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Abstract

Ultrarelativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC)

are thought to have produced a state of matter called the Quark-Gluon-Plasma

(QGP). The QGP forms when nuclear matter governed by Quantum Chromodynam-

ics (QCD) reaches a temperature and baryochemical potential necessary to achieve

the transition of hadrons (bound states of quarks and gluons) to deconfined quarks

and gluons. Such conditions have been achieved at RHIC, and the resulting QGP cre-

ated exhibits properties of a near perfect fluid. In particular, strong evidence shows

that the QGP exhibits a very small shear viscosity to entropy density ratio η/s,

near the lower bound predicted for that quantity by Anti-deSitter space/Conformal

Field Theory (AdS/CFT) methods of η/s = ~

4πkB
, where ~ is Planck’s constant and

kB is Boltzmann’s constant. As the produced matter expands and cools, it evolves

through a phase described by a hadron gas with rapidly increasing η/s.

This thesis presents robust calculations of η/s for hadronic and partonic media as

a function of temperature using the Green-Kubo formalism. An analysis is performed

for the behavior of η/s to mimic situations of the hadronic media at RHIC evolving

out of chemical equilibrium, and systematic uncertainties are assessed for our method.

In addition, preliminary results are presented for the bulk viscosity to entropy density

ratio ζ/s, whose behavior is not well-known in a relativistic heavy ion collisions. The

diffusion coefficient for baryon number is investigated, and an algorithm is presented

to improve upon the previous work of investigation of heavy quark diffusion in a
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thermal QGP.

By combining the results of my investigations for η/s from our microscopic trans-

port models with what is currently known from the experimental results on elliptic

flow from RHIC, I find that the trajectory of η/s in a heavy ion collision has a rich

structure, especially near the deconfinement transition temperature Tc. I have helped

quantify the viscous hadronic effects to enable investigators to constrain the value of

η/s for the QGP created at RHIC.
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1

Introduction

In the first few microseconds following the Big Bang, the very hot and dense Uni-

verse was thought to be in a state of matter known as the Quark Gluon Plasma

(QGP). The QGP is rather different from the normal matter we observe everyday;

molecules, atoms, nuclei, matter composed of protons and neutrons are examples of

particles in which quarks and gluons are bound. It is said that quarks and gluons

are confined in Nature; we do not observe them individually as free particles, but

only in composite objects which are composed of quarks and gluons bound together

tightly. For example, while we observe the proton (a particle consisting of two up

quarks and one down quark), we do not observe those three quarks individually in

Nature. However, it is thought that at sufficiently hot and dense conditions, one can

“liberate” quarks and gluons from the confined state. The state in which quarks and

gluons are not confined, but quasi-free or deconfined , is known as the QGP. Why is

the QGP useful to study? It will not only give us insight into how the medium of the

Early Universe behaved, but will help us understand how nuclear matter behaves

under extreme conditions. Scientists at many high energy accelerators, including

the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory on
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Long Island, New York attempt to recreate the QGP by colliding heavy nuclei (such

as Copper, Lead, and Gold) at speeds very close to the speed of light. The hope is

that colliding sufficiently heavy particles at very fast speeds will compress and heat

the matter to the degree necessary to produce the QGP. However, one of the biggest

challenges involved in analyzing the QGP is that the state is transient; it is so short

lived (lifetime is on the order of ∼ 10−23 s), that the quarks and gluons recombine to

from bound states (known as hadrons), before any measurement can take place. The

particle detectors in such experiments measure properties of the final-state hadrons

rather than the free quarks themselves [62]. As a result, there is a great deal of

detective work in phenomenology and theoretical modeling involved in identifying

possible signatures for the existence of a QGP, and investigating such properties.

One of the top science stories of 2005 was the discovery of a “near perfect fluid”

at RHIC [62, 48]. It was previously expected that if a QGP were to be created

at RHIC energies, the resulting matter would be a gas. However, a great deal of

experimental evidence exists suggesting that the state created ted at RHIC is not

only not a gas, but a nearly ideal fluid [3, 12, 8, 2]. The resistance to flow in a

fluid is characterized by a quantity known as the shear viscosity (η). Traditionally,

an ideal fluid has been defined as having η = 0. However, semiclassical arguments

show such a fluid is unphysical [23], and there has been a paradigm shift in defining

an “ideal fluid.” The related quantity proposed for this definition is the viscosity

to entropy ratio η/s, where s is the entropy density . Calculations utilizing one of

the big recent revolutions in string theory, the anti-deSitter Space/Conformal Field

Theory (AdS/CFT) conjecture, suggest that a possible value for the “most perfect

fluid” η/s ≥ ~/4πkB, where hbar is Planck’s constant divided by 2π, and kB is

Boltzmann’s constant [47]. Thus, understanding the QGP created at RHIC will also

help us better understand the nature of near perfect fluidity.

My research is specifically concerned with extraction of transport coefficients of

2



the hadronic and QGP phases of a relativistic heavy ion reaction. Transport coeffi-

cients are physical quantities which characterize the nature of medium interactions.

The “transport” refers to the transfer of physical properties through the medium. In

particular, the transport coefficients relevant to my research are the shear viscosity

coefficient and the diffusion coefficient. The shear viscosity coefficient is relevant for

momentum transfer in the medium, and the diffusion coefficient is relevant for trans-

fer of particle concentration in the medium. The media created in these relativistic

heavy ion collisions involves a large number of different particle species, and tradi-

tional theoretical methods in nuclear and high energy physics give at best very crude

approximations for describing the media created in such collisions. However, with

the multiple advances in computational power and modeling, sophisticated mod-

els have been successfully developed (known as microscopic transport models)and

tested which provide fairly accurate descriptions of the deconfined and hadronic me-

dia created in relativistic heavy ion collisions. My research exploits such microscopic

transport models, and involves calculating the shear viscosity, viscosity to entropy

ratio, bulk viscosity and the diffusion coefficients for a system which resembles an

equilibriated QGP or a hadron gas. We have performed a careful calculation of η/s,

DB, and are currently improving ζ/s calculation for self-consistency. With these

tasks executed, one could obtain a much better constraint on the values for the

transport coefficients of the elusive state of matter sought after at RHIC and the

LHC. Knowledge of the transport coefficients of hot and dense nuclear matter is not

very well known, and must be improved if one is to gain a better understanding not

only of the medium interactions in the Early Universe, but also of systems which are

thought to be “near-ideal” in Nature.
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1.1 The QGP:Deconfinement and Chiral Symmetry Restoration

QCD is the field theory of strong interactions, and a very interesting phenomenon

worth investigating is the effect of chiral symmetry breaking in QCD. In the Early

Universe, it was believed the degrees of freedom corresponding to the strong, elec-

tromagnetic, weak, and gravitational forces were unified to one. All the fundamental

particles and gauge bosons were in thermal equilibrium. However, the system cooled

and it is believed ∼ 10−35 seconds after the Big Bang, the strong interaction decou-

pled from the electroweak interaction. The phenomenon known as the electroweak

phase transition took place ∼ 10−11 seconds after the Big Bang; the electromagnetic

interaction decoupled from the weak interaction. As the system cooled further, ∼

10−6 seconds after the Big Bang is when the quarks formed hadronic bound states

of quarks: baryons (qqq bound states) and mesons(qq̄ bound states) [72]. This last

step is known as the deconfinement transition.

When one speaks about the QCD transition, there are two distinct types of tran-

sitions being discussed. One is the deconfinement transition, which involves the tran-

sition from hadronic degrees of freedom to quasifree quarks and gluons. The other

transition is chiral symmetry restoration, which involves the light quarks acquiring

zero effective mass. The relevant order parameter in discussing the deconfinement

transition is the expectation value of the Polyakov loop [53].

The Polyakov Loop is related to the free energy of a static quark F through

〈L〉 ∼ exp−F
T . (1.1)

Since the free energy is related to the energy required to place a free test quark in

a thermal medium of gluons, in the confined phase, F would be infinite, leading to

〈L〉 = 0 in the confined phase, and acquires a nonzero value in the deconfined phase.

Although equilibrium statistical mechanics can be used with lattice QCD techniques

to calculate static properties of a medium such as energy density, pressure, etc as a

4



function of temperature, it does not help us to ascertain values of dynamic properties

such as transport coefficients.

1.2 Structure of Thesis

This dissertation shall discuss what is known about the shear viscosity and bulk vis-

cosity coefficients at RHIC in Chapter 2, a summary of known methods to calculate

transport coefficients in Chapter 3, a detailed description of microscopic transport

models in Chapter 4, and calculation of transport coefficients from microscopic trans-

port models in Chapter 5, and description of a Langevin algorithm to investigate

heavy quark diffusion in Chapter 6. The material in the dissertation is summarized

in Chapter 7.

5



2

The Viscosity of QCD Matter at RHIC

One of the top science stories of 2005 was the discovery of a “near-perfect fluid”

at RHIC [3, 12, 8, 2]. It was thought that the energies accessible at RHIC would

yield high enough temperatures that the resulting QGP created would have the

properties of a perturbative QGP, so that a weakly interacting gas of quarks and

gluons behaves like an ideal gas rather than an ideal fluid. Whenever one speaks

of ideal fluid behavior, it is necessary to quantify the viscosity of the discussed

fluid. Traditionally an ideal fluid has been described as having “zero viscosity”,

and setting viscosity terms to zero in order to facilitate hydrodynamic calculations is

justified in approximating ideal fluid behavior, but we shall see there is a quantitative

difference between “ideal fluid” and a “most perfect fluid.” While “ideal fluid”

traditionally means setting η = 0 in the relevant calculations, “most perfect fluid”

implies fluids with low (but non-zero) values of η/s. We shall begin with a review

of the experimental observable used to characterize the quality and character of the

fluid, namely elliptic flow.
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2.1 Discovery of Ideal Fluid Behavior at RHIC

2.1.1 Elliptic Flow

One of the strongest features of the QGP discovered at RHIC is the large value of

a quantity called elliptic flow, observed for various particle species. The best way

this can be illustrated is in a noncentral heavy ion collision, as depicted in Figure

2.1. In a given noncentral collision, the overlap of the two colliding nuclei creates

an almond-like shape region comprising the participant matter of the reaction. This

participant matter is what is heated and compressed which then forms the QGP. As

a consequence of the sudden shaving off of the spectator matter, there is a much

larger pressure gradient along the x-z plane (reaction plane) than perpendicular to

the reaction plane (y direction). As a result, a preferential collective flow of matter in

the reaction plane versus out of the reaction plane develops. One way to quantify this

asymmetry of particle emission is to examine the azimuthal distribution of emitted

hadrons and expand in a Fourier series

dN

dφ
∼ 1

2π
(1 + 2v2cos(2φ) + ...) (2.1)

where v2 is the elliptic flow coefficient, and φ is the azimuthal angle with respect to

the reaction plane [3]. If the medium were highly viscous, then dissipative effects

would reduce the collective buildup of elliptic flow, so a large elliptic flow is expected

for systems which are “ideal fluid like”. What is more remarkable is that calculations

using ideal relativistic hydrodynamics have reproduced the v2 data from RHIC rather

well, as shown in Figure 2.2 [2].

2.1.2 Ultracold Fermionic Systems

Elliptic flow has been observed in ultracold fermionic systems, such as Lithium atoms

in a magneto-optical trap, subject to an applied magnetic field tuned to near the
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Figure 2.1: Reaction plane in an event of a heavy ion collision. The almond
shaped overlap region is where the QGP is formed.

Feshbach resonance. The strength of the interactions between the Lithium atoms

is controlled by the applied magnetic field, and near the Feshbach resonance, the

strongly interacting regime of the system can be studied. An optical trap is designed

such that the Lithium atoms trapped in it form an initial almond shape as in Figure

2.3. After the atoms are released from the optical trap, elliptic flow develops, as in

Figure 2.4. With elliptic flow evident in heavy ion reactions as well as ultracold,

strongly interacting Lithium atoms we are led to identify elliptic flow as a general

feature of strongly interacting systems. Strongly interacting systems are systems

that have very large interaction cross sections and hence are expected to exhibit

features such as low η/s and significant elliptic flow [69, 44, 85]. Ultracold fermionic

atoms, neutron stars, and the quark gluon plasma are all manifestations of strongly

interacting matter. In fact, η/s values as low as ≈ 0.3 been measured for strongly
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Figure 2.2: [v2 as function of pT from pure ideal hydro with Glauber initial condi-
tion, compared with STAR and PHENIX data [2].

interacting ultracold Lithium atoms as illustrated in Figure 2.5 [85].

2.1.3 Solving ideal relativistic fluid dynamics

The formulation of ideal relativistic fluid dynamics is to write the conservation laws

for energy-momentum and conserved charges.

∂µT
µν = 0, (2.2)

where ν = 0, 1, 2, 3.

∂µj
µ
i = 0, (2.3)

where i = 1, 2, ...,M .
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Figure 2.3: Profile of lithium atoms in a magnetooptical trap [69].

Equation 2.2 expresses the conservation of energy and momentum, while equation

2.3 expresses conservation of M different sorts of charges, labeled by ji. Tµν is the

energy momentum tensor, whose components are given by

T µν =

∫

d3p

p0
pµpνf(x, p). (2.4)

pi is a component of a particles 4-momentum, and f(x, p) is the particle and mo-

mentum distribution function of the system. Hence, the energy momentum tensor

for a system in a fluid cell with position x at rest is given by

T µν(x) = diag(ǫ(x), p(x), p(x), p(x)), (2.5)

where ǫ(x) is the cell’s energy density and p(x) is its pressure. If the fluid cell moves

with a 4-velocity u, then we would need to construct the Lorentz boost matrix Λ,
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Figure 2.4: Time profile of lithium atoms released from a trap. with an applied
magnetic field tuned to near the Feshbach resonance [69].

and boost through T µν = ΛT T µνΛ. The equations for ideal hydrodynamics involve

4+M independent differential equations. Whereas equation 2.3 involves the charges

of the M independent equations (and hence M independent variables), equation 2.2

involves the energy-momentum tensor, which contains the flow velocity, pressure,

and energy density. Since the flow velocity has 3 components, equation 2.2 contains

a total of 5 independent variables. Hence, the 4+M differential equations governing

the evolution of the system described by ideal hydrodynamics contain a total of 5+M

independent variables. This requires us to input an additional equation to be able to

close the system of differential equations. This additional necessary input equation is

the equation of state p = p(ǫ), which relates the pressure of the system to its energy

density. In principle, the equation of state that is needed to close the system does not

necessarily have the form p = p(ǫ), but must relate the thermodynamic quantities of
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Figure 2.5: η/s as a function of energy, taken from [85]. The “string theory”
dashed line refers to the KSS bound of η/s = ~/(4πkB), and the “QGP” band is 2-3
times the KSS bound.

the system.

Hence, investigators performing ideal relativistic hydrodynamics calculations must

specify an equation of state in their calculations, and also specify an initial condi-

tion for the distribution of matter. In practice, two types of initial conditions are

often used for ideal hydrodynamics calculations, the Glauber and Color Glass Con-

densate (CGC) initial conditions. The Glauber initial condition specifies that the

initial distribution of energy and particle density is given by a superposition of two

contributions, one proportional to the number of wounded nucleons, and one pro-

portional to number of binary collisions. Another widely used initial condition, the

CGC initial condition specifies that the initial gluon distribution is given by the CGC

model[43, 54, 55]. Once the initial condition and EoS are specified, the system of
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ideal hydrodynamics equation in 2.2 and 2.3 is closed and the time evolution of the

fluid cells can be calculated. As the system reaches T < Tc the v2 of the hadrons in

the simulation can be deduced from azimuthal particle distributions. The v2 data

presented in Figure 2.2 was reproduced with ideal hydrodynamics calculations using

an equation of state (EoS) which assumed a strong first-order phase transition (i.e.

a long-lived mixed phase), and a Glauber initial condition.

As noted, practitioners of both viscous and ideal relativistic hydrodynamics cal-

culations need to chose an initial condition and EoS in their simulations. Recent

investigations by lattice QCD indicate that the QCD transition is not likely a first-

order phase transition but a crossover [19]. If one uses the currently favored CGC

initial conditions with a Lattice-inspired EoS, ideal hydrodynamics would yield v2

values that are too large relative to the RHIC data [51]. If viscous effects were in-

cluded, the elliptic flow would be reduced. This implies that although signatures of

ideal fluid like behavior were found in the RHIC data, more work needs to be per-

formed to quantify the small, but finite, viscosity in the QGP phase, and to quantify

the hadronic viscous effects.

2.1.4 Hybrid Ideal and Microscopic Transport Approaches

Since ideal hydrodynamics calculations assumes zero viscosity for both the decon-

fined and hadronic phases of a heavy ion reaction, and using currently favored GCG

initial conditions and a more realistic EoS for ideal hydrodynamics yield v2 values

that are too large, alternative approach(es) need to be suggested which include vis-

cous effects. One such approach suggested was to use a hybrid approach that uses

ideal hydrodynamics to model the deconfined phase until Tc, then use a microscopic

transport approach to model the system for T < Tc [13, 66].

The advantages of the hybrid approach are that, in addition to incorporating

viscous effects of the hadronic phase, there exists a self-consistent calculation of
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freezeout, and the separation of chemical and kinetic freezeout is treated. Chemical

and kinetic freezeout are discussed in the next subsection.

For such a model, one needs a proper prescription for treating the transition

from the hydrodynamic regime to the microscopic transport regime, which is done

via the Cooper Frye prescription. In the Cooper Frye prescription, a hypersurface of

cells at the transition temperature gets translated into an ensemble of particles. A

microscopic transport model such as UrQMD(discussed in detail in Chapter 4) then

is used to propagate the particles in the hadronic phase. Freezeout occurs when the

particles are “frozen out”, or stop interacting.

The hybrid ideal hydro plus micro approach reproduces the v2 data as shown

in Figures 2.6 and 2.7, providing us with an additional indication that the viscous

effects in the QGP phase have to be small.

2.1.5 Partial Chemical Equilibrium (PCE) Approach

When discussing freezeout, it is necessary to further distinguish between thermal

freezeout and chemical freezeout. Thermal freezeout occurs when the momentum

distributions of the particles cease to change as a function of time in a heavy ion

reaction. Chemical freezeout occurs when the particle yields of the hadrons no longer

change as a function of time in a heavy ion reaction. This separation in timescales

between the thermal and chemical freezeout was discovered using two different types

of analysis. The chemical freezeout temperature was extracted by performing a Sta-

tistical Model fit to the measured hadronic yields, whereas the thermal freezeout

temperature is extracted by performing a Boltzmann fit to the momentum distri-

butions of the particles. The temperatures corresponding to chemical and thermal

freezeout are Tchem ≈ 160 MeV and Tkin ≈ 130 MeV, respectively. Practitioners of

the PCE approach, such as Hirano, Rapp, and Heinz,[38, 46] use ideal hydrodynam-

ics until the temperature reaches Tchem, then introduce species-dependent fugacity
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Figure 2.6: v2 from a hybrid calculation as a function of transverse momentum
pT . The STAR data at different centralities are also shown for extracted π+ v2. The
initial condition used in the hybrid hydrodynamics calculations is a CGC rather than
Glauber initial condition [13].

effects to fix the particle yields from Tchem until Tkin. The yields Ni are given by

Ni =
giV

(2π)3

∫ ∞

0

d3pλi exp

{

−
√

p2 + m2
i

T

}

, (2.6)

where λi are the fugacities for the particle species i, gi is the isospin multiplicity

factor, V is the system volume, and T is the temperature. The condition for fixing

the fugacities is obtained from the following constraint

ni(T, λi)

s(T, λi)
=

ni(T, λi = 1)

s(T, λi = 1)
, (2.7)

where ni are the particle densities of species i and s is the total entropy density

of the system. The constraint in equation 2.7 assumes that the hadrons follow an
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Figure 2.7: Pseudorapidity distribution for charged hadrons, taken from [13]. Both
the hybrid hydrodynamics plots and data points are shown. The hybrid calculation
uses aCGC initial condition, as opposed a Glauber condition.

adiabatic path for T < Tc. Note that as the system cools below T = Tc, the particle

yields acquire nonunit fugacities (λi > 1), which means that the system, though

maintaining kinetic equilibrium, evolves out of chemical equilibrium in the hadronic

phase. This is an important effect, as we shall later show that introducing non-unit

fugacities strongly affects η/s in the hadronic phase [25, 27].

2.2 “Ideal Fluid” versus “Most Perfect Fluid”

The definition of viscosity follows from the definition of expanding the energy-

momentum tensor Tij about its value in local equilibrium in terms of gradients of

velocities. Specifically,

T µν = T µν,ideal + Πµν (2.8)
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where Πµν is the shear viscous tensor, and T µν is the ideal fluid energy momentum

tensor.

T µν,ideal = (ǫ + p) uµuµ + pgµν , (2.9)

where ǫ is the energy density, p is the pressure, and uµ is the flow four velocity.

Solving the relativistic second order hydrodynamic equations of motion is nontrivial,

and much discussion has taken place as to which of the higher order terms are

important. For example, Luzum and Romatschke [51] use the following equation for

the evolution of the shear viscous tensor:

Πµν = η∇<µuν> − τΠ

[

∆µ
α∆ν

βDΠαβ +
4

3
Πµν (∇αuα)

]

(2.10)

+
κ

2

[

Rµν + 2uαRα<µν>βuβ

]

− λ1

2η2
Π<µ

λ Πν>λ +
λ2

2η
Π<µ

λ ων>λ − λ3

2
ω<µ

λ ων>λ,

where η is the shear viscosity, τΠ is the Israel Stewart relaxation time, κ, λ1−3 are

the second order Israel Stewart transport coefficients. ωµν = −∇[µuν] is the fluid

vorticity, and Rαµνβ and Rµν are the Riemann and Ricci tensors, respectively. Note

that bulk viscosity terms are neglected. However, Song and Heinz[81, 82] attempted

to investigate the influence of bulk viscosity in Israel Stewart viscous hydrodynamics

by solving the following equations of motion [40, 41]:

dµT
µν = 0 (2.11)

T µν = euµuν − (p+Π)∆µν + πµν , (2.12)

∆µα∆νβDπαβ = − 1

τπ

(πµν−2ησµν) (2.13)

−1

2
πµν ηT

τπ

dλ

(

τπ

ηT
uλ

)

, (2.14)
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DΠ = − 1

τΠ

(Π + ζθ) − 1

2
Π

ζT

τ
Π

dλ

(

τ
Π

ζT
uλ

)

, (2.15)

Here, T µν is the energy momentum tensor, πµν is the shear pressure tensor, and

Π is the bulk pressure. dµ denotes the covariant derivative components (see [36,

60] for details) in the curvilear coordinates (τ, x, y, ηs) where τ =
√

t2−z2 is the

longitudinal proper time and ηs = 1
2
ln t+z

t−z
is the space-time rapidity. The shear

and bulk viscosities are η and ζ and their associated relaxation times τπ and τΠ,

respectively. Approximating ideal fluid behavior traditionally means approximating

Πµν = 0, but we shall present two arguments how a real physical system cannot have

a zero viscosity, and why the viscosity cannot be arbitrarily small.

2.2.1 Semiclassical Arguments

A standard result from kinetic theory is the relationship between the shear viscosity

η and the mean free path λf of a representative particle in the medium [75].

η ≈ 1

3
np̄λf , (2.16)

where n is the number density of the medium and p̄ is the mean momentum per par-

ticle in the medium. The mean free path can be expressed in terms of the scattering

cross section σ of the medium

λf =
1

nσ
(2.17)

implying

η ≈ p̄

3σ
(2.18)

the unitarity bound from quantum mechanics implies a maximum on the cross sec-

tion, which yields a minimum for the shear viscosity. Specifically, Gyulassy and
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Danielewicz [23] suggested that the smallest mean free path making sense in a quasi-

particle description of a system is the DeBroglie wavelength, implying λf ∼ 1
p
.

It is interesting to investigate what the corresponding dimensionless quantity (in

mass dimensions) would be for such a system, as often dimensionless quantities give

one a more quantitative sense of the comparison of key energy or length scales in

the system. Note that η and s, the entropy density, have the same dimensions if

~ = c = kB = 1. For an ideal gas of massless particles, s ∼ 4n (the coefficient is 3.6

for Bosons and 4.2 for Fermions), implying that the minimum viscosity to entropy

density ratio for such a system would be

η/s ≈ 1

12
. (2.19)

2.2.2 The KSS Bound via AdS/CFT Correspondence

Calculating transport coefficients in QCD using effective kinetic theory in the pertur-

bative limit is a well-established technique. However, perturbation theory only works

when the QCD coupling is small. The well-known Arnold, Moore, and Yaffe (AMY)

formalism derives the shear viscosity coefficient by solving the linearized Boltzmann

equation with temperature dependent scattering amplitudes derived from finite tem-

perature QCD perturbation theory. The AMY result for η/s for a system of 3 light

quarks and gluons is [7]

ηC

s
≈ 5

g4log(1/g)
. (2.20)

For quantities of interest at RHIC, the coupling is not small (especially near T ≈

Tc) and hence nonperturbative techniques must be used. An important discovery

in the field of string theory was the anti-deSitter Space/Conformal Field Theory

(AdS/CFT) correspondence[52]. The idea is that for every CFT there exists a grav-

ity dual on a 5 dimensional AdS space. Although QCD is not a CFT, N = 4

Supersymmetry Yang Mills (SUSY) theory is a CFT, which means that in addition
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to not having a running coupling, no spontaneous symmetry breaking or deconfine-

ment is exhibited. N is the number of supersymmetric generators. Below T = Tc,

QCD exhibits confinement and spontaneous breaking of chiral symmetry. However,

above T = Tc, the quarks become deconfined, and chiral symmetry is restored, so

although the coupling still runs, QCD and N = 4 SUSY become more similar. One

should take great caution in making too close a comparison between the two even in

the limit T ≈ T+
c . What has been useful is that calculations of transport coefficients

which are very difficult in QCD can be performed relatively easily in N = 4 SUSY

via the AdS/CFT correspondence.

The mapping of physical quantities using the AdS/CFT correspondence is that

the temperature of the dual field theory is the Hawking temperature of the black

hole in the corresponding AdS5 theory, and the entropy of the dual field theory

is the entropy of the black brane in the corresponding AdS5 theory. According to

Bekenstein [15], the largest entropy one could reach in the infinite volume limit is

that the entropy is proportional to the area of the event horizon in the black hole of

the theory, given by

S =
A

4G
, (2.21)

where G is Newton’s constant. For black branes A contains a trivial infinite factor

V equal to the spatial volume along directions parallel to the horizon. Hence the

entropy density s is equal to a/4G, where a ≡ A/V . In a rotationally invariant field

theory, the formula for the shear viscosity of a system is given by Kubo’s formula,

which is to be discussed in Chapter 3

η = limω→0
1

2ω

∫

dtdxeiωt〈[Txy(t, x), Txy(0, 0)]〉, (2.22)

where Txy is the xy component of the energy-momentum tensor. The physical in-

terpretation of the viscosity in this AdS/CFT corresponding calculation is that the
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right hand side of the Kubo formula for the shear viscosity can be related to the ab-

sorption cross section of gravitons. According to the formalism of Klebanov [45], the

absorption cross section of a graviton of frequency ω, polarized in the xy direction

propagating in a direction transverse to the brane is given by

σabs(ω) =
8πG

ω

∫

dtdxeiωt〈[Txy(t, x), Txy(0, 0)]〉. (2.23)

This implies

η =
σabs(0)

16πG
. (2.24)

The absorption cross section is constrained by a theorem stating that in the low-

frequency limit ω → 0, the cross section is equal to the area of the horizon, σabs = a.

This implies the minimum shear viscosity to entropy density ratio is

η

s
=

1

4π
, (2.25)

the famous Kovtun-Son-Starinets (KSS) bound [47]. It is important to note that

while “ideal fluid” like behavior has been discovered at RHIC, it is not the shear

viscosity of the discovered matter which is expected to be small, but rather η/s

which is expected to be very small. Supporting evidence for ideal fluid like behavior

are now to be given.

2.2.3 Relativistic Viscous Hydrodynamics

Writing the full spatial and temporal components of the momentum tensor, one

would write

T µν = ǫuµuν − p∆µν + Πµν , (2.26)

where ∆µnu = gµν − uµuν , ǫ is the energy density, and Πµν is the viscous shear

tensor, and u is the flow velocity. Whereas Navier-Stokes hydrodynamics goes to
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only first derivatives in the flow velocity in its expression for Πµν , Israel-Stewart

Hydrodynamics goes to higher order, as seen in equations 2.8 and 2.10.

Often, the second order transport coefficients defined in equation 2.10 are set

to zero to facilitate the calculation, and a crucial parameter is the so-called Israel

Stewart relaxation time (τΠ as defined in equation 2.10). Bulk viscosity terms are

neglected in some calculations.

The relativistic hydrodynamics calculations by Luzum and Romatschke [51] re-

produce the PHOBOS v2 data with values of η/s ranging from 0.08-0.16 or 0.16-0.24

depending upon whether one uses an extreme version of a Glauber or a CGC ini-

tial condition (Figures 2.9 and 2.8, respectively.) The parameters for the CGC and

Glauber initial conditions were tuned to the most extreme allowable to investigate

what range of η/s would be allowed. Bulk viscosity was neglected in the calculations

in the CGC and Glauber initial conditions by Luzum and Romatschke [51]. The

same lattice-based EoS is used for both calculations. However, such calculations

assume a fixed value of η/s throughout the whole evolution. We shall see later that

there is a strong temperature dependence of η/s in a heavy ion collision [21, 27].

2.3 Theoretical Understanding of η/s Behavior

2.3.1 Lattice Calculations

Calculating η/s on the lattice using the Kubo formulae is a challenge due to the dif-

ficulties associated with working with a Euclidean as opposed to Minkowski metric.

First calculations of η/s, as well as ζ/s using lattice techniques have been performed

by Meyer [56, 57]. However, in order to make progress on extracting robust quanti-

tative predictions of transport coefficients from lattice calculations, the calculations

must be performed on spatial volumes greater than 103 time the number of lattice

sites used in current calculations [68].
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Figure 2.8: v2 as a function of pT for an extreme implemention of a CGC initial
condition for a viscous hydro calculation, taken from [51]. The PHOBOS data are
also shown. This was used to indirectly obtain a range of allowable values for η/s.

2.3.2 Parton Recombination

Ideal and viscous hydrodynamics analysis of the large v2 values observed at RHIC

show that matter with very low η/s was created at RHIC. The recombination model

provided strong evidence that was of a partonic origin. In fact, it was named the

“smoking gun” for the production of a QGP at RHIC [30].

The recombination model is a very simple picture in which the previously decon-

fined partons recombine into hadrons at Tc [30, 31]. It also predicts that the elliptic

flow of hadrons likewise should scale with the elliptic flow of constituent quarks, such

that
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Figure 2.9: v2 as a function of pT for the Glauber initial condition for a viscous
hydro calculation, taken from [51]. The PHOBOS data are also shown. This was
used to indirectly obtain a range of allowable values for η/s.

v2,M(pT ) =
2v2(

pT

2
)

1 + 2v2
2(

pT

2
)

(2.27)

and

v2,B(pT ) =
3v2(

pT

3
) + 3v3

2(
pT

3
)

1 + 6v2
2(

pT

2
)

(2.28)

Note that since typically values for v2 of interest are on the order of ≈ 10 %,

neglecting the cubic and quadratic terms in equations 2.27 and 2.28 yield

v2,M(pT )/2 ≈ v2

(pT

2

)

(2.29)

v2,B(pT )/3 ≈ v2

(pT

3

)

(2.30)
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Figure 2.10: v2 scaled by constituent quark number vs pT scaled by constituent
quark number. Taken from [31].

Since the momentum of the hadron should be equal to the sum of the momenta

of the constituent quarks, scaling behavior would be observed if v2 and transverse

momenta pT were simultaneously scaled by the number of constituent quarks. The

scaling behavior shown in Figure 2.10 is a sign that the elliptic flow was most likely

of partonic rather than hadronic origin. The observation of recombination scaling

laws in v2 data also suggest that the QGP matter at Tc consists of flowing constituent

quarks, namely that the QGP at Tc was quasiparticulate in nature.

2.4 Structure of η/s above and below Tc

Now that is has been established that the QGP has a low value of η/s, one asks the

question what do traditional QCD techniques yield for η/s? The most sophisticated
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calculations for η/s in perturbative QCD from Arnold, Moore, and Yaffe yield

η

s
≈ 5.12

g4log(2.42/g)
, (2.31)

which, taken with a temperature dependent coupling, yields values of η/s ≈ 1 − 3

for appropriate values in the perturbative limit [6]. Such values are much larger

than what viscous hydrodynamics calculations constrain η/s to be in the deconfined

phase. Since perturbative QCD predicts a large value of η/s in the weak coupling

limit, one has to ask the question how does hadronic η/s behave? The result for η/s

of a pure pion gas of chiral (massless) pions is

η/s =
15

16π

(

fπ

T

)4

. (2.32)

η/s for chiral pions, and 3 flavor pQCD is illustrated in Figure 2.11 [73]. Note that

the behavior of η/s is unknown near Tc, but a potentially rich structure is observed in

other substances such as water and helium, with a possible minimum in η/s existing

near Tc. This feature could be a more universal feature of classes of phase transitions,

as one observes a similar structure in Figures 2.12 and 2.13 for water and helium,

respectively [21]. If one examines Figure 2.11, one sees that for T ≫ Tc, η/s is

expected to be large, whereas the behavior becomes unknown (but suspected to be

very small) near T ≈ (1 − 2)Tc. η/s then is expected to become much larger in the

hadronic phase, although the behavior is unknown again near T ≈ T−
c . In order to

constrain η/s of the QGP, one must work to unmask the highly dissipative effects

in the hadronic phase from the QGP phase. This provides the motivation for a my

calculations of η/s and ζ/s in UrQMD, to be discussed in Chapter 5.
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Figure 2.11: η/s versus temperature for chiral pions and pQCD, taken from [21].

2.5 Strongly Interacting QGP and an Alternative Explanation for low
η/s

The signatures that the quark gluon plasma is a system exhibiting low η/s and large

elliptic flow are plentiful and consistent with lattice calculations confirming large

values of QCD coupling near Tc, and as a result a consensus has emerged in the

RHIC community that the QGP is strongly interacting. However, an alternative

explanation for low η/s is offered if one thinks about an anomalous viscosity. Before

discussing the idea of the anomalous viscosity, we should note that there are some

inconsistencies in the strongly interacting QGP (sQGP) picture.

Microscopic transport theory shows that assuming a quasiparticle description of

quark and gluonic degrees of freedom would require unphysically large cross sections

in order to be consistent with v2 data. In Figure 2.14, a plot of v2 as a function of
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Figure 2.12: η/s versus temperature for water, taken from [21].

transverse momentum for various values of cross sections for elastic gluon-gluon col-

lisions obtained from a microscopic transport model is illustrated. In order to agree

with the STAR v2 data, a value of σel ≈ 45 mb needs to be used [58]. Perturbative

QCD cross sections for the interactions among quarks and gluons are on the order of

σ ∼ 1−3 mb. Since unphysically large cross sections need to be used for a purely par-

tonic transport model to match elliptic flow data, a quasiparticle description for the

QGP seems inadequate, even though parton recombination suggests quarks as the

proper degrees of freedom near Tc. Even for values of the mean free path close near

the deBroglie wavelength, dissipative effects are too large to reproduce the desired

v2. This then must lead us to an alternative explanation for a system exhibiting low

η/s, but devoid of a quasiparticle description for the QGP. We consider the idea of

turbulent color fields generating a so-called “anomalous” viscosity. Anomalous vis-

cosity is defined as any contribution to the shear viscosity originating from a source
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Figure 2.13: η/s versus temperature for helium, taken from [21].

that is not from transport cross sections. A necessary condition for the application

of hydrodynamics to be applied to a medium is that the medium in question be ther-

mal. Although the precise mechanism for the thermalization of the QGP has not

been understood, the idea of plasma turbulence as a possible mechanism has been

studied. A source for generating the plasma turbulence for the QGP is known as

the Weibel instability [74]. It can be shown that an anomalous viscosity can result

if two streams of opposing colliding color charges collide with a seed magnetic field

present. Then the current induced due to the focusing and growing concentration of

positive and negative charges induces a net current which creates a magnetic field

constructively adding with the seed magnetic field. These fields then exponentially

grow in time [76]. This can be calculated with non-Abelian Vlasov equations de-

scribing the interaction of high-pT particles with soft color field modes that form the
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basis for the “hard loop” effective theory. The coupled equations are

dpµ

dτ
= gQaF aµνuν (2.33)

dQa

dτ
= gfabcA

bνuνQ
c (2.34)

DµF
µν = gJν , (2.35)

where g is the QCD coupling, τ is the proper time, Qa are the color charges (a =

1, ..., N2
c − 1), and Abν are the color gauges, and fabc is the structure constant for the

gauge, and

Jν =
∑

i

∫

dτQi(τ)uν
i δ(x − xi(τ)) (2.36)

are the currents for the moving point color charges. If one solves these coupled equa-

tions in a situation involving a medium with an anisotropic momentum distribution,

unstable modes exist that grow exponentially. A derivation from [11, 10, 9], using

linear response theory, yields the relationship between an anomalous viscosity ηA and

the initial momentum anisotropy ∆̄ to be

ηA = − 1

15T

∫

d3p

(2π)3

~p4

E2
p

∆̄(p)
∂f0

∂Ep

. (2.37)

∆̄ is defined through

f1(p, r) = − ∆̄(p)

EpT 2
pipj(∇u)ij, (2.38)

where f1 is an introduced perturbation to the local distribution function, and

(∇u)ij ≡ (∇iuj + ∇jui −
2

3
δij∇ · ~u) (2.39)

is the part of the flow gradient relevant to the shear viscosity coefficient. f1 is related

to the distribution function f and local equilibrium distribution function f0 through

f(p, r) = f0(p) [1 + f1(p, r) (1 ± f0(p))] , (2.40)
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where the +/− refers to Bose/Fermi systems respectively. For massless particles,

∆̄ = 5η/s. If one assumes a boost invariant longitudinal expansion of the form

uz = z/t, (2.41)

then

f1(p) = − ∆̄

3EpT 2τ

(

3p2
z − p2

)

, (2.42)

where τ =
√

t2 − z2 is the proper time in local comoving coordinates. In order to

investigate the response of a the plasma to such a perturbation to the distribution

function, one should start by writing the Vlasov-Boltzmann equation, which is a

transport equation for the phase space distribution of color charges Qa in a color-

magnetic field ~Ba

[

∂

∂t
+ ~v · ∇r + ~F · ∇p

]

f(r, p, t) = C[f ], (2.43)

where

~F = gQa
(

~Ea + ~v × ~Ba
)

, (2.44)

is the color Lorentz force, and C[f ] is the collision term. To isolate the dissipative

effects of the color field, one averages the particle trajectories over an ensemble

of color-magnetic fields. Assuming 〈Ba〉 = 0 and factorizing higher than second

moments of the field distribution, one can show the ensemble averaged phase space

distribution f̄ satisfies the following equation

[

∂

∂t
+ ~v · ∇r −∇i,pDij(p, t)∇j,p

]

f̃ = C[f̃ ], (2.45)

with the effective diffusion tensor

Dij =

∫ t

−∞

dt
′〈Fi(r̄(t

′

), t
′

)Fj(r̄(t), t)〉. (2.46)
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Recall that the energy momentum tensor Tij gives the momentum density compo-

nents of the system, and is defined through

Tij =

∫

d3p
pipj

(2π)3Ep

f(p, r), (2.47)

Inserting the expansion of f from 2.40 and 2.38into 2.47 yields

Tij = T
(0)
ij + δTij = Pδij + ǫuiuj − 2η (∇u)ij − ζδij∇ · u (2.48)

and hence

δTij =

∫

d3p
pipj

(2π)3Ep

f1(p)f0(p) (1 ± f0(p)) (2.49)

=
1

T
(∇)mn

∫

d3p

(2π)3E2
p

pipj∆̄(p)pmpn
∂f0

∂Ep

= −η (∇u)mn [δimδjn + δinδjm + δijδmn] (2.50)

yields

η = − 1

15T

∫

d3p

(2π)3

p4

E2
p

∆̄(p)
∂f0

∂Ep

, (2.51)

recapturing equation 2.37. If one assumes a decoherence time between magnetic

fields at different times to be τmag, defined through

∫ t

−∞

dt
′〈Ba

i (t
′

)Bb
j(t)〉 ≡ 〈Ba

i B
a
j 〉τmag (2.52)

then the authors of [11, 10, 9] find the anisotropy to be

∆̄(p) =
(N2

c − 1)E2
pT

3C2g2〈B2〉τmag

. (2.53)

This then yields a relationship between the anomalous viscosity and field strength

ηA

s
∝ T 6

g2〈B2〉τmag

(2.54)
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where τmag is the decoherence time of the magnetic fields. The magnetic field strength

is dependent upon ζ (NOT the bulk viscosity coefficient), which characterizes the

anisotropy in a dimensionless fashion [76]. An ansatz is used for this dependence.

g2〈B2〉 ∼ g4T 4ζn, (2.55)

so that for a massless, dimensionless gas,

ζ = 10
η

s

∇u

T
(2.56)

ηA

s
= c0

(

T

g2∇u

)3/5

, (2.57)

where c0 depends upon the constituents of the matter in question. The result for

(collisional) shear viscosity derived in the weak coupling limit from QCD from AMY

yields

ηC

s
≈ 5

g4log(1/g)
. (2.58)

For reasonable values for g ≈ 0.2 − 0.3, ηA/s < ηC/s. Note that since η ∼ p̄
σ
, and

cross sections are additive,

1/η = 1/ηA + 1/ηC . (2.59)

This suggests that the viscosity of the system is determined by the subsystem with the

smaller viscosity. This smaller viscosity may be a field-induced anomalous viscosity,

thus eliminating the necessity of using unphysically large binary scattering cross

sections.

The uncertainty in values for η/s for Hot QCD matter in the strongly coupled

region (or possibly weakly coupled region with small anomalous viscosity) highlight

the need to perform a separate robust calculation of η/s in the hadronic phase.
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Figure 2.14: v2 versus pT from Molnar for a partonic microscopic transport model.
Very large cross sections need to be used to reproduce v2 elliptic flow data if one
assumes simple binary scattering in a QGP [58].
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3

Methods of Calculating Transport Coefficients

This chapter summarizes several of the standard approaches to calculate transport

coefficients. Namely the approaches reviewed shall include the relaxation time ap-

proximation within the Boltzmann equation framework and the Green-Kubo formal-

ism.

First, it is necessary to define transport coefficients. They are coefficients de-

scribing perturbations to the energy-momentum tensor in a system near local ther-

mal equilibrium. They characterize expansion coefficients of the energy momentum

tensor from its value in local thermal equilibrium. For example, to first order in

velocity gradients:

Tij = Tij,local − η

(

∂ui

∂rj

+
∂uj

∂ri

− 2

3
δij

~∇ · ~u
)

− ζδij

(

~∇ · ~u
)

, (3.1)

where η is the shear viscosity, and ζ is the bulk viscosity. We shall discuss three

standard methods to calculate transport coefficients in this chapter, and all of the

following approaches have one feature in common. They assume that the system is

sufficiently near equilibrium.
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3.1 The Boltzmann Equation and Relaxation Times

The Boltzmann equation is a transport equation describing the full time evolution

of the one-particle phase space distribution function f , which is a function describ-

ing the distribution of the particles’ position and momenta assuming no ignoring

interparticle correlations. The right hand side is an object known as the collision

integral, which relates precollision distribution functions to postcollision distribution

functions; inherent in the derivation is the assumption that particles only interact

through scattering. In particular, the Boltzmann equation is derived from the fol-

lowing assumptions [50]:

• Particles in the medium only interact via scattering.

• The typical mean free paths of particles are long compared to the range of

interaction.

• f is homogeneous over the range of interaction.

• Molecular chaos exists. Namely, that a two particle distribution function for a

pair of particles can be factorized into the product of two one particle distri-

bution functions, which assumes no interparticle correlation.

(

∂

∂t
+

~p

E
· ~∇
)

f = fZ+ − fZ− (3.2)

fZ+/− are the gain/loss terms, respectively. One should note that the Boltz-

mann equation (3.2) pertains to situations where one is not necessarily in or even

near equilibrium. However, for the purposes of calculating transport coefficients, a

technique has been developed known as the relaxation time approximation where one

solves a linearized Boltzmann equation and expresses the shear and bulk viscosities
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(as well as some other transport coefficients) in terms of a relaxation time. The term

“relaxation time” by no means has a unique definition. We shall see that in fact that

are several types of relaxation processes characterized by timescales and one has to

be precise in defining the “relaxation time.” For the purposes of the relaxation time

approximation, the relaxation time is defined as a timescale characterizing the rate of

change of the phase space distribution function. The relaxation time approximation

is valid only for a system that is sufficiently close to thermal equilibrium.

Let us consider a specific example with a 2 body collision 12 → 34. We explicitly

write the loss and gain terms in the Boltzmann equation for species 1:

f1Z
−
1 =

f1

2E1

∑

2,3,4

g2

1 + δ12

∫

dω2dω3dω4 (2π)4 δ4 (k1 + k2 − k3 − k4) | T12→34 |2 f2f̃3f̃4

(3.3)

f̃1Z
+
1 =

f̃1

2E1

∑

2,3,4

g2

1 + δ12

∫

dω2dω3dω4 (2π)4 δ4 (k1 + k2 − k3 − k4) | T34→12 |2 f̃2f3f4

(3.4)

where dωi = d3ki/ [(2π)32Ei] is the Lorentz invariant phase space element of

particle i, | T12 |2 is the scattering probability, and fi are phase space densities

for species i, and f̃i are 1 ± fi for Bose/Fermi species, respectively. δ12 is unity

for identical particles, 0 for distinguishable particles. For a system sufficiently near

equilibrium, the phase space distribution for species 1 in the case above can be written

as f1 = f 0
1 + δf1, where f 0 is the (local) equilibrium phase space distribution. The

Boltzmann equation then linearized in the relaxation time approximation reads

(

∂

∂t
+

~p

E
· ~∇
)

f ≈ f̃1Z
+,0 − f1Z

−,0 ≡ −δf1

τ r
1 (k1)

, (3.5)
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where τ r
1 , the distribution function relaxation time, is in principal momentum

dependent. Hence the approximation occurs in the linearization, where the local

equilibrium values of f are used to evaluate the gain and loss terms Z+,− [73]. For

multiple scattering channels,

[τ r
1 (k1)]

−1 =
∑

2

[τ r
12(k1)]

−1 . (3.6)

Since the energy momentum tensor is constructed from the phase space distribu-

tion functions through

Tij(x) =

∫

d3p
pipj

p0
f(x, p), (3.7)

one can derive expressions for the shear and bulk viscosities in the relaxation time

approximation. The formulae for the shear and bulk viscosities using a momentum

dependent relaxation time are

η =
1

15T

∑

a

∫

d3p

(2π)3

τap
4
a

E2
a

f eq
a (Ea/T ), (3.8)

ζ =
1

9T

∑

a

∫

d3p

(2π)3

τa (Ea)

E2
a

[(

1 − 3c2
s

)

E2
a − m2

a

]2
f eq

a (Ea/T ), (3.9)

where c2
s is the speed of sound squared [33]. For a perfectly conformal system,

such as an ideal gas of massless particles, the bulk viscosity would vanish because

c2
s = 1/3 for such a system.

3.1.1 Weinberg’s Scaling Relation

Weinberg has derived similar results for a fluid consisting of a medium with a very

short mean free path and mean free times, with radiation quanta (such as photons,
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neutrinos, or gravitons for instance) with a finite mean free time τ . The results are

ζ = 4bT 4τ

(

1

3
− c2

s

)2

(3.10)

η =
4

15
bT 4τ, (3.11)

where b = 8(7)
15

π5 for bosonic(fermionic) radiative quanta [87]. The bulk viscosity

vanishes for c2
s = 1/3 as desired, and note that in equation 3.9, in the limit of massless

particles, equation 3.10 is recovered, with the distribution relaxation time happening

to coincide with the radiative quanta mean free time in Weinberg’s derivation. Hence,

the Weinberg scaling viscosity law becomes

ζ = 15

(

1

3
− c2

s

)2

η. (3.12)

This scaling law might be accurate for a hadronic system of purely chiral pions, but

is not expected to hold for a system of massive pions. The next formalism to be

discussed involves calculating linear transport coefficients from correlation functions

of fluctuations of dissipative fluxes near equilibrium.

3.2 Linear Response Theory: The Kubo/Green-Kubo Formalisms

The presentation of the Kubo formalism here is motivated by the discussion in

Zubarev [90]. There exists a systematic method to extract linear transport coef-

ficients by calculating correlation functions of fluctuations of fluxes perturbing a

system that is near equilibrium. We begin by defining the statistical operator (also

known as the distribution function) for both equilibrium and nonequilibrium systems.

The statistical operator, ρℓ, for an equilibrium system is given by

ρℓ = Q−1
ℓ exp

{

−
∫

dxβ(x)

[

H
′

(x) −
∑

i

µi(x)n
′

i(x)

]}

, (3.13)
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where

Qℓ = Tr exp

{

−
∫

dxβ(x)

[

H
′

(x) −
∑

i

µin
′

i(x)

]}

(3.14)

is the partition function, H(x) is the Hamiltonian density of the system, µi are

the chemical potentials of constituent particle species, and n
′

i(x) are the constituent

particle densities.

The statistical operator of a nonequilibrium system, is defined as follows

ρ = Q−1 exp

{

−
∑

m

∫

[Fm(x, t)Pm(x) (3.15)

−
∫ 0

−∞

eǫt1 (jm(x, t1) · ∇Fm(x, t + t1)

+Pm(x, t1)
∂Fm(x, t + t1)

∂t

)

dt1

]

dx

}

(3.16)

where F0(x, t) = β(x, t), P0(x) = H(x), F1(x, t) = −β(x, t)v(x, t), Fi+1,(x, t) =

−β(x, t)

(

µi(x, t) − (

√

~p2
i + m2

i − mi)

)

, P1 = p(x) is the pressure, Pi+1(x) = ni(x)

are number densities, j0(x) = jH(x), j1(x) = T (x), and ji+1(x) = ji(x) the number

currents. β is the inverse temperature and T is the relevant momentum flux for

shear or bulk viscosity. It is possible to generalize equation 3.15 to speak of general

thermodynamic fluxes. This is useful because the Kubo formalism is generalized to

transport coefficients for any relevant transport quantity.

We can rewrite equation 3.15 so that the statistical operator for a nonequilibrium

system with thermodynamic force perturbations Xm and corresponding operators of

thermal, viscous, and diffusional fluxes jm is then

ρ = Q−1exp

{

−
∑

m

∫
(

Fm(x, t)Pm(x) −
∫ 0

−∞

eǫt1jm(x, t1) · Xm(x, t + t1)dt1

)

dx

}

.

(3.17)

40



For example, jm may represent the viscous fluxes and Xm the velocity gradient,

since transport coefficients are defined as coefficients of the terms perturbing the

energy momentum tensor from local equilibrium. Viscous fluxes involve momentum

transport and viscosities are coefficients of terms involving gradients in flow veloc-

ity, thermal fluxes involve heat transport and are coefficients involving gradients in

temperature, and diffusional fluxes involve particle density transport and involve

gradients in number concentration.

It is possible to rewrite ρ so that we may eventually expand in a series,

ρ = Q−1e−A−B, (3.18)

where

A =
∑

m

∫

Fm(x, t)Pm(x)dx (3.19)

and

B = −
∑

m

∫ ∫ 0

−∞

eǫt1jm(x, t1) · Xm(x, t + t1)dxdt1. (3.20)

Introducing the operator K(τ), defined by

e−(A+B)τ = K (τ) e−Aτ (3.21)

then implies that

K (τ) = 1 −
∫ τ

0

K (τ1) e−AτBeAτ1dτ1 (3.22)

subject to the initial condition K(0)=1.

Iterating this equation, we then expand to linear order in B

e−(A+B) = e−A −
∫ 1

0

e−AτBeAτe−Adτ, (3.23)
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This then leads to

ρ =
−A −

∫ 1

0
e−AτBeAτ e−Adτ

Tr (e−A) −
∫ 1

0
Tr (e−AτBeAτe−A) dτ

(3.24)

ρ ≈
(

1 −
∫ 1

0

(

e−AτBeAτ − 〈e−AτBeAτ 〉ℓ
)

dτ

)

ρℓ, (3.25)

where ρℓ = e−A

Tre−A , and 〈...〉ℓ = Tr (ρℓ...) denotes the averaging with the local-

equilibrium distribution.

By means of the above, we obtain the following relationship between fluxes and

thermodynamic relations:

〈jm(x)〉 = 〈jm(x)〉ℓ +
∑

n

∫ ∫ t

−∞

eǫ(t−t
′
)
(

jm(x), jn(x
′

, t
′ − t)

)

· Xn(x
′

, t
′

)dt
′

dx
′

,

(3.26)

where

(

jm(x), jn(x
′

, t)
)

≡ β−1

∫ β

0

〈

jm(x)
(

jn(x
′

, t, iτ) − 〈jn(x
′

, t)
〉

ℓ

)

〉ℓdτ (3.27)

are the quantum time correlation functions of jn(x
′

, t′) = e−β−1Aτjn(x
′

, t)eβ−1Aτ .

The linear relations above between the fluxes and thermodynamic forces are retarded

and nonlocal.

Suppose the thermodynamic forces depend periodically on the time, with fre-

quency ω, Xn(x
′

, t
′

) = Xn(x
′

)cosωt
′

. Then

〈jm(x)〉 = 〈jm(x)〉ℓ+
∑

n

Reeiωt

∫ ∫ t

−∞

e
ǫ
“

t
′
−t

”

(

jm(x), jn(x
′

, t
′ − t)

)

·Xn(x
′

)eiω(t
′
−t)dt

′

dx
′

(3.28)
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The Fourier components of the quantum correlation functions are the transport

coefficients in the above equations. Taking retardation into account leads to dis-

persion of the kinetic coefficients. Neglecting retardation in 3.28, we can take the

thermodynamic forces at time t
′

= t outside the integral over time. Hence we are in-

herently assuming that the thermodynamic period/response times are much greater

than the correlation decay times. Applying this assumption then allows us to obtain

linear relations between ther thermodynamic forces and fluxes without retardation,

but nonlocal in character:

〈jm(x)〉 = 〈jm(x)〉ℓ +
∑

n

∫

Lmn(x, x
′

) · Xn(x
′

, t)dx
′

, (3.29)

where

Lmn(x, x
′

) =

∫ 0

−∞

eǫt
(

jm(x), jn(x
′

, t)
)

dt (3.30)

are the transport coefficients.

If one makes a further assumption of locality, implying that thermodynamic forces

vary very little over the correlation length of Lmn(x, x
′

), then we can write

〈jm(x)〉 = 〈jm(x)〉ℓ +
∑

n

Lmn(x) · Xn(x), (3.31)

where Lmn(x) =
∫

Lmn(x, x
′

)dx.

Hence for the viscous and diffusional fluxes, respectively, we obtain

〈T ′〉 = 〈T ′〉ℓ +
∑

n

∫

L1n(x, x
′

) · Xn(x
′

, t)dx
′

(3.32)
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and

〈j ′

i〉 = 〈j ′

i〉ℓ +
∑

n

∫

Lin(x, x
′

) · Xn(x
′

, t)dx
′

(3.33)

since viscosity and diffusion refer to momentum and number density transport,

respectively. The fluxes represent perturbations to local equilibrium of a system

and the transport coefficients Lin and thermodynamic forces Xn representing the

small perturbations. In order to obtain the explicit expressions for the shear and

bulk viscosities, it is helpful to look at entropy production in nonequlibrium pro-

cesses. One shall define the entropy of the nonequlibrium state as the entropy of the

corresponding local equlibrium state given by the density operator

ρℓ = Q−1
ℓ exp−

∑

m

∫

Fm(x, t)Pm(x)dx, (3.34)

and from the statistical definition of entropy, S = −〈ρ〉ℓ, implying

S = φ +
∑

m

∫

Fm(x, t)〈Pm(x)〉dx, (3.35)

where φ = logQℓ.

It is then possible to show

∂S(x)

∂t
= −∇ · jS(x) + σ(x) (3.36)

where

jS(x) =
∑

m

Fm(x, t)〈jm(x)〉 + β(x)v(x, t)p(x) (3.37)

is the entropy flux density, and
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σ(x) =
∑

m

(〈jm(x)〉 − 〈jm(x)〉ℓ) · ∇Fm(x, t) (3.38)

is the local entropy production.

Writing the local entropy production in terms of the thermodynamic forces Xm:

σ(x) =
∑

m

(〈jm(x)〉 − 〈jm(x)〉ℓ) · ∇Fm =
∑

m

(〈jm(x)〉 − 〈jm(x)〉ℓ) · Xm(x). (3.39)

We introduce some definitions as follows by decomposing the viscous stress tensor

π = T (x) − 〈T (x)〉ℓ. As a result, one can write linear transport coefficient relations

separately for vector, tensor, and scalar processes:

〈jQ〉 = −L00 ·
∇T

T 2
−

l
∑

i=1

L0i · ∇
(µi

T

)

, (3.40)

〈̊π〉 = −L
(1)
11

T
·
(

∇̊v
)

(3.41)

〈Π〉 =
1

3

3
∑

α=1

〈παα〉 = −L
(2)
11

T
∇ · v, (3.42)

where the circle denotes tracelessness.

This implies

L
(1)
11 =

∫ ∫ 0

−∞

eǫt
(

T̊ (x), T̊ (x
′

, t)
)

dx
′

dt (3.43)

and

L
(2)
11 =

∫ ∫ 0

∞

eǫt

(

p(x), p(x
′

, t) −
(

∂p

∂un

)

H(x
′

, t) −
∑

i

(

∂p

∂ni u

)

ni(x
′

, t)

)

dx
′

dt

(3.44)
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If we are considering an isotropic medium, then the relations can be simplified

and correlation functions constructed from vectors or tensors have the form of scalars

multiplied by unit tensors:

Lµν
00 = L0δµν (3.45)

Lµν
0i = Lµν

i0 = Liδµν (3.46)

L
(1)µνµiνi

11 =
L

(1)
1

2

(

δµµi
δννi

+ δµνi
δνµi

− 2

3
δµνδµiνi

)

(3.47)

Comparing this with our earlier definitions of shear and bulk viscosities η and ζ, we

find

η =
L

(1)
1

2T
=

1

10T

∫ ∫ 0

−∞

eǫt
(

T̊ (x), T̊ (x
′

, t)
)

dx
′

dt (3.48)

=
1

T

∫ ∫ 0

−∞

eǫt
(

Txy(x), Txy(x
′

, t)
)

dx
′

dt

=
1

T

∫ ∫ 0

−∞

eǫt〈Txy(x), Txy(x
′

, t)〉dx
′

dt (3.49)

since 〈Txy(x)〉ℓ = 0.

The formula for bulk viscosity is then

ζ =
L

(2)
11

T
=

∫ ∫ 0

−∞

eǫt

(

p(x), p(x
′

, t) −
(

∂p

∂un

)

H(x
′

, t) −
∑

i

(

∂p

∂ni u

)

ni(x
′

, t)

)

dx
′

dt

(3.50)
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If one neglects the term involving particle number fluctuations, then

ζ =
1

T

∫ ∫ ∞

0

eǫt〈P̃ (0, 0)P̃ (x, t)〉dxdt, (3.51)

where P̃ = 1
3
(Txx + Tyy + Tzz) − Peq + c2

s (T00 − ǫeq) is the pressure current.

Similarly, one obtains for the self-diffusion coefficient

D =
1

3
〈eǫt~v(0) · ~v(t)〉 (3.52)

The limit ǫ → 0 is implied in equations 3.48-3.52, hence yielding the Kubo formula

for shear, bulk viscosity, and diffusion to be, respectively,

η =
1

T

∫

d3r

∫ ∞

0

dt〈πxy(~0, 0)πxy(~r, t)〉, (3.53)

ζ =
1

T

∫

d3r

∫ ∞

0

dt〈P̃ (~0, 0)P̃ (~r, t)〉, (3.54)

where

P̃ ≡ 1

3
(Txx + Tyy + Tzz) − Peq + c2

s (T00 − ǫeq) (3.55)

is the pressure current. and

D =
1

3

∫ ∞

0

dt〈~v(0) · ~v(t)〉 (3.56)

Calculations will be presented in Chapter 5 using the relaxation time approximation

in a certain limit and the Kubo formalism.
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4

Microscopic Transport Models: Simulating

Equilibriated Infinite Matter

This chapter describes the microscopic transport models used to simulate the hadronic

and partonic media in our systems. These are the Ultrarelativistic Quantum Molecu-

lar Dynamics (UrQMD) model and the Parton Cascade Model (PCM), respectively.

Both of these covariant transport models are based upon the Boltzmann equation

(

∂

∂t
+

~p

E
· ∇r

)

f = fZ+ − fZ−, (4.1)

where f is the one-particle phase-space distribution function for a given species,

and fZ+ and fZ− are the gain and loss terms, respectively, as defined in Chapter

3. Interactions in our calculations are based only upon scattering, and we neglect

any interparticle potential. The criterion for a collision to occur is based upon the

geometric interpretation of the cross section:

dtrans ≤
√

σtot

π
, (4.2)
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where dtrans is the Lorentz-invariant transverse distance at closest approach between

two particles:

dtrans =

√

(

(qn − qm)ν(pm + pn)ν

(pn + pm)2
(pn + pm)µ − (qn − qm)µ

)2

, (4.3)

using 4 vectors for positions qν , momenta pν .

4.1 The Ultrarelativistic Quantum Molecular Dynamics (UrQMD)
Model

Our hadronic medium is simulated using Ultrarelativistic Quantum Molecular Dy-

namics (UrQMD), which is composed of purely hadronic degrees of freedom, and

does not contain information about any possible crossover or phase transition into

partonic degrees of freedom. Interactions in our calculations are based only upon

scattering, and we neglect any interparticle potential. UrQMD is described in great

detail in [14]. The model includes 55 baryon and baryon resonance species and 32

meson and meson resonance species, (and their antiparticles). The most massive

state is a baryonic resonance with mass of 2.250 GeV. These included UrQMD in-

clude strange particles, but no particles containing heavy quarks (c or b quarks). The

particle species of UrQMD are listed in Tables 4.1 and 4.2.

4.2 Treatment of Interactions

The cross sections in UrQMD are dependent on the total center of mass energy of

the system,
√

s, and the particle types in the interaction. Optional features include

enabling Pauli blocking due to Fermi statistics, although in practice this really has

no significant effect at temperatures relevant for the hadronic gas (T ∼ 100 − 170

MeV).
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Table 4.1: Baryons and baryon-resonances included into the UrQMD model.
Through baryon-antibaryon symmetry the respective antibaryon states are included
as well.

nucleon delta lambda sigma xi omega

N938 ∆1232 Λ1116 Σ1192 Ξ1315 Ω1672

N1440 ∆1600 Λ1405 Σ1385 Ξ1530

N1520 ∆1620 Λ1520 Σ1660 Ξ1690

N1535 ∆1700 Λ1600 Σ1670 Ξ1820

N1650 ∆1900 Λ1670 Σ1750 Ξ1950

N1675 ∆1905 Λ1690 Σ1775 Ξ2030

N1680 ∆1910 Λ1800 Σ1915

N1700 ∆1920 Λ1810 Σ1940

N1710 ∆1930 Λ1820 Σ2030

N1720 ∆1950 Λ1830

N1900 Λ1890

N1990 Λ2100

N2080 Λ2110

N2190

N2200

N2250

Table 4.2: Mesons and meson-resonances, sorted with respect to spin and parity,
included into the UrQMD model.

0−+ 1−− 0++ 1++ 1+− 2++ (1−−)∗ (1−−)∗∗

π ρ a0 a1 b1 a2 ρ1450 ρ1700

K K∗ K∗
0 K∗

1 K1 K∗
2 K∗

1410 K∗
1680

η ω f0 f1 h1 f2 ω1420 ω1662

η′ φ f∗
0 f ′

1 h′
1 f ′

2 φ1680 φ1900

We can summarize the types of interactions we investigate in UrQMD into the

following general classes:

• Constant elastic cross sections.

• Meson-baryon or meson-meson interactions.

• Nucleon-nucleon interactions.
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• Nucleon-antinucleon annihilations.

• Additive quark model.

The matrix amplitudes for each of the aforementioned classes will be described. First,

one should speak of the general structure of the interactions. The interactions are

described using the following equations found in standard kinematics and particle

data book references [71].

If one is to consider an interaction for a process 1,2→ 3,4, then the cross section

for such an interaction is given by

σ1,2→3,4 ∼ (2S3 + 1)(2S4 + 1)
〈p3,4〉
〈p1,2〉

1

s
|M(m3, m4)|2, (4.4)

where S3,4 are the intrinsic spins of particles 3,4, |M(m3, m4)|2 is the modulus of

the scattering amplitude squared of such an interaction,
√

s the total center of mass

energy, and the relations for the momenta are given by

〈p3,4(
√

s)〉 = pCMS(
√

s) =
1

2
√

s

√

(s − (m3 + m4)2) (s − (m3 − m4)2), (4.5)

with m3,4 the masses of particles 3,4 and a similar expression holding for 1,2. In

case the particles 3,4 are resonances, then one integrates over their respective mass

distributions

〈p3,4(
√

s)〉 =

∫ ∫

pCMS(
√

s, m3, m4)A3(m3)A4(m4)dm3dm4 (4.6)

with the distribution taking a Breit-Wigner form with a possibly mass-dependent

decay width Γ(m).

Ar(m) =
1

N

Γ(m)

(mr − m)2 + Γ(m)2/4
(4.7)
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with normalization

N =

∫ ∞

−∞

Γ(m)

(mr − m)2 + Γ(m)2/4
dm. (4.8)

The full decay widths are obtained by summing over the partial decay widths

[14].

Γtot(M) =

Nbr
∑

br=i,j

Γi,j(M) (4.9)

Γi,j(M) = Γi,j
R

MR

M

( 〈pi,j(M)〉
〈pi,j(MR)〉

)2l+1
1.2

1 + 0.2
(

〈pi,j(M)〉

〈pi,j(MR)〉

)2l
, (4.10)

here MR denotes the pole mass of the resonance, Γi,j
R its partial decay width into the

channel i and j at the pole and l the decay angular momentum of the exit channel.

All pole masses and partial decay widths at the pole are taken from the Review of

Particle Properties [71]. Γi,j(M) is constructed in such a way that Γi,j(MR) = Γi,j
R is

fulfilled at the pole. In many cases only crude estimates for Γi,j
R are given in [71] – the

partial decay widths must then be fixed by studying exclusive particle production in

elementary proton-proton and pion-proton reactions. The values of decay widths at

pole mass M = MR are given in Tables 4.3 -4.8.

Constant elastic cross sections

If all inelastic collisions are disabled in UrQMD, there is a constant cross-section for

elastic meson-meson interactions. In particular, that channel is for the process

π + π → π + π(elastic). (4.11)

The default value used in UrQMD was 5 mb, but for some studies we have also

adjusted the fixed cross section to 10 mb or 50 mb. In principle it can also be adjusted

to the cross section for the additive quark model (AQM), as in equation 4.19.

52



Meson-baryon and meson-meson interactions

The total resonant meson-baryon cross section for non-strange particles is given by

σMB
tot (

√
s) =

∑

R=∆,N∗

〈jB, mB, jM , mM‖JR, MR〉
2SR + 1

(2SB + 1)(2SM + 1)

× π

p2
CMS

ΓR→MBΓtot

(MR −√
s)2 +

Γ2
tot

4

(4.12)

with the total and partial
√

s-dependent decay widths Γtot and ΓR→MB (see equa-

tions (4.9) and (4.10)) [14]. Therefore, the total pion-nucleon cross section depends

on all pole masses, widths and branching ratios of all N∗ and ∆∗ resonances listed

in table 4.3.

Nucleon-nucleon interactions

The form for the scattering amplitude depends on the specific reaction channels

considered. For NN → N∆1232, this is

|M(
√

s, m3, m4)|2 = A
m2

∆Γ2
∆

(s − m2
∆)2 + m2

∆Γ2
∆

, (4.13)

where A = 40000, Γ∆ = 0.115 GeV, m∆ = 1.232 GeV [14]. For NN → NN∗, NN →

N∆∗, NN → ∆1232N
∗, and NN → ∆1232∆

∗,

|M(
√

s, m3, m4)|2 = A
1

(m3 − m4)2(m3 + m4)2
, (4.14)

where A = 6.3 for NN → NN∗, A = 12 for NN → N∆∗, and A = 3.5 for

NN → ∆1232N
∗, and the same parameters as in equation 4.13. For NN → ∆∆

|M(
√

s, m3, m4)|2 = A (4.15)

with A = 2.8 [14].
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Nucleon-antinucleon annihilations

To simulate nucleon-antinucleon annihilation, we have programmed two processes

in such a manner that respects detailed balance. In this context, the principle of

detailed balance is related to the invariance of the relevant matrix element under

time-reversal. It is expressed in the form,

σf→i =
~p2

i

~p2
f

gi

gf

σi→f , (4.16)

with g denoting the spin-isospin degeneracy factors. The above form restricts us to

considering 1 ↔ 2 and 2 ↔ 2 processes. On average, the final state of a NN̄ annihila-

tion contains 5 pions. Hence, in order to implement baryon-antibaryon annihilation

in such a way that respects detailed balance, one should avoid multi-particle exit

states, as they cannot be handled with our collision algorithm. As such we consider

the following two processes:

ρφ(1020) ↔ NN̄ (4.17)

and

ρω(1420) ↔ NN̄. (4.18)

Our strategy involves channeling a NN̄ annihilation into a two resonance state cor-

responding to the quantum numbers representative of a five-pion state. Likewise,

in order to respect detailed balance, we must mimic NN̄ production by using a

two-resonance state as the scattering channel. The logic is as follows: the ρ meson

decays predominantly into 2 pions, and both the φ(1020) and ω(1420) decay into a

ρ meson and a pion. Hence an effective two body resonance interaction is equivalent

to creating a five pion state in such a way that detailed balance is maintained in

UrQMD.
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Additive quark model

The additive quark model cross sections are given (in mb) by

σtot = 40

(

2

3

)nM

(1 − 0.4xs
1)(1 − 0.4xs

2) (4.19)

where nM is the number of colliding mesons, and xs
i is the ratio of strange quarks to

non-strange quarks in the ith hadron. The elastic contribution by each is then

σel = 0.039 · σ2/3
tot [14]. (4.20)

4.3 The Parton Cascade Model (PCM)

The Parton Cascade Model (PCM) [35, 34] is a microscopic transport model which

is used to simulate the time evolution of a system of quarks and gluons utilizing the

Boltzmann equation. We define a box with periodic boundary conditions (to simu-

late infinite matter) and sample thermal quark and gluon distribution functions to

generate an ensemble of particles at a given temperature and zero chemical potential.

∑

i

Ci[F ] ≡ fZ+ − fZ− (4.21)

The PCM collision term Ci is a nonlinear functional of the phase-space distribution

function (the summation index refers to the included processes). Although the col-

lision term, in principle, includes factors encoding the Bose-Einstein or Fermi-Dirac

statistics of the partons, we neglect those effects here.

The collision integrals have the form:

Ci[F ] =
(2π)4

2SiEi

·
∫

∏

j

dΓj |M|2 δ4(Pin − Pout) D(Fk(x, ~p)) (4.22)
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Table 4.3: Masses, widths and branching ratios for non-strange baryon-resonances in
UrQMD. Masses are given in GeV and the widths in MeV. All parameters are within
the range given by the Review of Particle Properties [71] and have been tuned to
exclusive particle production channels.

resonance mass width Nγ Nπ Nη Nω N̺ Nππ ∆1232π N∗
1440π ΛK

N∗
1440 1.440 200 0.70 0.05 0.25

N∗
1520 1.520 125 0.60 0.15 0.25

N∗
1535 1.535 150 0.001 0.55 0.35 0.05 0.05

N∗
1650 1.650 150 0.65 0.05 0.05 0.10 0.05 0.10

N∗
1675 1.675 140 0.45 0.55

N∗
1680 1.680 120 0.65 0.20 0.15

N∗
1700 1.700 100 0.10 0.05 0.05 0.45 0.35

N∗
1710 1.710 110 0.15 0.20 0.05 0.20 0.20 0.10 0.10

N∗
1720 1.720 150 0.15 0.25 0.45 0.10 0.05

N∗
1900 1.870 500 0.35 0.55 0.05 0.05

N∗
1990 1.990 550 0.05 0.15 0.25 0.30 0.15 0.10

N∗
2080 2.040 250 0.60 0.05 0.25 0.05 0.05

N∗
2190 2.190 550 0.35 0.30 0.15 0.15 0.05

N∗
2220 2.220 550 0.35 0.25 0.20 0.20

N∗
2250 2.250 470 0.30 0.25 0.20 0.20 0.05

∆1232 1.232 115. 0.01 1.00

∆∗
1600 1.700 200 0.15 0.55 0.30

∆∗
1620 1.675 180 0.25 0.60 0.15

∆∗
1700 1.750 300 0.20 0.10 0.55 0.15

∆∗
1900 1.850 240 0.30 0.15 0.30 0.25

∆∗
1905 1.880 280 0.20 0.60 0.10 0.10

∆∗
1910 1.900 250 0.35 0.40 0.15 0.10

∆∗
1920 1.920 150 0.15 0.30 0.30 0.25

∆∗
1930 1.930 250 0.20 0.25 0.25 0.30

∆∗
1950 1.950 250 0.01 0.45 0.15 0.20 0.20

with

D(Fk(x, ~p)) =
∏

out

Fk(x, ~p) −
∏

in

Fk(x, ~p) (4.23)

and

∏

j

dΓj =
∏

j 6=i
in,out

d3pj

(2π)3 (2p0
j)

. (4.24)

Si is a statistical factor defined as Si =
∏

j 6=i

K in
a ! Kout

a ! with K in,out
a identical partons

of species a in the initial or final state of the process, excluding the ith parton.

The matrix elements |M|2 account for the following processes in Figure 4.1.
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Table 4.4: Masses, widths and branching ratios for single-strange baryon-resonances
in UrQMD. Masses are given in GeV and the widths in MeV. All parameters are
within the range given by the Review of Particle Properties [71] and have been tuned
to exclusive particle production channels and to the total kaon-nucleon cross section.

resonance mass width NK̄ NK̄∗
892 Σπ Σ∗π Λγ Λη Λω Λπ Ση Λ∗π ∆K̄

Λ∗
1405 1.407 50 1.00

Λ∗
1520 1.520 16 0.45 0.43 0.11 0.01

Λ∗
1600 1.600 150 0.35 0.65

Λ∗
1670 1.670 35 0.20 0.50 0.30

Λ∗
1690 1.690 60 0.25 0.45 0.30

Λ∗
1800 1.800 300 0.40 0.20 0.20 0.20

Λ∗
1810 1.810 150 0.35 0.45 0.15 0.05

Λ∗
1820 1.820 80 0.73 0.16 0.11

Λ∗
1830 1.830 95 0.10 0.70 0.20

Λ∗
1890 1.890 100 0.37 0.21 0.11 0.31

Λ∗
2100 2.100 200 0.35 0.20 0.05 0.30 0.02 0.08

Λ∗
2110 2.110 200 0.25 0.45 0.30

Σ∗
1385 1.384 36 0.12 0.88

Σ∗
1660 1.660 100 0.30 0.35 0.35

Σ∗
1670 1.670 60 0.15 0.70 0.15

Σ∗
1750 1.750 90 0.40 0.05 0.55

Σ∗
1775 1.775 120 0.40 0.04 0.10 0.23 0.23

Σ∗
1915 1.915 120 0.15 0.40 0.05 0.40

Σ∗
1940 1.940 220 0.10 0.15 0.15 0.15 0.15 0.15 0.15

Σ∗
2030 2.030 180 0.20 0.04 0.10 0.10 0.20 0.18 0.18

Table 4.5: Masses, widths and branching ratios for double-strange baryon-resonances
in UrQMD. Masses are given in GeV and the widths in MeV. All parameters are
within the range given by the Review of Particle Properties [71] and have been tuned
to exclusive particle production channels.

resonance mass width Ξπ Ξγ ΛK̄ ΣK̄

Ξ∗
1530 1.532 9 0.98 0.02

Ξ∗
1690 1.700 50 0.10 0.70 0.20

Ξ∗
1820 1.823 24 0.15 0.70 0.15

Ξ∗
1950 1.950 60 0.25 0.50 0.25

Ξ∗
2030 2.025 20 0.10 0.20 0.70
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Table 4.6: Masses, widths and branching ratios for meson-resonances in UrQMD,
part I. Masses are given in GeV and the widths in MeV. All parameters are within
the range given by the Review of Particle Properties [71]. Additional branching
ratios can be found in table 4.7 and 4.8.

meson mass width γπ γρ γω γη γK ππ πρ 3π πη 4π KK̄∗ K̄K∗

ω 0.782 8 0.09 0.02 0.89

ρ 0.769 151 1.00

f0(980) 0.980 100 0.70

η′ 0.958 0.2 0.30 0.05

K∗ 0.893 50

φ 1.019 4 0.01 0.13 0.02

K∗
0 1.429 287

a0 0.984 100 0.90

f0(1370) 1.370 200 0.10 0.70

K1(1270) 1.273 90

a1 1.230 400 0.10 0.90

f1 1.282 24 0.07 0.20

f1(1510) 1.512 350 0.50 0.50

K2(1430) 1.430 100

a2(1320) 1.318 107 0.70 0.14

f2(1270) 1.275 185 0.50 0.30

f ′
2(1525) 1.525 76 0.01

K1(1400) 1.400 174

b1(1235) 1.235 142

h1(1170) 1.170 360 0.90 0.10

h′
1(1380) 1.380 80 0.50 0.50

K∗(1410) 1.410 227

ρ(1465) 1.465 310 0.50 0.50

ω(1419) 1.419 174 1.00

φ(1680) 1.680 150 0.40 0.40

K∗(1680) 1.680 323

ρ(1700) 1.700 235 0.10 0.20

ω(1662) 1.662 280 0.50

φ(1900) 1.900 400 0.40 0.40

Figure 4.1: Feynman diagrams for the processes included in PCM.
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Table 4.7: Masses, widths and branching ratios for meson-resonances in
UrQMD,part II. Masses are given in GeV and the widths in MeV. All parameters
are within the range given by the Review of Particle Properties [71].

meson mass width ηππ ηρ ρππ ωππ ηη KK̄ KK̄π Kπ K∗π Kρ Kω

ω 0.782 8

ρ 0.769 151

f0(980) 0.980 100 0.30

η′ 0.958 0 0.65

K∗ 0.893 50 1.00

φ 1.019 4 0.84

K∗
0 1.429 287 1.00

a0 0.984 100 0.10

f0(1370) 1.370 200 0.20

K1(1270) 1.273 90 0.47 0.42 0.11

a1 1.230 400

f1 1.282 24 0.54 0.10 0.09

f1(1510) 1.512 350

K2(1430 1.430 100 0.50 0.25 0.09 0.03

a2(1320) 1.318 107 0.11 0.05

f2(1270 1.275 185 0.20

f ′
2(1525) 1.525 76 0.10 0.89

K1(1400) 1.400 174 0.96 0.03 0.01

b1(1235) 1.235 142 0.10

h1(1170) 1.170 360

h′
1(1380) 1.380 80

K∗(1410) 1.410 227 0.30 0.65 0.05

ρ(1465) 1.465 310

ω(1419) 1.419 174

φ(1680) 1.680 150 0.10 0.10

K∗(1680) 1.680 323 0.40 0.30 0.30

ρ(1700) 1.700 235 0.70

ω(1662) 1.662 280 0.50

φ(1900) 1.900 400 0.10 0.10

The corresponding scattering cross sections are expressed in terms of spin- and

colour-averaged amplitudes |M|2:

(

dσ̂

dQ2

)

ab→cd

=
1

16πŝ2
〈|M|2〉 (4.25)

For the transport calculation we also need the total cross section as a function of
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Table 4.8: Masses, widths and branching ratios for meson-resonances in
UrQMD,part III. Masses are given in GeV and the widths in MeV. All parameters
are within the range given by the Review of Particle Properties [71].

meson mass width K∗ππ ωπ

ω 0.782 8

ρ 0.769 151

f0(980) 0.980 100

η′ 0.958 0

K∗ 0.893 50

φ 1.019 4

K∗
0 1.429 287

a0 0.984 100

f0(1370) 1.370 200

K1(1270) 1.273 90

a1 1.230 400

f1 1.282 24

f1(1510) 1.512 350

K2(1430 1.430 100 0.13

a2(1320) 1.318 107

f2(1270 1.275 185

f ′
2(1525) 1.525 76

K1(1400) 1.400 174

b1(1235) 1.235 142 0.90

h1(1170) 1.170 360

h′
1(1380) 1.380 80

K∗(1410) 1.410 227

ρ(1465) 1.465 310

ω(1419) 1.419 174

φ(1680) 1.680 150

K∗(1680) 1.680 323

ρ(1700) 1.700 235

ω(1662) 1.662 280

φ(1900) 1.900 400

Mandelstam ŝ which can be obtained from (4.25):

σ̂ab(ŝ) =
∑

c,d

ŝ
∫

(pmin
T

)2

(

dσ̂

dQ2

)

ab→cd

dQ2 . (4.26)

The amplitudes for the above processes have been calculated in refs. [22, 20] for

massless quarks. Note that in equation 4.26 a low momentum cutoff is introduced,

since the relevant cross sections diverge at low momentum. This low momentum
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divergence is known as an infrared (IR) divergence, which is regularized using a

temperature dependent Debye mass mD, which is an effect to account for effects of

color field screening. We shall use two different expressions for mD – the first one

is a Debye-mass for particles obeying Boltzmann statistics which has been used in

[88, 28, 29, 89, 86] and which we utilize to allow our results to be compared to these

calculations:

mD(T ) =

√

24

π
αsT 2 , (4.27)

and the second one is the standard Debye mass used in pQCD calculations for systems

of quarks and gluons:

mD(T ) = gT
√

(2Nc + Nf )/6 (4.28)

The first mD parametrization we shall refer to as Boltzmann-mD whereas the second

parametrization we shall refer to as regular mD. In both cases the coupling constant

is defined as

αs =
g2

4π
(4.29)

and can either be chosen as a constant parameter, or to have the following temper-

ature dependence:

1

g2
=

9

8π2
ln

(

T

ΛT

)

+
4

9π2
ln

(

2 ln

(

T

ΛT

))

(4.30)

with ΛT = 30 MeV.

4.4 Simulating a Hot QCD Gas in Equilibrium

Now that the UrQMD and PCM models have been described, I proceed to discuss

our techniques for ensuring the simulated gas remains in equilibrium and maintains

equilibrium.
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4.4.1 Hadronic Gas in Equilibrium

To force our system into equilibrium, we confine our hadronic medium to a cubic

box with periodic boundary conditions in real space. The initial particle species are

initialized such that the system does not exhibit any collective center of mass motion:

Npart
∑

i=1

~pi = 0. (4.31)

This technique was also used in [16, 63, 64]. The input parameters of our system are

as follows: volume of the box, and initial particle species.

Initialization Schemes

There are two options for initializing our calculations in UrQMD to model a ther-

mally and chemically equilibriated hadron gas. One involves the stream-on-stream

initialization, where the particles are randomly distributed in momentum space with

momenta ranging from 0 to the Fermi momentum:

pF = (3π2n)1/3, (4.32)

and the overall energy-density of the system is being fixed. One can also employ

the thermal initialization, where particles are initialized according to a Boltzmann

distribution at a given effective chemical potential µi and temperature T for species

i:

Ni = V

∫

d3p

(2π)3
exp

(

−
√

p2 + m2
i − µi

T

)

. (4.33)

In order to verify our system for thermal and chemical equilibrium for using the

stream-on-stream initialization and for robustness of the thermal initialization, we

check for chemical and thermal equilibriation in the system, as shown below.
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4.4.2 Chemical Equilibriation

The time evolution of the primary stable particle species in our system for the case

of ρB = ρ0 and ǫ = 0.3 GeV/fm3 is illustrated in Figure 4.2. Note that the chemical

equilibriation time for the strange particle species is much longer than for non-strange

hadrons due to suppression of strange processes. We hence denote the chemical

equilibriation time as the timestep when the primary particle species saturate as a

function of Monte Carlo time. In order to verify that proper chemical equilibrium

has been reached, we check our ratios against an independent calculation using a

statistical model for a hadron resonance gas(HG).

The particular statistical model for the HG we use is known as SHARE (Statistical

Hadronization with Resonances), which is described in detail in [84, 83]. The particle

and decay tables of SHARE have been modified to match those of our version of

UrQMD to maintain consistency of the treated degrees of freedom. We extract

particle ratios from both the UrQMD simulations and from the “UrQMD-tuned”

grand canonical ensemble HG statistical model. In such a model, the number density

of the gas is given by

n(T, µB) =
∑

k

gk

∫

d3p

(2π)3

1

exp

[√
p2+m2−µB

T

]

± 1

, (4.34)

where T is the temperature and µB is the baryochemical potential, and the particle

species are indexed by k. The upper sign refers to fermions and the lower sign refers

to bosons.

4.4.3 Thermal and Kinetic Equilibriation

Once we have determined that chemical equilibriation has been established for a par-

ticular case, we then examine the momenta distributions at that particular timestep

to check for kinetic equilibriation. A system which has attained thermal equilibrium
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Figure 4.2: Particle density versus time for the primary particle species in our
system for the case ǫ = 0.3 GeV/fm3, at ground state nuclear density [26]. Note
the longer equilibriation time for the kaons, which contain strange quarks, relative
to that for the pions or nucleons.

should have its momenta distributions following a Boltzmann distribution:

d3Ni

d3p
∝ exp

(

−Ei

T

)

(4.35)

for a given species Ni. We know that for a system realizing kinetic equilibrium,

the momenta distributions should be isotropic, enabling us to write d3p = 4πp2dp,

where p is the three-momentum magnitude. Using the relativistic dispersion rela-

tion Ei =
√

p2
i + m2

i enables us to use the alternate observable 1
pE

dNi

dE
. Figure 4.3

shows the momenta distribution in the x, y, and z directions evaluated at chemical

equilibriation time for the case ρB = ρ0 and ǫ = 0.5 GeV/fm3.

The temperatures extracted from individual reduced χ2 fits to the particle species

of Boltzmann distributions agree within a certain window of 5-10 MeV. There are
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Figure 4.3: Momenta distributions in the x,y, and z directions [26]. These all are
for kaon spectra at the case of ground state nuclear density and energy density =
0.5 GeV/fm3.

two reasons for this: one reason is due to the fact that we are using a Monte Carlo

simulation, and in such a simulation, it is very difficult to get the temperatures of

the different particle species to match perfectly even using high statistics. Another

reason is due to distortion of particle spectra from resonance effects. An example of

this effect can be glimpsed from Figure 4.4, where the pion spectra at low energy

slightly rises above the red line representing a Boltzmann distribution. Note that

since we initialize our gases in the case corresponding to Figure 4.2 with nucleons

only, any pions that are produced result from resonance decays, and such resonances

are responsible for distortion of particle spectra. The temperature of the system
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extracted is the chemically weighted temperature of the primary particle species:

Tchem =
∑

i

(

ni
∑

j nj

)

Ti, (4.36)

where Ti are the temperatures extracted from reduced χ2 fits to the individual particle

species i, and ni denoting their densities. The primary particle species are nucleons,

pions, kaons and hyperons for our study at finite baryon number density, and the

species are pions and kaons for our study of mesonic matter. It is necessary to

check whether all the primary particle species can be fit to Boltzmann distributions

using the aforementioned chemically averaged temperatures. Such an example is

illustrated in Figure 4.4 using Tchem = 169 MeV. Using this procedure of extracting

the system’s temperature given the energy and baryon number density as input

parameters in UrQMD, we can obtain the system’s equation of state(EoS), akin to

the calculation performed in [16]. In addition to extracting the system temperature

from the energy density input, we extract the pressure of the system:

P =
1

3V

Npart
∑

i

~p2
i

Ei

, (4.37)

and similarly extract the pressure from the statistical model

P (T, µB) =
∑

k

gk

∫

d3p

(2π)3

p2

3
√

p2 + m2

1

exp

[√
p2+m2−µB

T

]

± 1

, (4.38)

where the upper sign refers to fermions (hence at finite µB) and the lower sign refers

to bosons (at µB = 0). The resulting EoS for the cases corresponding to ρB = ρ0

is shown in Figure 4.5. Since we have disabled detailed balance-violating string

excitations which lead to excited states with an exponential mass spectrum, we do not

observe a saturation of temperature with increasing energy density as predicted by
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Hagedorn and seen in [16], although the specific EoS in the aforementioned reference

including detailed-balance preserving string excitations is successfully reproduced.

Figure 4.4: The observable 1
pE

dN
dE

versus E, which can be well described by a

Boltzmann distribution. The above plot corresponds to ǫ = 0.5 GeV/fm3, ρB = ρ0,
T = 169 MeV. The distributions for the kaons and Λ particles were multiplied by
1000 so that a seperation in spectra can be seen. All the above spectra were fit to
the chemically weighted temperature of T = 169 MeV [26].

4.5 Entropy Considerations

It should be noted that one must proceed with great care in accurately extracting the

entropy of a system simulated by a microscopic transport model. If one is lax about

the assumptions made regarding the system, the result may be extremely inaccurate.

As a consequence, a discussion of the calculation of entropy via the statistical and

thermodynamic definitions is relevant, for the mass-dependence of the entropy upon

the constituent particles is a fact that cannot be taken for granted, especially for
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Figure 4.5: In the left panel, energy density versus temperature. In the right
panel, the pressure as a function of temperature. The solid curve is extracted from
the UrQMD-tuned statistical model whereas the black circles are extracted from
UrQMD simulations.

hadronic systems where m/T ∼ 1.5− 20 [65]. As such, we present three methods for

calculating the entropy from UrQMD, and two methods for calculating the entropy

from the PCM. The three schemes for calculating entropy in UrQMD involve the

Gibbs formula, the kinetic definition of entropy, and the counting of particles with

weighted specific entropies.

4.5.1 Entropy Calculation in URQMD

Kinetic Definition of Entropy

The formula for computing the entropy S of a system using the statistical definition

of entropy is:

S = −
∑

ℓ

〈ρℓ〉log〈ρℓ〉, (4.39)
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Figure 4.6: Schematic of a two-dimensional projection of the 6-dimensional phase
space of our system. We denote the number of bins on the momentum axis above as
Nmom and the number of bins on the real space axis as Nreal. The area of the shaded
rectangle is ~, as required by the uncertainty principle.

where l labels the index of the cells in the phase space of our system, and 〈ρl〉 is the

ensemble-averaged density operator of phase space cell l. The authors of [77, 79, 64]

define ρℓ such that, for a given event, ρl takes the value of unity if the cell is occupied,

and zero if it is empty. However, one must choose the number of phase space cells

appropriately. According to the uncertainty principle, the volume of a 6-dimensional

phase space cell is ~
3. A sketch of a 2-dimensional projection of this 6-dimensional

phase space is given in Figure 5.5. pmax and pmin refer to the maximum and minimum

momentum components a particle could take over the course of the simulation in any

of the x, y, or z directions. Let us denote the number of bins on the real space axis

of that projection as Nreal, and the number of bins on the momentum axis as Nmom.

Since the particles are confined to a box of size Lbox, the area of one of the two

dimensional phase space cell projections should be (pmax−pmin

Nmom
)( Lbox

Nreal
) = ~. We also

know the maximum number of particles in any single event should not exceed the

number of real space cells, hence implying Npart,max ≤ N3
real. These two relations

enable us to determine Nmom and Nreal.

However, this motivates another discussion; the number of particles in our sys-
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tem at a given Monte Carlo time fluctuates from event to event, yet we are using the

framework of the microcanonical ensemble to compute the entropy. In the micro-

canonical ensemble, the total energy and total particle number remain fixed, whereas

in our simulations, while the total energy content in the box is fixed in every event,

the total particle number is not. For our computation of entropy to be reasonable,

the fluctuations of the number of particles between events must not be too large;

typically the largest value of
Npart,max−Npart,min

Npart,avg
is ∼ 5 percent. In addition, the mass-

dependence of the particles is not taken into account using the above construction

of ρℓ.

Another check we can perform to see whether our entropy results are reasonable is

to determine if the entropy results we have computed resemble those of an extensive

quantity; equivalently, whether the entropy density is an intensive quantity. The

results for entropy density as a function of system size for ground state nuclear

density are shown in Figure 5.6, and the curve is practically flat as a function of

volume, suggesting that indeed our entropy results resemble those of an extensive

quantity.

However, one should note that different particles of equal mass are weighted

equally using the above construction of ρℓ. Regardless if a pion or nucleon scatters

into a phase space cell ℓ in an event, the cell would count the specific contribution

from the pion and the nucleon as being the same, whereas thermodynamics tells

us that the specific entropy S/N indeed depends upon the masses of the particles.

Hence in order to do a proper calculation of 〈ρℓ〉 with mass dependence taken into

account, one might have to make assumptions about the angular distributions of

particles in order to be able to extract a tractable calculation.
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Figure 4.7: Entropy density as a function of system size for cases of ground state
nuclear density and energy density ǫ = 0.2 GeV/fm3. Entropy density is found to be
independent of system size, which is to be expected.

Gibbs Formula for Entropy

The energy density, pressure, and number densities are calculated from a statistical

model for a non-interacting, relativistic gas of massive particles in the grand canonical

ensemble [84]. They can be expressed in the following form:

ǫ =
νT 4

2π2

∫ ∞

0

x2

√

x2 +
(

m
T

)2
dx

exp

[

√

x2 +
(

m
T

)2 − µB

T

]

± 1

(4.40)

P =
νT 4

2π2

∫ ∞

0

x4dx

3
√

x2 +
(

m
T

)2
exp

[

√

x2 +
(

m
T

)2 − µB

T

]

± 1

(4.41)
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n =
νT 3

2π2

∫ ∞

0

x2dx

exp

[

√

x2 +
(

m
T

)2 − µB

T

]

± 1

, (4.42)

where ν is the number of degrees of freedom, and +/- refer to fermions/bosons,

respectively. It then can be shown that the specific entropy per particle is a function

of at most two dimensionless variables, m
T

and µB

T
, where µB = 0 for zero net baryon

density. We have computed the entropy directly from the Gibbs formula, wh ere

the energy density, pressure, and chemical potentials/densities are extracted directly

from our UrQMD simulations:

sGibbs =

(

ǫ + P − µBρB

T

)

(4.43)

We compare this computation with another scheme and show the comparison in

Figure 4.8.

Microscopic Counting of Particles

Note that the mass-dependence of the entropy upon the constituent particles is a

fact that cannot be taken for granted, especially for hadronic systems where m/T ∼

1.5 − 20 [65] With this in mind, we propose computing the weighted average of

the specific entropy s
n

for the particles in our system, and counting the number of

particles:

sspecific =
1

V

Npart
∑

j=1

( s

n

)

j
Nj. (4.44)

In order to extract the specific entropy, we begin with the Gibbs formula

s =

(

ǫ + P − µBρB

T

)

, (4.45)
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to relate the entropy density s to the energy density, pressure, baryochemical po-

tential, and temperature. The energy density, pressure, and number densities are

calculated from a statistical model for a non-interacting, relativistic gas of massive

particles in the grand canonical ensemble [84]. They can be expressed in the following

form:

ǫ =
νT 4

2π2

∫ ∞

0

x2

√

x2 +
(

m
T

)2
dx

exp

[

√

x2 +
(

m
T

)2 − µB

T

]

± 1

(4.46)

P =
νT 4

2π2

∫ ∞

0

x4dx

3
√

x2 +
(

m
T

)2
exp

[

√

x2 +
(

m
T

)2 − µB

T

]

± 1

(4.47)

n =
νT 3

2π2

∫ ∞

0

x2dx

exp

[

√

x2 +
(

m
T

)2 − µB

T

]

± 1

, (4.48)

where ν is the number of degrees of freedom, and +/- refer to fermions/bosons,

respectively. It then can be shown that the specific entropy per particle is a function

of at most two dimensionless variables, m
T

and µB

T
, where µB = 0 for zero net baryon

density.

Entropy Scaling Law

An interesting check that can be performed is the scaling law

s ∼ T
1

c2s (4.49)

, where cs is the speed of sound and T is the temperature. This scaling law can be

obtained for our system as follows: starting from the first law of thermodynamics,

dU = TdS − pdV +
∑

i

µidNi. (4.50)
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If all charges are conserved (in our case strangeness and baryon number are con-

served), and our volume is fixed, dǫ = Tds. For a system in chemical equilibrium,

the Gibbs free energy density should be minimized:

dg = dǫ − Tds − sdT + dp, (4.51)

which implies sdT = dp or sdT = c2
sdǫ = c2

sTds, which then yields the scaling relation

s ∼ T
1

c2s . The speed of sound can be easily obtained from the slope of the EoS where

pressure is obtained as a function of energy density: c2
s = ∂p

∂ǫ
. A comparison of these

two quantities is given in Figure 4.9.

Figure 4.8: Entropy density calculated via summation over specific entropies, ver-
sus entropy density calculated via the Gibbs formula [26].

4.5.2 Entropy Calculation in the PCM

A similar comparison is made for calculating the entropy in the PCM. However, the

calculation of the entropy becomes much simpler, as the quark masses are very small.
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Figure 4.9: Left frame: pressure vs energy density. Right frame: entropy density
vs temperature. Note the same value of c2

s = 0.18 was used for both fits [27].

Comparison between the Gibbs formula and the formula for an ideal gas of massless

particles yields a very close agreement, as shown in Figure 4.10. The formula for

an ideal gas of massless particles is given by the Stefan-Boltzmann formula. We can

compare the entropy density directly obtained from our calculation to the Stefan

Boltzmann entropy density given by:

s =
2π2

45
ν(T )T (4.52)

where ν(T ) = Nb + 7
8
Nf and Nb and Nf are the bosonic and fermionic degrees of

freedom. The results of the comparison are shown in the left frame of and figure 2

and show good agreement between the Stefan Boltzmann entropy and our system

entropy calculated via the Gibbs relation.

Now that the systematics of microscopic transport models employed have been
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Figure 4.10: Entropy versus temperature from the PCM. Both the Gibbs method
and Steffen Boltzmann formula were used, and the two methods yield excellent agree-
ment [32].

used, we can proceed to show how transport coefficients are calculated from these

two models.
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5

Extracting Transport Coefficients from Microsopic

Transport Models

This chapter deals with calculation of transport coefficients from two microscopic

transport models, namely UrQMD with hadronic degrees of freedom and the PCM

with partonic degrees of freedom. While η/s is calculated from both models using

the Green-Kubo method, ζ is calculated from UrQMD for certain cases in the relax-

ation time approximation, and DB is calculated from UrQMD using the Green-Kubo

method. All such calculations are performed for a system in the infinite volume limit.

As such, to simulate infinite matter we confine the particles comprising the system

to a box with periodic boundary conditions [16]. The numerics associated with the

Green-Kubo method are also discussed.

5.1 Transport Coefficients

We obtain the shear viscosity and baryon number diffusion coefficients through using

the Kubo-formula, which allow us to relate linear transport coefficients to the time
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integral of correlation functions. In the case of shear viscosity, the Kubo formula is

η =
1

T

∫

d3r

∫ ∞

0

dt〈πxy(~0, 0)πxy(~r, t)〉, (5.1)

where T is the temperature of the system, t is the post-equilibriation time (the

above formula defines t = 0 as the time the system equilibriates), and πxy is the

shear component of the energy momentum tensor πµν [39]. The corresponding Kubo

formula for bulk viscosity is

ζ =
1

T

∫

d3r

∫ ∞

0

dt〈P̃ (~0, 0)P̃ (~r, t)〉, (5.2)

where

P̃ ≡ 1

3
(Txx + Tyy + Tzz) − Peq + c2

s (T00 − ǫeq) (5.3)

is the pressure current. πµν is obtained by integrating over the three momenta of the

system:

πµν =

∫

d3p
pµpν

p0
f(x, p), (5.4)

where f(x, p) is the phase space distribution of the system of particles. For a system

of point particles uniformly distributed in configuration space,

f(x, p) =
1

V

Npart
∑

j=1

δ(3) (~p − ~pj) , (5.5)

where j indexes the particles. The shear component of the stress-tensor then reduces

to

πxy =
1

V

Npart
∑

j=1

px(j)py(j)

p0(j)
. (5.6)
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Similarly, any component of the energy momentum tensor can be calculated in this

manner:

Πik =
1

V

Npart
∑

j=1

pi(j)pk(j)

p0(j)
. (5.7)

Since the point particles are uniformly distributed in real space, we can simplify the

Kubo formula for shear viscosity to

η =
V

T

∫ ∞

0

dt〈πxy(0)πxy(t)〉, (5.8)

where V is the volume of the system. Likewise, the Kubo formula for the self-diffusion

coefficient is

D =
1

3

∫ ∞

0

dt〈~v(0) · ~v(t)〉equil. (5.9)

However, since we are particularly interested in baryon number diffusion, the only

particles that are averaged over are the baryons:

〈...〉 =
1

Nevents

Nevents
∑

k=1

1

Nbaryons

Nbaryons
∑

l=1

... (5.10)

akin to the averaging process used in [78]. Another transport coefficient of note in

relativisitic heavy ion collisions is the thermal conductivity, which in the traditional

definition of an ideal fluid is infinite. Since our strategy for simulating equilibriated

infinite hadronic matter involves fixing our system with no collective heat current

flow, the thermal conductivity coefficient is irrelevant for our system.

5.1.1 Shear Viscosity

Computing the shear viscosity for our system amounts to finding the time integral

of the stress-tensor stress-tensor correlations about the equilibrium state. The cor-

relation function of the shear component of the system’s energy momentum tensor
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is displayed in Figure 5.1 for a case at lower temperatures. If one examines the plot

then it empirically decays exponentially as a function of t.

In order to simplify evaluating the integral in equation 5.8, we can propose an

exponential ansatz for the correlation function 〈πxy (0) πxy (t)〉:

〈πxy (0) πxy (t)〉 ∝ exp

(

− t

τπ

)

, (5.11)

since such a decay is empirically observed in Figure 5.1.

Figure 5.1: The shear viscous correlator for T = 67.9 MeV as a function of t. Note
the empirically observed exponential decay of the correlator as a function of t [27].

Another representative sample of this correlation function for shear viscosity is

shown in Figure 5.2 for a higher temperature, and exponential decay is also empiri-

cally observed. Using the above exponential ansatz for the stress tensor correlation
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Figure 5.2: .Shear viscous and baryon diffusion correlators as a function of t. The
black points refer to the calculated points from the simulations, and the solid red
line refers to a fit. The top panel is for the case of ǫ = 0.3 GeV and the bottom
panel for ǫ = 0.8 GeV. All plots in this panel were obtained for the case of ground
state nuclear density.

function, the Kubo formula reduces to

η =
V

T
τπ〈πxy (0)2〉. (5.12)

The parameter τπ can be interpreted as a relaxation time of the correlation of the

viscous tensor. Although relaxation time typically denotes a timescale characteriz-

ing the rate of change of the distribution function (see Chapter 3), in this context it

characterizes the timescale over which the system loses information on previous cor-

relations between momentum density components in the stress energy tensor. Hence

τπ is akin to a “memory time.” τπ is shown as a function of temperature in Figure

5.3 for the case of full kinetic and chemical equilibrium at µB = 0. Note that τπ
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decreases as a function of temperature, and such a behavior is consistent with what

would be expected of a collision time due to increased thermal activity at higher

temperature.

Figure 5.3: The viscous correlator relaxation times τπ in full chemical and ki-
netic equilibrium as function of temperature for the case. Note the general trend of
decreasing τπ as a function of T .

The results of shear viscosity to entropy density ratio are illustrated in Figure

5.4. Also shown is the computation of η
s

for a system of chiral pions for the value of

fπ = 130 MeV, and 3 flavor pQCD. Note that our black points increasingly diverge

from the chiral pions curve as T → 0. This is because the pions in our system are

not chiral but massive. A calculation of the shear viscosity for massive pions results

in a larger value than for chiral pions [73], and the corresponding entropy density

for massive pions is smaller than the corresponding result for massive pions in this

range. Note that including finite baryochemical potential strongly reduces η/s. The
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result of viscosity greatly being reduced when baryons are included in the system

can be explained classically. Recall that there exists a relation between transport

coefficients and the cross section of particles in the medium. For shear viscosity,

η ∼ p̄
σ
, where p̄ is the mean momentum per particle in the medium. Resonant meson

(anti)baryon cross sections are large, such as ∼ 120 mb for p + π through the ∆1232

resonance [14]. Very large cross sections hence reduce η. Increasing the particle

multiplicity enhances the entropy density s, and since s ∼ n to zeroth order, η/s is

notably reduced at finite baryochemical potential.

Figure 5.4: η/s for UrQMD (black points), chiral pions, and 3 flavor pQCD (AMY
calculation) [27].

It should be noted in all such calculations of shear viscosity for hadronic systems,

the KSS bound is respected with the exception of [18], where it is violated albeit

at an unphysically large temperature greatly exceeding the deconfinement transition

temperature calculated from lattice QCD simulations.
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5.1.2 Error Analysis

The temperature and shear viscosity coefficient calculations are subject to both sys-

tematic and statistical errors. Since the Green-Kubo formula, with the exponential

ansatz for the correlation function, depends upon the temperature,

η =
V

T
〈πxy(0)2〉τπ (5.13)

it is important to identify the separate sources of systematic and statistical errors in

the extraction of T and η. Recall from Chapter 4 that the temperature is extracted

from a plot of the distribution (1/pEdN/dE) after momentum isotropy has been

verified. Such a distribution should follow a Boltzmann distribution for a properly

thermalized system:

1

pE

dN

dE
∝ exp

(

−E

T

)

. (5.14)

One can then perform a fit to the distribution to extract the temperature. In

particular, for the case of unit fugacity for 130 < T < 170 MeV, different tempera-

tures Ti are observed for the different particle species when extracted via performing

reduced χ2 fits to (1/pEdN/dE). However, the temperatures Ti extracted via the

reduced χ2 fitting of (1/pEdN/dE) agree better for the cases of NON-unit fugacities

in the temperature range 130 < T < 170 MeV. We observe that controlling the

system at temperatures 130 < T < 170 MeV to ensure unit fugacity for pions and

kaons becomes more difficult due to the numerous inelastic collisions experienced by

the system in that temperature regime. As a result, the initial yields of the particles

were adjusted to compensate for this effect, and the net result is that the system

equilibriates with the different individual particle species, (pions, kaons, nucleons)

attaining slightly different temperatures. The horizontal error bars for the black

points in the region T > 130MeV in Figures 5.3, 5.4 and 5.6 represent the spread
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of temperatures Ti for the different species, and this spread is not necessarily sym-

metric. The temperature for these points was calculated by chemically weighting the

temperatures obtained by performing reduced χ2 fits for the individual temperature

species i with their particle densities, as was discussed in Chapter 4 with reference

to equation 4.36:

Tchem =

∑

i niTi
∑

i ni

. (5.15)

The index i runs over that for the kaons, (anti-)nucleons, and pions. The value of

Tchem then enters into the calculation for η in equation 5.13 for the high temperature

black points in Figures 5.3- 5.6. This is a systematic error which was NOT included

in the error bar calculation for η. However, statistical errors for calculating the

temperature in all cases were propagated.

The viscosity error bar is then obtained by standard error propagation of the

Kubo correlator decay time τπ.

ση/η =
√

(στπ
/τπ)2 + (σT,stat/T )2 + (σ〈πxy(0)2〉/〈πxy(0)〉)2 (5.16)

The error bars in τpi were obtained by using different values of τπ in the exponential

ansatz

〈πxy(0)πxy(t)〉 ∝ exp

(

− t

τπ

)

(5.17)

in order to cover the appropriate range of error bars on the points at the tail of

the decay of 〈πxy(0)πxy(t)〉. The mean of the difference between the maximum and

minimum allowable range of τπ is used to obtain στπ
. The error bars in the values of

the y-intercept of 〈πxy(0)πxy(t)〉 (i.e. 〈πxy(0)2〉) were obtained by taking the ranges

of 〈πxy(0)2〉 corresponding to the ranges of τπ used in the fits to the correlator data.
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5.1.3 Examining system size effects

In our effort to ensure our Green-Kubo algorithm for calculating transport coefficients

is robust, it is helpful to investigate how our extracted transport coefficients depend

upon the system size L. In particular, a dimensionless scale characterizing how dilute

the system is shall be called the pseudo-Knudsen number, defined by λf/L, where

λf is the mean free path and L is the length of an edge of the box in our system.

When a calculation in UrQMD is set up, one must ensure that

• Sufficient particles are included per event in order to be able to calculate an

ensemble average for the particles in the box.

• For optimal efficiency of the calculation, one ensures particles encounter suffi-

cient collisions before reaching the walls of the box, since cyclic periodic bound-

ary conditions should not be highly sensitive to this. However, this should be

verified, as was shown in Figure 5.5.

As a result, we have quantified the effect of our transport coefficient on λf/L

for a test case of a pure pion gas at T = 100 MeV for a constant elastic pion cross

section of σππ = 10 mb. The results are shown in Figure 5.5.

5.1.4 η/s Out of Chemical Equilibrium

We should note that in a heavy ion collision, the temperatures corresponding to

kinetic and thermal freezeout are not identical. While the hadronic ratios freezeout

at Tchem ≈ 160 MeV, the momentum distributions freezeout later in the collision,

at Tkin ≈ 130 MeV [37, 46]. As a result of the separation of chemical vs. thermal

freezeout timescales in a heavy ion collision, the system evolves out of chemical equi-

librium. We mimic this effect by initializing our system with a thermal distribution,

but with yields of particles corresponding to a given fugacity at that temperature.

The viscosity correlator is then extracted before the system fully relaxes back into
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Figure 5.5: η as a function of λf/L for σππ = 10 mb. This was a test to check for
sensitivity to λf/L, where L is our system size.

full chemical and thermal equilibrium. It turns out that when η/s is calculated then,

there is a real effect from effective non-unit fugacities being introduced by our tech-

nique. This systematic trend is illustrated in Figure 5.6. η/s is seen to decrease

at non-unit fugacities, and this result can be understood classically. The entropy

density is enhanced since s ∼ n, and at non-unit fugacities the particle multiplicities

for species of the fugacities which are now no longer unity increase. A similar effect

is seen for η/s calculated for matter at finite baryochemical potential in full chemical

and thermal equilibrium. Note that finite baryochemical potential corresponds to

introducing a finite net baryon density, and since baryonic cross sections are large,

since η ∼ p̄
σ
, the viscosity coefficient is also decreased. Our trend for finite µB is

similar to the finding by [42].
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Figure 5.6: η/s for zero chemical potential (black points), nonunit fugacicities(red
points), and finite baryochemical potential(green points) [27]. Note the trend of
decrease i η/s at nonunit fugacities or finite baryochemical potential.

5.1.5 Trajectory of η/s in a Heavy Ion Collision

We have calculated the viscosity over entropy density ratio η/s of a hadron gas

as a function of temperature, baryo-chemical potential and fugacities. Using this

calculation we can piece together, with what is known about η/s from viscous hy-

drodynamics calculations, the trajectory of η/s in a heavy ion collision. We have

demonstrated that the inclusion of non-unit particle fugacities, which are bound to

arise due to the separation of chemical and kinetic freeze-out during the heavy ion

collision evolution, will reduce the value of η/s, but not to the value necessary to

ensure the successful application of viscous hydrodynamics to the full collision evo-

lution at RHIC. Our calculation of η/s in a hadron gas from a microscopic transport

model therefore constrains the origin of the low viscosity matter produced in a rel-
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ativistic heavy ion collision, which must occur in the deconfined phase, possibly in

the range 1 < T/Tc < 2. At the formation of the hadronic phase, which is thought

to occur in chemical equilibrium, η/s will experience a sharp increase. However,

subsequently its value may decrease again due to the system evolving out of chem-

ical equilibrium. Near kinetic freeze-out η/s will rise with decreasing temperature.

This lends credence to the notion that the dynamics of the evolution of a collision

at RHIC is dominated by the deconfined phase exhibiting very low values of η/s.

5.1.6 Assessing Systematic Uncertainties

In our analysis for η/s there are two important things to note in our analysis. The

first is that our calculation neglects multiparticle processes, and the other is the

choice of effective baryon-antibaryon annihilation/production to include baryons.

It should be noted that η/s ≈ 0.9-1.0 in full chemical and kinetic equilibrium,

and at RHIC, it is assumed that the hadron gas is in full chemical and kinetic equi-

librium at Tc. However, we have used the effective two-body resonance interaction

ρφ(1020) ↔ NN̄ to include antibaryon production and annihilation obtain a state

close to unit light quark fugacities, as discussed in Chapter 4. In particular, since

the φ(1020) primarily decays into a kaon and anti kaon, the light quark fugacity for

systems with the effective 2 body process ρφ(1020) ↔ NN̄ is smaller than that for

the 2 body process ρω(1420) ↔ NN̄ .The effects of multiparticle processes may be

important in the region near Tc, and a rise in η/s from the suggested range from vis-

cous hydrodynamics may be delayed by the presence of Hagedorn states [67, 70]. We

expect that if we were to include multiparticle processes in a manner that respects de-

tailed balance, our values of η/s would decrease: increased particle production would

enhance the entropy density, hence reducing η/s. Another possible effect would be

the possible decrease of η due to the enhancement of the thermally averaged cross

section, since η ∼ p̄
σ
. Both these effects would work to decrease η/s.
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Another source of systematic uncertainty that could be investigated in more de-

tail is the validity of using a classical Boltzmann equation in our regime of higher

temperatures for a hadron gas, T ∼ 130-160 MeV. The system is not dilute in this

temperature regime, and in particular one should examine the scale of the mean free

path to the interparticle spacing. A dilute system implies λf >> n−1/3, and for our

system at temperatures above T ∼ 130 MeV this is not the case.

5.1.7 Baryon Number Diffusion

The investigation of baryon number diffusion by authors of [78] was motivated by

investigation of baryon number fluctuations in relativistic heavy ion collisions [80].

Some early models could be used to extract the size of a charge fluctuation from the

baryon number diffusion constant [80].

We use also use the Green-Kubo method to extract the baryon number diffusion

coefficient. Examining the velocity correlation function with only baryonic averaging

in Figure 5.2, we again see the exponential decay of the relevant correlator for the dif-

fusion constant. Assuming the correlation function 〈~v (0) ·~v (t)〉B has an exponential

ansatz:

〈~v (0) · ~v (t)〉B ∝ exp

(

− t

τD

)

(5.18)

We have extracted the baryon diffusion coefficient DB, as has been performed by

Sasaki and Muroya [78]. Our results are depicted in Figure 5.7. We find that DB

decreases with increasing baryon density at a given temperature. In principle, we

should also be able to extend our calculation to the µB = 0 regime, since we have

implemented baryon-antibaryon annihilation where others before have not. However,

in order to get a robust result one must choose a high enough temperature to get

sufficient nucleon-antinucleon annihilations. With enough statistics, it is possible to

obtain DB as a function of µB vs. T .
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Figure 5.7: The baryon number diffusion coefficient as a function of temperature,
for ground state and twice ground state nuclear density.

5.2 The Relaxation Time Approximation

Recall from Chapter 3 the formulae for the shear and bulk viscosities using a mo-

mentum dependent relaxation time are

η =
1

15T

∑

a

∫

d3p

(2π)3

τap
4
a

E2
a

f eq
a (Ea/T ), (5.19)

ζ =
1

9T

∑

a

∫

d3p

(2π)3

τa (Ea)

E2
a

[(

1 − 3c2
s

)

E2
a − m2

a

]2
f eq

a (Ea/T ), (5.20)

where c2
s is the speed of sound squared.[33] Note that the relaxation time described

has been generalized to a momentum-dependent relaxation time as opposed to in

Chapter 3, where τa (Ea) was taken out of the integrals in equations 5.19 and 5.20.
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The relaxation time in equations 5.19 and 5.20 is the timescale associated with the

rate of change of the distribution function. However, it can be shown that in a certain

dilute limit, the relaxation time approximately becomes the mean collision time, as

was shown in [73]. Recall from Chapter 3 that the Boltzmann equation rewritten in

the relaxation time approximation reads

(

∂

∂t
+

~p

E
· ∇r

)

f ≈ f̃Z+,0
1 − fZ−,0

1 ≡ − −δf

τ r
1 (k1)

(5.21)

where

[τ r
1 (k1)]

−1 =
∑

2

[τ r
12(k1)]

−1 (5.22)

and, if only elastic scattering is assumed,

[τ r
1 (k1)]

−1 =
g2

1 + δ12

csh(ǫ1/2)

E1

∫

dΓ2dΓ3dΓ4 (2π)4 δ4(k1+k2−k3−k4) | T12 |2, (5.23)

where dΓi ≡ dωi/ [2csh(ǫi/2)], and cshx1 = coshxi/sinhxi for Fermi/Bose statistics,

respectively [73].

ǫi ≡ (Ei − µi)/T, (5.24)

where µi is the chemical potential of the species i and T is the common temperature

of the system. One can take thermal averages to extract the mean relaxation rate,

defined through

γ̄1(T, µ) =

∫

d3k1f
0
1 γ1(k1)

∫

d3k1f 0
1

, (5.25)

where

γ1(k1) ≡ 1/τ r
1 (k1) (5.26)

We can perform a similar process for the collision time

τ c
1(k1) ≡ 1/Z−,0

1 (5.27)
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to give the mean collision rate

ν̄1(T, µ) =

∫

d3k1f
0
1 ν1(k1)

∫

d3k1f 0
1

, (5.28)

, where

ν1(k1) ≡ 1/τ c
1(k1). (5.29)

The authors of [73] approximate that, in the dilute limit,

τ c
1(k1) ≈ τ r

1 (k1). (5.30)

Hence, in the dilute limit, we can extract collision times from a microscopic transport

model and insert the expression into the integrals in equations 5.19 and 5.20 to extract

the viscosities and compare such expressions to the viscosities extracted via the Kubo

formula for temperatures in the dilute limit.

5.3 Comparing Transport Coefficients Extracted from the Relaxation
Time Approximation Versus the Green-Kubo Method

As such we perform a comparison for the case of T = 100 MeV for a gas on only

elastic pion collisions with a fixed cross section of σππ = 50 mb. A large cross

section was chosen so that sufficient collisions can be generated within a particle’s

path in the box in order to improve efficiency of the calculation. The reason this

temperature was chosen is that it is a practical temperature where the relaxation

time in equation 5.20 and 5.19 becomes approximately equal to the mean collision

time τ c
1 . The collision time is extracted from UrQMD by calculating a momentum

dependent collision rate per unit bin, fitting the form to a Lorentzian function, then

integrating over the momenta to get an inverse collision time. This then can be

inserted into equations 5.19 and 5.20 to extract the mean collision time.
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5.3.1 Bulk Viscosity

We extract the bulk viscosity for a particular case using the Green-Kubo method

in order to compare to the relaxation time approximation. The plot of the momen-

tum dependent collision rate is shown in Figure 5.8. ζ/η for the relaxation time

approximation assuming a constant relaxation time yields ∼ 10−6, whereas via the

Green-Kubo method yields ∼ 1/3. The reason for this discrepancy is not resolved.

The relaxation time for the correlators for the bulk viscosity coefficient versus shear

viscosity coefficient are shown in Figure 5.9. This tells us that we should use a

momentum-dependent relaxation time. The correlation function for the bulk viscos-

ity coefficient decreases slowly as a function of time. Precisely calculating fluctuations

of the pressure current from equilibrium values is more difficult for the bulk viscosity

coefficient, since for shear viscosity, 〈πxy〉equil = 0. Furthermore, it has been shown

by the authors of [24] that the finite lifetime of collisions in the system can either

enhance or suppress the pressure in the system, which can mean that the precise

equilibrium pressure in the system can change over the timescale of the decay of the

correlation function.

In particular, the authors of [24] showed that, given a uniform many-body system,

with density n and temperature T , all intensive thermodynamic quantitates can be

obtained from the free energy per unit volume f . Then the free energy f , to second

order in the density, can be written as

f(n, T ) = f0(n, T ) + ∆P (n, T ), (5.31)

where f0 is free energy for a noninteracting system and ∆P is the correction to

pressure[17, 49]

P = P0 + ∆P = n T − T n2

(

4π

mT

)3/2
1

2

∫

dE e−E/T 1

π

∑

ℓ

(2ℓ + 1)
dδℓ

dE
. (5.32)
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The effects of statistics were ignored in the above calculation. Furthermore, the

authors of [24] show the correction to pressure may be further expressed as

∆P =
1

2

∫

dp1

(2π)3

dp2

(2π)3
f(p1) f(p2) Re 〈(p1 − p2)/2| T |(p1 − p2)/2〉

−T
1

2

∫

dp1

(2π)3

dp2

(2π)3
f(p1) f(p2)

∫

dΩ
dσ

dΩ
v ∆τs(Ω). (5.33)

Here f = e(µ−E)/T is phase-space occupancy. The first term on the r.h.s. of (5.33)

accounts for the forward time delay or mean field.The second term accounts for delay

in scattering and, depending on the sign of ∆τs, allows further for an interpretation in

terms of the reduction in the number of degrees of freedom or in terms of excluded

volume. As such the lifetime of a time delay τs induced through the collision in

UrQMD may make precise subtraction of the equilibrium pressure for the pressure

current in the Kubo formula for bulk viscosity difficult.

5.4 Calculation of η and η/s from the PCM

The same technology used in UrQMD can also be used for the PCM to calculate

η/s in the Parton Cascade Model. The calculations were performed for systems

of pure gluonic matter and for a system of mixed quarks and gluons. The first

one, denoted by GP, is for a gluon plasma with a regular Deybe screening mass and

temperature-dependent coupling. The second mode, denoted by QGP, uses the same

temperature-dependent parametrizations for mD and the coupling constant, but is

for a quark-gluon plasma with three light quark flavors. One should consider the

QGP mode to be the most realistic mode of calculation presented here.

Sample correlation functions for shear viscosity correlators are illustrated in Fig-

ure 5.10. Figure 5.11 displays the results of our calculation for the shear viscosity

for a system of gluons as well as a system of gluons and three light quark flavors.
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Figure 5.8: Collision rate per unit bin in momentum from UrQMD for σππ = 50mb
in a pure pion gas with only elastic collisions. The collision rate was then fit with a
Lorentzian to obtain ζ in the relaxation time approximation.

The shear viscosity rises strongly as a function of increasing temperature. It is inter-

esting to note that the QGP shows a higher shear-viscosity than the GP for a given

temperature, which is probably due to the smaller interaction cross-sections among

the quarks of the system, since recall that η ∼ p̄
σ
.

Having calculated both, the shear-viscosity as well as the entropy-density of our

system, we can now turn to the ratio η/s, made famous by the KSS bound: figure

5.11 shows η/s as a function of temperature for the GP (full circles) and QGP (full

triangles) case, compared to an analytic AMY calculation of a three-flavor QGP [7]

(solid line). The QGP calculation of η/s shows a monotonous rise as a function of

temperature, similar to that of the AMY calculation. The Gluon Plasma exhibits

an upturn in η/s for temperatures below 500 MeV – we attribute this unexpected
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Figure 5.9: Top panel: bulk viscosity correlator. Bottom panel: shear viscosity
correlator. The correlators are computed for T = 100 MeV for a pure pion gas with
only elastic collisions σππ = 50 mb.

rise towards lower temperatures to a breakdown in the perturbative approximations

present in our calculations.

Comparing η/s of a GP and a QGP at the same temperature may seem misleading

due to the significantly larger parton density present in a QGP. Hence in figure 5.12we

compare η/s for the two scenarios at equivalent energy-density and find for energy-

densities above 35 GeV/fm3 excellent agreement between the two systems. This

is relevant because the flavor composition of the deconfined QCD matter created in

ultra-relativistic heavy-ion collisions may change strongly as a function of time – from

a gluon-dominated system being created by the decay of a Color-Glass-Condensate

to a QGP in full thermal and chemical equilibrium as the system progresses in its

hydrodynamic expansion. Our result indicates that η/s, a quantity which controls
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the hydrodynamic evolution of the system, should be fairly robust with respect to its

flavor composition when taken as a function of energy-density instead of temperature.

In figure 5.13 we study the effects of our different Debye-mass parametrizations

and the temperature-dependence on η/s. For this purpose we calculate η/s for a

gas of gluons with a Boltzmann Debye-mass at fixed coupling of αs = 0.3 (i.e. the

same system as e.g. in [88, 28, 29, 89]) and compare this calculation to one with

our default parametrization (taken with Nc = 3 and Nf = 0). We find the effect of

the different mD parametrizations to be small, on the 10% to 15% level, with the

Boltzmann Debye-mass giving consistently smaller values of η/s. If we now replace

the fixed coupling with a temperature dependent coupling constant, the value of η/s

increases roughly by a factor of 2.

So far we have restricted our investigation in the partonic sector to a purely

perturbative partonic system with the respective temperature-dependent screening

masses and coupling strengths. However, it has been strongly suggested that the

medium created in ultra-relativistic heavy-ion collisions is non-perturbative in nature

– at the very least within the temperature range from Tc to approximately (3−4)Tc,

which is covered by our PCM viscosity calculations. One method to explore the

behavior of η/s at stronger coupling is to treat the coupling constant αs in our

calculations as a free parameter and then study η/s at fixed temperature as a function

of the coupling. Figure 5.14 shows η/s as a function of coupling strength for the gluon

plasma and the quark-gluon-plasma. In the strong coupling limit, in particular for the

gluon plasma, values of η/s ≪ 1 can be obtained, yielding results compatible with a

fluid-dynamical analysis of RHIC data as discussed in Chapter 2 [51]. Similar results

have been obtained by [59], who directly increased the gluon-gluon scattering cross-

section, which seems equivalent to an increase in the coupling constant. However,

caution should be taken. Note that treating the coupling constant as a free parameter

introduces inconsistencies in the medium. In particular, the particle density and
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screening mass are still controlled by the temperature, whereas the coupling is not.

Also, for large couplings αs ≃ 1 the perturbative assumptions underlying the PCM

are not valid anymore.

The final question we wish to address is the effect the angular distribution of the

scattering partons , i.e. the exact form of the differential matrix-element, has on

eta/s: figure 5.13 shows a comparison between our default gluon plasma calculation

compared with results at fixed coupling and regular matrix elements as well as with

matrix elements using an isotropic angular distribution. The result of the last par-

ticular question are as follows: the main effect is a decrease of η/s by a factor of 3,

which results from the choice of a fixed coupling constant vs. a temperature depen-

dent one. Changing from forward-backward peaked to isotropic scattering provides

an additional 10% - 20% effect, but not a dramatic reduction in η/s. This finding is

of particular interest in the context of work done by [88], employing a PCM including

simple radiative corrections (i.e. 2 → 3 and 3 → 2 processes) and effectively using

a near-isotropic angular distribution for the third particle in the outgoing channel.

Our results utilizing solely 2 → 2 scattering processes indicate that it is most likely

a combination of multiple effects:

• A fixed coupling constant.

• The isotropic angular distribution of the multiparticle process inclusion.

• Possibly also a contribution of the multi-particle scattering which is responsible

for the low viscosity findings for this calculation.

5.5 ζ and ζ/s in the Parton Cascade Model

Recall from equation 3.10 in Chapter 3 and formula 5.20 that the bulk viscosity

should vanish for a conformal system, since for a conformal system particles are
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Figure 5.10: Shear viscous correlator for pure gluonic matter at different temper-
atures. Also shown in [32]. The exponential decay is empirically seen in the PCM,
as was seen in UrQMD.

massless and c2
s = 1/3. Also, the entropy calculations from Chapter 4 in the PCM,

in conjunction with the entropy scaling law s ∼ T 1/c2s that using c2
s = 1/3 is a

very accurate characterization of the system modeled by the PCM. An ideal gas of

massless particles has zero bulk viscosity, and hence the bulk viscosity for the QGP

described by the PCM is expected to be also extremely small, if not vanishing.
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Figure 5.11: η/s vs T for the PCM, compared with finite T pQCD calculation.
Shown in [32]. Note the much larger values of η/s in the PCM versus from UrQMD.
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Figure 5.12: η/s vs ǫ for the PCM [32]. Note the chemical composition for higher
temperatures does not make as much a different in this parameterization of η/s vs
ǫ.

102



Figure 5.13: η/s for different Debye mass parameterizations, and for fixed coupling.
Not much difference is seen for different Debye mass parameterizations, although a
big effect is seen when running versus fixed coupling is used [32].
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Figure 5.14: η/s vs αs for the PCM. Note the decreasing η/s as a function of
increasing αs, although perturbation theory calculations become more unreliable
with greater αs. [32].
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6

The Langevin Equation with Memory Effects

In addition to the behavior of shear and bulk viscosity (and the corresponding viscos-

ity/entropy density ratios) of the deconfined and hadronic matter at RHIC, another

transport property that has generated significant interest is that of heavy quark dif-

fusion. It is thought that heavy quarks are produced through hard processes in the

quark gluon plasma. For example,

gg → cc̄ or bb̄. (6.1)

It is expected that since b or c quarks are so massive, most of the energy loss ex-

perienced by a heavy quark probe in a medium is lost not due to radiation, but

due to collisions. Due to Boltzmann suppression, one would expect that the QGP is

composed of mostly light quarks and gluons, with rare heavy quarks being present.

There has been a surprisingly high v2 coefficient measured for D-mesons, which con-

tain a c quark [1]. One would expect from kinetic theory that v2 of mesons containing

charmed quarks is much lower than that for lighter mesons. This means that the

mechanism by which heavy quarks lose energy in the QGP needs to be much better

understood,It is expected that since b or c quarks are so massive, most of the energy
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loss experienced by a heavy quark probe in a medium is lost not due to radiation,

but due to collisions. It has been proposed to use the Langevin approach to study

the diffusion of heavy quarks in a medium of mostly light quarks [61, 4, 5]. Such an

algorithm is appropriate if one wants to study the diffusion of a probe particle in a

thermal medium. The bath particles need not necessarily be the same mass as that

of the probe particle.

The Langevin equation is a discretized equation describing the update of the posi-

tions and momenta of a probe particle in the medium as it interacts with the thermal

background. In order to write the Langevin equation for a medium, one begins by

writing Newton’s law for the probe particle, with the thermal noise representing a

random force acting on the particle, and the drag a probe particle experiences as it

diffuses through the medium (represented by drag coefficient α) is related to fluctu-

ations of the noise ζ. This is a famous result known as the fluctuation-dissipation

theorem

α =
1

T

∫ t

0

〈~ζ(0) · ~ζ(s)〉0ds. (6.2)

If we define the strength of the white noise in the medium through

〈ζ i(t)ζj(t − n∆t)〉 =
κ

∆t
δijδn0δ(t) (6.3)

then the drag coefficient (as defined in 6.2) becomes

α =
κ

T∆t
. (6.4)

Langevin Equation for White Noise in Thermal Medium

The standard Langevin Equation (without memory effects) for a particle with mass

M in a thermal medium is given by
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d~p(t)

dt
= −

∫ t

−∞

dt
′

α(t − t
′

)~v(t
′

) + ~ζ(t), (6.5)

where α(t−t
′

) is the drag kernel, and ~ζ(t) is the white noise in the medium. Note

that the dimensions of the drag kernal are different than those of the drag coefficient

as defined in 6.2. The “white noise” is a random force which represents the random

collisions the probe particle in the medium undergoes in a heat bath at equilibrium

temperature T . The goal is now to investigate memory effects in the very early time

dynamics of a QGP.

Fluctuation-Dissipation Theorem

To derive the relationship between the drag and thermal noise, we begin with writing

the equation of motion for a probe particle in the absence of external forces (other

than the random noises from the thermal medium). This derivation is in the spirit

of the treatment of the fluctuation-dissipation theorem in [75].

d~p(t)

dt
= ~ζ(t), (6.6)

Integrating the above equation over a time interval τ which is large compared to

the mean period of the fluctuations ζ, then taking an ensemble average, we obtain

〈~p(t + τ) − ~p(t)〉 =

∫ t+τ

t

dt
′〈~ζ(t

′

)〉, (6.7)

Naively, by definition of white noise 〈~ζ(t)〉 = 0, but the goal here is to obtain a

slowly varying velocity intending to restore the particle to equilibrium. One therefore

needs to determine how 〈~ζ〉 changes as the velocity of the particle changes. Suppose

that at time t the particle has velocity ~v(t) in a thermal medium with temperature T .

The system as this time has a configuration described by 〈~ζ〉 = 0, with probability
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of being in a state r of W 0
r . Now, in order to investigate how 〈ζ〉 is affected by the

motion of the particle, consider the situation at a slightly later time t
′

= t+ τ
′

when

the particle has velocity ~v(t + τ
′

). Then the mean random force 〈~ζ(t
′

)〉 depends on

the value at earlier time t. One can also think about the formulation of the problem

in this manner. If the system is ergodic, then performing an ensemble average by

making multiple copies of the system at some snapshot time t is equivalent to making

multiple copies of the same system at different times t
′

. However, ζ(t
′

) will be slightly

different than ζ(t). If after a time τ
′

> τ ∗, where τ ∗ is the timescale on the order of

mean collision times, the velocity of the particle changes from ~v(t) to ~v(t + τ
′

) and

that the energy of the system changes from E(t) to E(t + τ
′

) with the number of

microstates accessible to the system changing from Ω(E) to Ω(E +∆E) respectively.

Then the probability of the system or being in state r at time t + τ
′

can be found

from

Wr(t + τ
′

)

W 0
r

=
Ω(E + ∆E)

Ω(E)
= e∆E/T . (6.8)

We are assuming that the velocity change and change of the mean random force are

small enough such that

Wr(t + τ
′

) = W 0
r e(∆E/T ) ≈ W 0

r

(

1 +
∆E

T

)

(6.9)

implying that the mean value of the force at slightly later time t + τ
′

is given by

〈ζ〉 =
∑

r

Wr(t + τ
′

)ζr =
∑

r

W 0
r

(

1 +
∆E

T

)

ζr = 〈(1 + ∆E/T )〉0 (6.10)

where the last value is to be calculated with probability distribution W 0
r . Since by

definition ~ζ0 = 0,

〈~ζ〉 =
1

T
〈~ζ∆E〉0. (6.11)
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Note that the energy increase from a time t to time t + τ is given by the negative of

the work done on the particle. Hence,

∆E = −
∫ t+τ

t

~v(t
′

) · ~ζ(t
′

)dt
′ ≈ −~v(t) ·

∫ t+τ

t

~ζ(t
′

)dt
′

(6.12)

this leads to

〈~ζ(t+τ)〉 = − 1

T
〈~ζ(t+τ)~v(t)·

∫ t+τ

t

~ζ(t
′

)dt
′〉0 = −

~̄v

T
·
∫ t+τ

t

dt
′〈~ζ(t

′

+τ)·~ζ(t
′

)〉0 (6.13)

where ~̄v is the mean speed. Introducing the timeshift variable s ≡ t
′ − (t + τ), the

Langevin equation can be rewritten in the form

〈~p(t + ∆t) − ~p(t)〉 = ~Fext∆t − α~̄v(t) (6.14)

where

α =
1

T

∫ t

0

〈~ζ(0) · ~ζ(s)〉0ds (6.15)

is an effective frictional drag coefficient experienced by the probe particle. Note that

in the absense of any external forces, the particle’s mean velocity will go to zero in

the long time limit.

We have generalized the drag coefficient in equation 6.15 to incorporate possible

memory effects. Note that the above derivation of the relationship between the drag

coefficient and thermal noise indicate assumed “white noise” meaning that the noise

is completely random and the noise a particle experiences at one position in the

medium is completely independent of the earlier noise the particle experiences in the

medium.

Langevin Equation with Memory Effects Incorporated

As has been stated in earlier chapters, hydrodynamics assumes a rapid early thermal-

ization for the quark gluon plasma. However, the exact physical mechanism for the
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thermalization is not known, although ideas have been proposed that the system can

thermalize through plasma turbulence. If one is to investigate heavy quark diffusion

through a bulk QGP where turbulent electric and color magnetic fields are present,

then the heavy quark probe would have to traverse through domains of coherent

color fields, and the noise experienced by such a probe particle would not be com-

pletely random. As such we shall proceed with an investigation of how the Langevin

equation would be modified if memory effects were included in the medium.

A model for very early time effects can be constructed by considering turbulent

color electric/magnetic fields. As such we choose to modify the Langevin equation

(1) to incorporate memory effects. In particular, we choose to represent the memory

effects in the electric and magnetic fields:

d~p(t)

dt
= −

∫ t

−∞

dt
′

α(t − t
′

)~v(t
′

) + ~ζ(t) + gQa[ ~Ea(t) + ~v(t) × ~Ba(t)], (6.16)

where ~Ea(t) and ~Ba(t) are the color electric/magnetic fields respectively, Qa are

the color charges, and a = 1, ..., N2
c − 1, working with an SU(Nc) gauge. The

relationship between the drag coefficient and the noise gets modified due to the

presence of external forces with color electric and magnetic fields. The change in

energy a particle experiences as its velocity changes slowly is the negative of the

work done by the particle. Since this is the net force acting on the particle dotted

into its velocity, the magnetic field does no work, and there exists an additional term

related to the correlation of the color electric fields. Hence, the memory kernel from

equation 6.5 now gets modified to

Tα(t − t
′

)δij = 〈ζ i(t)ζj(t
′

)〉 + g2〈QaE(t)aiQbEbj(t
′

)〉. (6.17)

It is necessary to establish a hierarchy of timescales in the theory to ensure the
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validity of a Langevin approach. There is the discrete Langevin timestep ∆t, the

characteristic “memory time” of the noise τmem, and the characteristic timescale for

the macroscopic properties of the system to change T (t)/Ṫ , defined by

Ṫ ≡ dT/dt =

(

∂

∂t
+ ~v · ∇

)

T, (6.18)

Hence the following inequalities need to be satisfied:

∆t ≪ τmem ≪ T (t)/Ṫ . (6.19)

this implies that the medium must be quasistatic.

Updating Color/Electric Magnetic Fields

We incorporate the memory effect by updating the color electric/magnetic fields

according to the following prescription (for simplicity we drop the color subscript

and restore it later):

~E(t + ∆t) = wEη(t + ∆t) + (1 − wE) ~E(t)eβE∆t) (6.20)

~B(t + ∆t) = wBη̃(t + ∆t) + (1 − wB) ~B(t)eβB∆t (6.21)

We refer to wE/B as the memory coefficients for the electric and magnetic fields,

respectively. η/η̃ refer to color noise for the electric/magnetic fields, respectively.

βE/B refer to the growth rates of the color electric/magnetic fields, respectively. Note

that in the event of the memory coefficients being zero, the fields exhibit perfectly

deterministic growth, or perfect memory in the case of zero growth rate. In the event

of memory coefficients being unity, the fields are completely random.

One can understand two sources affecting the growth of the magnetic field. One is

the effect of interacting with the medium, and the other is an imposed deterministic
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condition for the growth of such color fields. The desire is to model the type of

exponentially increasing magnetic field growth which would happen for example in

a Weibel instability in the appropriate limit. When the memory coefficient is zero,

we have

~B(t + ∆t) = eβ∆t ~B(t) (6.22)

and a similar expression for ~E(t). It is necessary to find a relationship between

the electric field strength and the color noise strength so that we can proceed with

finding the relationship etween the noise and drag coefficient. However, we should

note that the system in general is NOT ergodic. We proceed by iterating equation

6.20

~E(t) = wEη(t) + (1−wEwEη(t−∆t)eβE∆t + ... + (1−wE)n ~E(t− n∆t)enβE∆t (6.23)

Squaring the above relation and taking the expectation value, noting that the ex-

pectation values of cross terms with white noise vanish by definition, we obtain

〈E2(t)〉 = w2
E

[

1 − (1 − wE)2e2nβE∆t

1 − (1 − wE)2e2βE∆t

]

〈η2(t)〉+(1−wE)2ne2nβE∆t〈E2(t−n∆t)〉 (6.24)

Also, calculating the electric field correlation at different times yields

〈 ~E(t) · ~E(t − n∆t)〉 = (1 − wE)n〈E2(t − n∆t)〉enβE∆t (6.25)

This yields the following autocorrelation function for the electric fields at different

times:

〈 ~E(t) · ~E(t − n∆t)〉
√

E2(t)
√

E2(t − n∆t)
=

√

1 − w2
E

[

1 − (1 − wE)2ne2nβE∆t

1 − (1 − wE)2ne2βE∆t

] 〈η2(t)〉
〈E2(t)〉 . (6.26)
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Note that in the limit of wE = 0, the autocorrelation function tends to unity, and

in the limit of wE = 1 the autocorrelation function tends to zero, as expected. We

parameterize the strength of the electric and thermal white noise, respectively, as

follows

〈ηi(t)ηj(t − n∆t)〉 ≡ κE

∆t
δijδn0 (6.27)

〈ζ i(t)ζj(t − n∆t)〉 ≡ κ

∆t
δijδn0 (6.28)

Reintroducing the color indices into our electric field correlation, we find that

〈Eia(t)Ejb(t − n∆t)〉 = (1 − wE)−ne−nβE∆t

{

w2
E

[

1 − (1 − wE)2ne2nβE∆t

1 − (1 − wE)2e2βE∆t

]

×(6.29)

κE

∆t
+ (1 − wE)2ne2nβE∆t〈E2(t − n∆t)〉

}

δijδab

(6.30)

Because of the discretized nature and the time-dependent relationship between

the drag force and thermal force/electric field strength, it is useful to recast the

Langevin equation with memory effects in the so-called Ito-discretization

~p(t+∆t) = ~p(t)−
[

∆t

∞
∑

n=0

(1 − δn0

2
)αn~v(t − n∆t) + ~ζ(t) + gQa

(

~Ea(t) + ~v(t) × ~Ba(t)
)

]

∆t

(6.31)

where αn = α(t = n∆t). Recall that in equation 6.5, the memory kernel was

defined through

Tα(t − t
′

)δijδab = 〈ζ i(t)ζj(t)〉 + g2〈QaEai(t)QbEbj(t
′

)〉 (6.32)

It is then necessary to cast the second term on the right hand side above to yield a

useful form. Note that the evolution of color charges in a non-Abelian color gauge
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field is given by

dQa

dt
= gfabcQaAc

µv
µ (6.33)

implying that

Qa(t
′

) = Pexp

(

∫ r(t
′
)

r(t)

fabcA
b
µdxµ

)

Qc(t) ≡ Uac(r(t
′

, r(t))Qc(t). (6.34)

Hence this enables us to rewrite the electric color force correlation term as

g2〈Qa(t)Eai(t)Qb(t)Ebj(t
′

)〉 = g2〈Qa(t)Qb(t)〉〈Eai(t)Ebj(t
′

)〉 (6.35)

If the random color fields are independent, then

〈QaQb〉 =
C2

N2
c − 1

δab, (6.36)

where C2 is the Casimir operator number, Nc is the number of colors in the gauge

group. Putting all this together, the discretized drag coefficient becomes

αn =
1

T

(

κ

∆t
+

g2C2

N2
c − 1

(1 − wE)−ne−nβE∆t× (6.37)

[

w2
E(

1 − (1 − wE)2ne2nβE∆t

1 − (1 − wE)2e2nβE∆t
)
κE

∆t
+ (1 − wE)2ne2nβE∆t〈E2(t − n∆t)〉

])

Note that in the absence of electric/magnetic files, the expression reduces to

αn =
κ

T∆t
, (6.38)

consistent with our construction of white noise in equation 6.4. Analytically we have

derived a framework for studying thermalization of a representative quark particle

in a thermal medium to study the equilibriation of the QGP with memory effects.

The next step is to proceed with the numerical implementation of the algorithm we

have derived.
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7

Summary

This dissertation presented research on how to extract transport coefficients of hot

and dense quantum chromodynamic (QCD) matter, whether it be hadronic or par-

tonic, from microscopic transport models. As a result we have gained insight into

what is currently known about the viscosity to entropy density ratio of the hot QCD

matter created at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven Na-

tional Laboratory. The deconfined, partonic phase of QCD matter is called the quark

gluon plasma (QGP) and is formed when hadronic matter at high temperatures of

T ∼ 160−180 MeV undergoes a transition from hadronic bound states to deconfined

quasi-free quarks and gluons. Due to the transient nature of the QGP being realized

in an actual heavy ion collision, it becomes crucial to separately investigate transport

properties of the hadronic aftermath of the decayed QGP in order to understand the

time-evolution of transport coefficients in the different phases of a relativistic heavy

ion collision. Ideal and viscous relativistic hydrodynamics calculations, in conjunc-

tion with what is known about the elliptic flow (v2) data from RHIC, suggest that

a thermally equilibriated QGP was created with very small values of the shear vis-

cosity to entropy density ratio η/s, followed by a hadronic phase with a larger value
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of η/s which then evolves out of chemical equilibrium. The work presented in this

thesis thoroughly investigates the behavior of η/s in the hadronic phase both in and

out of chemical equilibrium, with additional results presented on other transport co-

efficients such as the baryon number diffusion coefficient, and preliminary results on

the bulk viscosity to entropy density ratio ζ/s. Such results, taken in conjunction

with what is known about the RHIC data from other measurements, shed light on

the trajectory of η/s in a heavy ion collision, and provide a framework for similar

investigations into the future about trajectories of ζ/s and diffusion coefficients in a

relativistic heavy ion collision.

After reviewing what has been known about the shear and bulk viscosity to en-

tropy density ratios in Chapter 2, I have reviewed three standard techniques for

calculating transport coefficients in Chapter 3. We apply two such approaches, the

Green-Kubo formalism and the relaxation time approximation, when appropriate to

extract ζ/s and η/s from microscopic transport models for hadronic and partonic

media, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model and Par-

ton Cascamde Model (PCM), respectively. In Chapter 4, I describe the details of

UrQMD and the PCM, and show how we are able to simulate thermally equilibriated

hadronic and partonic gases in the infinite volume limit. In Chapter 5, I present my

calculations for η/s for a hadronic medium in and out of chemical equilibrium, and

describe the relevant consequences for the behavior of η/s in the hadronic and par-

tonic phases at RHIC. I also present preliminary calculations for ζ/s and compare

the results to a relaxation time approximation calculation from UrQMD. Results are

also presented for calculations of η/s for a hot equilibriated perturbative QGP at

RHIC.

The results of my calculations of transport coefficients in Chapter 5 suggest that

the QGP observed at RHIC cannot be described solely using traditional techniques

from perturbation theory in QCD (pQCD). The deconfied matter at RHIC either
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has to be modeled using strong interaction physics beyond the scope of pQCD, or

might be a manifestation of turbulent color electric and magnetic fields equilibriating

a weakly coupled QGP with a small anomalous viscosity.

In chapter 6, I provide an algorithm which describes how one can investigate

diffusion of heavy quarks in a thermal medium of mainly light quarks and gluons.

The algorithm also includes a method of dealing with memory effects, which may

result from coherent domains of color magnetic and electric fields being formed as a

result of plasma turbulence. The proper relationship for the diffusion coefficient is

recovered when the limit of no memory effects existing in the QGP is taken.

The goal of this thesis was to advance the knowledge of transport coefficients

of hot QCD matter, which are especially not well known in certain limits where

traditional techniques of QCD are not applicable. In particular, the evolution of the

system of RHIC through a hadronic phase after the transient QGP state only more

strongly emphasizes the need to understand the behavior of transport coefficients in

the separate phases of a heavy ion collision, and appreciate the fact that transport

coefficients are dynamic quantities which are strongly time-dependent.

Interesting open questions remain that require further investigation. For exam-

ple, while the behavior of η/s in a heavy ion collision was strongly improved upon,

especially in quantifying the viscous hadronic effects, the behavior of ζ/s in a heavy

ion collision still needs to be further investigated, and analyzing the effects of bulk

viscosity on elliptic flow are in progress by other groups that perform relativistic vis-

cous hydrodynamics calculations. Also, the numerical implementation of a Langevin

algorithm to investigate heavy quark diffusion in a thermal QGP with memory ef-

fects needs to be executed. Further investigations of these particular questions will

help the community at large make further progress towards a more comprehensive

picture of the behavior of transport coefficients in hot QCD matter.
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