(5) [27] and a Bland-Altman ratio (BAR) was de�ned as
the ratio of half the range of limits of agreement to the mean
of the pairwise measurement means (6). Agreements were
ranked as good (BAR < 10%), moderate (10% ≤ BAR < 20%),
or insu�cient (BAR ≥ 20%) [28]. Acceptable limit (AL) of
agreement was de�ned as 20% of the mean of the pairwise
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Table 2: Pearson’s correlation coe�cients and linear regression equations between HRV parameters derived from the smartphone and the
electrocardiograph.

Parameter PP VP M1D M2D TI

AVNN (ms)
1.000 (P < 0.001)
y = 1.000x + 0.072

1.000 (P < 0.001)
y = 1.000x + 0.019

1.000 (P < 0.001)
y = 1.000x − 0.084 1.000 (P < 0.001)

y = 1.000x − 0.367 1.000 (P < 0.001)
y = 1.000x − 0.097

SDNN (ms)
0.722 (P = 0.000)
y = 0.912x + 33.708

0.902 (P = 0.000)
y = 0.865x + 26.556

0.933 (P = 0.000)
y = 0.891x + 19.641

0.859 (P = 0.000)
y = 0.785x + 35.635

0.916 (P = 0.000)
y = 0.875x + 20.304

CV (%)
0.703 (P < 0.001)
y = 0.756x + 4.519

0.881 (P < 0.001)
y = 0.893x + 2.675

0.920 (P < 0.001)
y = 0.918x + 1.934

0.826 (P < 0.001)
y = 0.827x + 3.561

0.900 (P < 0.001)
y = 0.903x + 2.008

RMSSD (ms)
0.596 (P = 0.001)
y = 1.034x + 66.019

0.713 (P < 0.001)
y = 0.801x + 57.427

0.780 (P < 0.001)
y = 0.811x + 44.095

0.629 (P < 0.001)
y = 0.677x + 74.746

0.731 (P < 0.001)
y = 0.796x + 43.870

SDSD (ms)
0.596 (P = 0.001)
y = 1.035x + 66.086

0.713 (P < 0.001)
y = 0.801x + 57.497

0.780 (P < 0.001)
y = 0.811x + 44.152

0.630 (P < 0.001)
y = 0.677x + 74.839

0.732 (P < 0.001)
y = 0.796x + 43.924

NN50
0.254 (P = 0.176)

y = 0.203x + 90.688
0.285 (P = 0.127)
y = 0.184x + 79.417

0.292 (P = 0.118)
y = 0.215x + 73.810

0.081 (P = 0.669)
y = 0.060x + 96.888

0.391 (P = 0.033)
y = 0.306x + 66.480

pNN50 (%)
0.415 (P = 0.022)
y = 0.313x + 27.188

0.508 (P = 0.004)
y = 0.287x + 23.540

0.513 (P = 0.004)
y = 0.309x + 21.844

0.513 (P = 0.004)
y = 0.309x + 21.844

0.513 (P = 0.004)
y = 0.309x + 21.844

TP (ms2)
1.000 (P < 0.001)
y = 1.002x + 20.325

0.999 (P < 0.001)
y = 1.001x + 12.614

1.000 (P < 0.001)
y = 1.009x + 6.481

1.000 (P < 0.001)
y = 0.998x + 4.521

1.000 (P < 0.001)
y = 1.006x + 6.888

VLF (ms2)
0.996 (P < 0.001)
y = 1.002x + 5.276

0.995 (P < 0.001)
y = 0.996x + 9.597

0.998 (P < 0.001)
y = 0.999x + 4.785

0.998 (P < 0.001)
y = 0.992x + 7.631

0.998 (P < 0.001)
y = 1.003x + 2.669

LF (ms2)
0.992 (P < 0.001)
y = 1.011x − 8.803 0.989 (P < 0.001)

y = 0.993x − 2.426 0.996 (P < 0.001)
y = 1.022x − 16.348 0.996 (P < 0.001)

y = 0.997x − 3.807 0.996 (P < 0.001)
y = 1.009x − 9.753

HF (ms2)
0.993 (P < 0.001)
y = 0.982x + 28.252

0.990 (P < 0.001)
y = 0.986x + 24.236

0.996 (P < 0.001)
y = 1.002x + 17.071

0.997 (P < 0.001)
y = 0.981x + 12.937

0.996 (P < 0.001)
y = 0.997x + 18.848

LF/HF
0.963 (P < 0.001)
y = 0.883x + 0.078

0.967 (P < 0.001)
y = 0.850x + 0.111

0.982 (P < 0.001)
y = 0.871x + 0.088

0.984 (P < 0.001)
y = 0.874x + 0.120

0.981 (P < 0.001)
y = 0.882x + 0.075

nLF (%)
0.968 (P < 0.001)
y = 0.919x + 2.896

0.967 (P < 0.001)
y = 0.812x + 8.941

0.982 (P < 0.001)
y = 0.873x + 5.539

0.988 (P < 0.001)
y = 0.920x + 3.754

0.981 (P < 0.001)
y = 0.872x + 5.673

nHF (%)
0.977 (P < 0.001)
y = 0.969x + 2.760

0.985 (P < 0.001)
y = 0.889x + 6.224

0.986 (P < 0.001)
y = 0.925x + 4.565

0.992 (P < 0.001)
y = 0.946x + 3.027

0.988 (P < 0.001)
y = 0.926x + 4.509

SD1 (ms)
0.596 (P = 0.001)
y = 1.035x + 46.728

0.713 (P < 0.001)
y = 0.801x + 40.656

0.780 (P < 0.001)
y = 0.811x + 31.219

0.630 (P < 0.001)
y = 0.677x + 52.918

0.732 (P < 0.001)
y = 0.796x + 31.058

SD2 (ms)
0.920 (P < 0.001)
y = 0.922x + 20.291

0.986 (P < 0.001)
y = 0.934x + 14.018

0.989 (P < 0.001)
y = 0.955x + 9.982

0.978 (P < 0.001)
y = 0.898x + 18.234

0.988 (P < 0.001)
y = 0.953x + 10.075

�: HRV parameters derived from an electrocardiograph and �: HRV parameters derived from a smartphone using �ve di�erent algorithms. PP: peak point;
VP: valley point; M1D: maximum �rst derivative; M2D: maximum second derivative, and TI: tangent intersection. A � value <0.05 was considered statistically
signi�cant. HRV parameters are explained in Table 1.

measurement means (7), as there are wide interindividual
variations for HRVmeasurement [2] and a limit greater than
20% is generally considered unacceptable. Consider

LOA = Bias ± 1.96SD (3)

Bias = 1�
�∑
�=1
(�� − ��) (4)

SD = √ 1� − 1
�∑
�=1
(�� − �� − Bias)2 (5)

BAR = 1.96SD(1/�)∑��=1 (1/2) (�� + ��) (6)

AL = ±1�
�∑
�=1

12 (�� + ��) × 20%, (7)

where � and � are the HRV parameters derived from the
ECG and the smartphone, respectively, and � is the number
of subjects.

3. Results

3.1. Agreement Analysis. Table 2 shows the Pearson corre-
lation coe�cients and linear regression equations between
HRV parameters derived from the smartphone and the ECG.
It was found that the correlation coe�cients were >0.6 for
all parameters except NN50 and pNN50. For time-domain
parameters, the correlation coe�cients of AVNN, CV, and
SDNN were higher than those of RMSSD and SDSD. For
frequency-domain parameters, all parameters showed strong
correlations (� > 0.9, � < 0.001). For nonlinear parameters,
SD2 exhibited higher correlation (� > 0.9, � < 0.001) than
SD1 (� > 0.5, � > 0.001). Nevertheless, a good correlation
does not mean a good agreement as either adding a constant
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Table 3: Bland-Altman analysis of HRV parameters derived from the smartphone and the electrocardiograph.

Parameter PP VP M1D M2D TI

AVNN (ms) −0.05 ± 0.68∗
BAR = 0.07%

−0.12 ± 0.54∗
BAR = 0.06%

−0.06 ± 0.55∗
BAR = 0.06%

−0.05 ± 0.55∗
BAR = 0.04%

−0.09 ± 0.51∗
BAR = 0.05%

SDNN (ms) 28.39 ± 31.26
BAR = 41.85%

18.40 ± 15.48
BAR = 22.21%

13.03 ± 12.85
BAR = 19.17%

22.65 ± 12.85
BAR = 25.51%

12.76 ± 14.37
BAR = 21.49%

CV (%) 2.95 ± 2.96
BAR = 37.53%

1.99 ± 1.81
BAR = 24.47%

1.41 ± 1.48
BAR = 20.79%

2.45 ± 1.48
BAR = 28.48%

1.39 ± 1.66
BAR = 23.32%

RMSSD (ms) 67.84 ± 61.35
BAR = 70.14%

46.77 ± 35.77
BAR = 46.50%

33.96 ± 29.77
BAR = 42.22%

57.44 ± 29.77
BAR = 47.93%

32.95 ± 33.85
BAR = 48.35%

SDSD (ms) 67.95 ± 61.47
BAR = 70.17%

46.84 ± 35.83
BAR = 46.50%

34.01 ± 29.82
BAR = 42.21%

57.53 ± 29.82
BAR = 47.92%

33.00 ± 33.91
BAR = 48.35%

NN50 57.57 ± 57.65
BAR = 81.98%

45.53 ± 53.24
BAR = 82.80%

41.20 ± 54.79
BAR = 88.18%

57.87 ± 54.79
BAR = 88.22%

37.67 ± 52.02
BAR = 86.17%

pNN50 (%) 17.88 ± 17.79
BAR = 79.07%

13.87 ± 15.82
BAR = 77.17%

12.47 ± 15.82
BAR = 79.91%

12.47 ± 15.82
BAR = 79.91%

12.47 ± 15.82
BAR = 79.91%

TP (ms2) 23.82 ± 63.56
BAR = 3.82%

14.55 ± 75.59
BAR = 4.56%

20.67 ± 56.93∗
BAR = 3.42%

0.52 ± 56.93∗
BAR = 2.55%

17.10 ± 53.88∗
BAR = 3.24%

VLF (ms2) 6.30 ± 81.19
BAR = 18.96%

8.08 ± 93.97
BAR = 21.90%

4.25 ± 67.45∗
BAR = 15.79%

4.36 ± 67.45∗
BAR = 14.66%

4.10 ± 67.97∗
BAR = 15.91%

LF (ms2) −1.22 ± 113.36
BAR = 16.83%

−7.05 ± 128.70
BAR = 19.19%

−1.77 ± 81.75∗
BAR = 12.14%

−5.67 ± 81.75∗
BAR = 11.89%

−3.39 ± 78.84∗
BAR = 11.73%

HF (ms2) 18.69 ± 75.18∗
BAR = 13.82%

16.59 ± 88.85∗
BAR = 16.37%

17.98 ± 55.56∗
BAR = 10.22%

2.71 ± 55.56∗
BAR = 9.69%

17.12 ± 60.00∗
BAR = 11.05%

LF/HF −0.09 ± 0.34
BAR = 24.89%

−0.10 ± 0.33
BAR = 24.55%

−0.09 ± 0.26
BAR = 19.30%

−0.06 ± 0.26
BAR = 18.35%

−0.09 ± 0.26
BAR = 19.13%

nLF (%) −1.50 ± 5.75∗
BAR = 10.72%

−1.30 ± 6.56∗
BAR = 12.19%

−1.36 ± 4.89∗
BAR = 9.09%

−0.60 ± 4.89∗
BAR = 6.98%

−1.28 ± 4.93∗
BAR = 9.16%

nHF (%) 1.37 ± 5.68∗
BAR = 12.55%

1.25 ± 5.10∗
BAR = 11.28%

1.23 ± 4.53∗
BAR = 10.01%

0.62 ± 4.53∗
BAR = 7.58%

1.20 ± 4.28∗
BAR = 9.46%

SD1 (ms) 48.05 ± 43.47
BAR = 70.17%

33.12 ± 25.33
BAR = 46.50%

24.05 ± 21.08
BAR = 42.21%

40.68 ± 21.08
BAR = 47.92%

23.33 ± 23.97
BAR = 48.35%

SD2 (ms) 14.35 ± 17.58
BAR = 21.12%

8.98 ± 7.49
BAR = 9.30%

6.54 ± 6.51∗
BAR = 8.21%

10.50 ± 6.51
BAR = 11.79%

6.47 ± 6.74∗
BAR = 8.50%

Data are presented as bias ± 1.96 standard deviation (SD). ∗Bias ± 1.96 SD within the acceptable limits. BAR: Bland-Altman ratio, PP: peak point, VP: valley
point, M1D: maximum �rst derivative, M2D: maximum second derivative, and TI: tangent intersection. HRV parameters are explained in Table 1.

or multiplying a factor will still yield a good correlation.
A good method for assessing agreement is Bland-Altman
analysis.

Table 3 shows the Bland-Altman analysis of HRV param-
eters derived from the smartphone and the ECG. For the sake
of simplicity, we speak of good/moderate agreement if three
of the �ve algorithms were in good/moderate agreement.
It was found that all the time-domain parameters showed
insu�cient agreements (BAR ≥ 20%), but the AVNN showed
excellent agreement (BAR< 1%), indicating that smartphone-
derived HR can be a surrogate of ECG-derived HR. �is
result was in line with Gregoski et al.’s [20] and Matsumura

and Yamakoshi’s [21]. It was also found that all the frequency-

domain parameters were in moderate agreement (BAR <
20%) except for TP and nLF which were in good agreement
(BAR < 10%). TP, VLF, HF, and nHFwere overestimated (bias

> 0), while LF, LF/HF, and nLF were underestimated (bias< 0), implying that the smartphone-derived HRV contains
more noise, which can be observed in detail in Figure 1. For
nonlinear parameters, SD2 showed good agreement (BAR <
10%) and SD1 showed insu�cient agreement (BAR ≥ 20%).

As shown in Table 3, a total number of 7 parameters
(AVNN, TP, VLF, LF, HF, nLF, and nHF) were within the
acceptable limits. Figure 4 shows the Bland-Altman plots of
di�erent frequency components of HRV which are com-
monly used for assessing the autonomic functions. It was
found that the limits of agreement for LF, HF, nLF, and
nHF were all within their corresponding acceptable limits,
meaning that the discrepancies between the smartphone PPG
and the ECG for LF, HF, nLF, and nHFwere not considerable.
It was also found that the lower limit of agreement for LF/HF
is out of the range of acceptable limits.
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Figure 4: Bland-Altman plots of HRV parameters derived from the smartphone and the electrocardiograph. For each plot, the horizontal axis
represents the mean of HRV parameters derived from smartphone and electrocardiograph, while the vertical axis represents the di�erence
between HRV parameters derived from smartphone and electrocardiograph. �e �ve columns correspond to �ve di�erent algorithms: PP,
peak point; VP, valley point; M1D, maximum �rst derivative; M2D, maximum second derivative; and TI, tangent intersection. LF, low
frequency power; HF, high frequency power; LF/HF, ratio of LF to HF; nLF, normalized LF = LF/(TP − VLF); and nHF, normalized HF
= HF/(TP − VLF).

3.2. Algorithms Comparison. In terms of both bias and SD,
we analyzed these data satisfying the condition BAR < 20%
in Table 3 to evaluate the performance of the �ve algorithms
mentioned above. For each HRV parameter, the best two
algorithms with the least bias or SD would gain a star

“∗” each. �e overall performance was graded according to
the number of total stars. As shown in Table 4, the M2D
and the TI algorithms were better than the others, the
PP and the VP were the worst, and the M1D was in the
middle.
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Table 4: Comparison of �ve algorithms for detection of character-
istic points.

Parameter PP VP M1D M2D TI

AVNN

Bias ∗ — — ∗ —

SD — — — ∗ ∗
TP

Bias — ∗ — ∗ —

SD — — — ∗ ∗
VLF

Bias — — ∗ — ∗
SD — — ∗ ∗ —

LF

Bias ∗ — ∗ — —

SD — — — ∗ ∗
HF

Bias — ∗ — ∗ —

SD — — ∗ ∗ —

LF/HF

Bias — — — ∗ ∗
SD — — — ∗ ∗

nLF

Bias — — — ∗ ∗
SD — — ∗ ∗ —

nHF

Bias — — — ∗ ∗
SD — — — ∗ ∗

SD2

Bias — — ∗ — ∗
SD — — ∗ — ∗

Total stars 2 2 7 14 11

PP: peak point, VP: valley point, M1D: maximum �rst derivative, M2D:
maximum second derivative, and TI: tangent intersection. SD: standard
deviation. HRV parameters are explained in Table 1.

4. Discussion

As previously mentioned, no researches have been reported
to measure HRV with smartphone PPG. Nevertheless, many
researches have been reported to measure HRV with tradi-
tional PPG (tPPG, i.e., a pulse oximeter), which can provide
valuable information for our work. A good review of tPPG-
derived HRV can be found in [28], where the authors
commented that it was controversial whether the tPPG-
derived HRV was a surrogate of the ECG-derived HRV.
Although a number of publications reported universally good
agreement between tPPG-derived HRV and ECG-derived
HRV for all parameters, many other studies found that short-
term parameters were more susceptible to disagreement
between tPPG and ECG than long-term parameters. Our
results are in accordance with the latter. As shown in Table 2,
the coe�cients of long-term parameters (AVNN, SDNN, and
CV) are higher than the short-term parameters (RMSSD,

SDSD, NN50, and pNN50). As shown in Table 3, the low-
frequency parameters are in higher agreement than the high-
frequency parameters, as the bias of LF is less than that of
the HF and their BARs have no signi�cant di�erence. �e
nonlinear parameter SD2 presenting the level of long-term
HRV is in good agreement between ECG and smartphone
PPG while SD1 presenting the level of short-term HRV is in
insu�cient agreement.

�e detection of the characteristic points is also an impact
factor for the accuracy of smartphone-derived HRV mea-
surement [4]. As the morphology of pulse wave changes over
time, an algorithm less sensitive tomorphology variation will
produce better accuracy.We graded these �ve algorithms: PP,
VP,M1D,M2D, and TI. Our results indicate thatM2D and TI
algorithms are better than the others, which are in accordance
with Chiu et al.’s [25], but they are slightly di�erent from
Posada-Quintero et al.’s [29]. Posada-Quintero et al. stated
that the TI algorithm was better than the VP and M2D
algorithms. �is slight di�erence is possibly due to di�erent
algorithm details and di�erent evaluation criteria. Another
interesting research found that PP was more sensitive to
waveform distortion than VP and M1D when the peripheral
pulse was a�ected by cold temperature [24]. Overall, M2D
and TI algorithms are better than PP, VP, and M1D. �e fact
that many researchers used the PP algorithm is worthy of
attention [3, 4, 30, 31]. In addition, none of the algorithms is
perfect or error-free. A manual correction is usually required
by visual inspection on the computer screen, which is time-
consuming. More e�ciency algorithms are needed.

A possible consideration of the smartphone-based HRV
analysis is the sampling rate. Our HTC smartphone has a
sampling rate of approximately 20–30Hz that may be con-
sidered not suitable for HRV analysis. In fact, the spectrum
of the pulse signals has the vast majority power in the
range of 0∼10Hz [32]. A sampling rate of 20Hz is not less
than the Nyquist rate and the temporal resolution can be
improved by interpolation, which was con�rmed by Sun
et al.’s experiments in [14] where they compared di�erent
sampling rates of 200, 100, 50, and 20 fps and their results
revealed no signi�cant di�erences of these sampling rates.
Moreover, as the new generation smartphones have more
powerful CPUs and higher speed cameras, the sampling rate
will be improved for better performance.

�e color channel should be also considered. In the
processing of the recorded video, most previous studies
calculated the intensity of the green channel in RGB color
model [17–19], because (oxy)haemoglobin absorbs more
green light than red light and penetrates su�ciently deep
into the skin as compared to blue light [33]. We chose the
red channel over the green or blue channel, because we
observed that the pixel values in green and blue channels
were tending to zero and the changes of the red channel
are more pronounced than the green and blue channels in
most situations. Chandrasekaran et al. also observed that
the prominent color was red and they used the red channel
in their research [22]. Grimaldi et al. demonstrated that
the distribution of the pixels in the green channel was not
uniform for di�erent models of the smartphones and the
only channel that had similar characteristics was the red
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one [34]. �is suggests that heterogeneous characteristics
of di�erent cameras in di�erent smartphones should be
taken into account and more robust algorithms are required.
Some potential alternatives are principal component analysis
(PCA), independent component analysis (ICA), or using
other color models (e.g., CMY color model, HSI color model,
and YUV color model).

Motion artifacts are another complicated problem and
are tough to deal with. To our best knowledge, none of
the reported studies have solved this problem very well. In
our experiments, the subjects were instructed to lie on a
mattress and keep their �ngers as still as possible tominimize
the motion artifacts. �is is not practical in daily life as
short-time HRV testing usually takes 5 minutes that seems
so long time for keeping still. �erefore, e�cient motion-
resistant algorithms are required. Several motion artifacts
detection algorithms in pulse oximeters could be applied in
smartphone-based HRV analysis [35, 36].

5. Conclusion

Traditional ECG recordings require electrodes attached to
body surface and are operated by specially trained nurses in
the hospital.�e new smartphone-based technology requires
no more than placing a �nger on the camera lens of a
smartphone. It is low-cost and easy-to-use and can be
used in daily life out of hospital. In the present study, we
quantitatively investigated the measurement of HRV based
on smartphone technology and compared the results with
those derived from a standard ECG to assess the accuracy.
�e results suggest that the smartphone can be of potential
use for HRVmeasurement at resting and would be applied in
low-cost healthcare applications.
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