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EXTRACTION OF INTRAWAVE SIGNALS USING THE SPARSE
TIME-FREQUENCY REPRESENTATION METHOD∗
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Abstract. Analysis and extraction of strongly frequency modulated signals have been a chal-
lenging problem for adaptive data analysis methods, e.g., empirical mode decomposition [N.E. Huang
et al., R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), pp. 903–995]. In fact, many of
the Newtonian dynamical systems, including conservative mechanical systems, are sources of signals
with low to strong levels of frequency modulation. Analysis of such signals is an important issue
in system identification problems. In this paper, we present a novel method to accurately extract
intrawave signals. This method is a descendant of sparse time-frequency representation methods
[T.Y. Hou and Z. Shi, Appl. Comput. Harmon. Anal., 35 (2013), pp. 284–308, T.Y. Hou and Z. Shi,
Adv. Adapt. Data Anal., 3 (2011), pp. 1–28]. We will present numerical examples to show the perfor-
mance of this new algorithm. Theoretical analysis of convergence of the algorithm is also presented
as a support for the method. We will show that the algorithm is stable to noise perturbation as well.
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1. Introduction.

1.1. Adaptive data analysis methods. Signals, in general, are gateways of
understanding the world around us. It is not an exaggeration to say that all we know
about the materialistic world comes from signals. More specifically, oscillatory signals
are prevalent in physical and biomedical recordings and many other fields. Among
these signals, many of them have features of nonlinearity and nonstationary. For this
kind of signal, in many cases, traditional methods, such as the Fourier transform or
the wavelet method [15, 1], are not enough to extract the intrinsic structure beneath
the signal, since they use a predetermined basis which may not fit the hidden structure
of the signal. In order to analyze and understand these signals, one needs apt adaptive
data analysis methods.

Substantial progress has been made by the introduction of the empirical mode
decomposition (EMD) method in recent years [11, 12, 13, 14]. EMD is an effective
method of decomposing signals into a collection of oscillatory signals with smoothly
changing envelopes and frequency of the form

(1.1) x (t) = a (t) cos θ (t) ,

where a (t) > 0, and the phase function θ (t) is a strictly increasing function of time.
We call this entity an intrinsic mode function (IMF). Physically speaking, θ (t) carries
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information about the rate of change of the signal in time. The time derivative of θ (t)
is called the instantaneous frequency (IF). A finite linear combination of a collection
of IMFs is called an intrinsic signal (IS),

(1.2) s (t) =

M
∑

i=1

ai (t) cos θi (t) .

The drawback of the EMD method is its empirical nature. Consequently, there
have been attempts to construct methods like EMD that have a solid mathematical
foundation. These methods include, but are not confined to, the optimization-based
EMD method [10], sparse time-frequency representation (STFR) methods [8, 7], and
synchrosqueezed wavelet transforms [6]. All of these methods can be used to extract
IMFs. Among all of these methods, the STFR method preserves many important
properties of the original EMD method, especially when it comes to the adaptive
nature of the method.

Signals that can be represented by (1.1) and conditions a (t) > 0, dθ(t)
dt

> 0 cover
a large set of signals. Hence, in early versions of the STFR methods, the assumption
that the envelope of each IMF is less oscillatory than the oscillatory part cos θ was
used. More precisely, in the original STFR method, we chose a (t) ∈ V (θ (t)) and
a (t) > 0, where

(1.3) V (θ) = span

{

1, cos

(

θ

λ

)

, sin

(

θ

λ

)

| λ � 2

}

.

This form of dictionary V (θ) would impose a certain smoothness constraint on the
envelope a (t): The envelope is smoother than cos θ in the sense that the highest
frequency terms in a (t) are cos

(

θ
2

)

, sin
(

θ
2

)

. In Fourier terms, if the Fourier transform
is performed in the phase, θ, domain (not in the time, t, domain), then the envelope
of an IMF is centered around frequency 1 having a support in

[

1
2 ,

3
2

]

.
All of the adaptive data analysis methods mentioned above, either empirical or

mathematical, perform similarly when it comes to IMFs with smoothly changing
IF and envelopes; i.e., signals having envelopes from the standard dictionary V (θ).
However, when it comes to signals with strong intrawave frequency modulation, some
of these methods have difficulty in extracting the IMFs accurately, especially when
the data are polluted by noise. Intrawave modulation, in many cases, causes the
envelope a (t) to be not necessarily smoother than cos θ. The highest frequency terms
in a (t) are no longer cos

(

θ
2

)

, sin
(

θ
2

)

. This difficulty can be alleviated somewhat by
the introduction of a shape function [19]. However, finding the shape function is a
challenge by itself. In what follows, we first introduce the reader to the concept of
intrawave signals and then move on to show that a slightly modified version of the
STFR method can handle the analysis of intrawave signals.

1.2. Intrawave signals. The main goal of this paper is to extract an intrawave
signal in which the frequency has strong intrawave frequency modulation. Generally
speaking, intrawave signals are of particular interest. First, these signals are abun-
dant in second order ordinary differential equations, specifically conservative systems.
Some of these systems produce oscillatory signals with extremely fast-changing IF
near the peak and/or troughs of the solution signal, i.e., signals with sharp peaks
and/or troughs. The latter is a good indicator for spotting an intrawave signal by
visual inspection. Second, from a theoretical point of view, extraction of intrawave
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signals is challenging. To the best of our knowledge, most existing adaptive data anal-
ysis methods have difficulty in analyzing such signals with good accuracy, especially
when the signal is polluted by noise.

To motivate the difficulty in extracting IMFs from an intrawave signal and also
introduce the reader to intrawave signals, we consider the following signal:

(1.4) x (t) = cos

(

ωt+
△ ω

p
sin (pt)

)

.

In (1.4), ω is the carrier frequency, △ ω < ω is the strength of frequency modulation,
and p is the frequency of the frequency modulation. This example is inspired by the
work on frequency modulated (FM) signals by van der Pol [18]. Taking θ (t) = ωt, it
is possible to express (1.4) in the phase domain θ (t),

(1.5) x (θ) = cos

(

θ +
△ ω

p
sin

( p

ω
θ
)

)

.

Simplifying the latter, we have

(1.6) x (θ) = cos θ cos

(

△ ω

p
sin

( p

ω
θ
)

)

− sin θ sin

(

△ ω

p
sin

( p

ω
θ
)

)

.

Expanding the terms cos
(

△ω
p

sin
(

p
ω
θ
))

and sin
(

△ω
p

sin
(

p
ω
θ
))

, using the Fourier trans-
form, we get

(1.7)
x (θ) =

{

J0

(

△ω
p

)

+ 2
∑∞

k=1 J2k

(

△ω
p

)

cos
(

2k p
ω
θ
)

}

cos θ

+
{

2
∑∞

k=1 J2k−1

(

△ω
p

)

sin
(

(2k − 1) p
ω
θ
)

}

sin θ.

In (1.7), Jk is the the Bessel function of the first kind of order k. Finally, the original
signal (1.4) can be expressed in terms of x (θ) = a (θ) cos θ + b (θ) sin θ, where

a (θ) =

{

J0

(

△ ω

p

)

+ 2

∞
∑

k=1

J2k

(

△ ω

p

)

cos
(

2k
p

ω
θ
)

}

,(1.8)

b (θ) = −
{

2

∞
∑

k=1

J2k−1

(

△ ω

p

)

sin
(

(2k − 1)
p

ω
θ
)

}

.(1.9)

Obviously, the envelope of the signal in (1.7) is not smoother than cos
(

θ
2

)

, sin
(

θ
2

)

.

For a fixed △ω
p
, as k → ∞, Jk

(

△ω
p

)

decreases. However, if △ω
p

is large enough,
many of the high-frequency terms in this formula would make a considerable tail in
the Fourier domain if the Fourier transform were performed in the phase space θ.
This thick tail is the main source of difficulty in the extraction of an intrawave IMF.
The specific difficulty varies for different adaptive methods. For example, in STFR
methods, an explicit band filter in the phase space is used at each iteration [8]—a
short band filter that can solely collect terms in a (θ) and b (θ) that are smoother
than cos

(

θ
2

)

, sin
(

θ
2

)

. This band filter is essentially the numerical counter part of
(1.3). The band filter mentioned above cannot extract the terms that construct the
tail of the expansion in the Fourier domain if the initial guess of the phase function
is given by θ (t) = ωt. On the other hand, it has been demonstrated in [20] that the
ensemble empirical mode decomposition (EEMD) method has properties similar to an
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implicit band filter. Although the filter is implicit, it still acts like a short band filter.
Except for some special data, EMD or EEMD in general has difficulty in capturing
the significant tail of the intrawave in the Fourier domain. In short, by using a short
band filter to decompose a wide band signal, the EMD/EEMD and the original STFR
methods decompose the signal into subharmonics. In what follows, we investigate this
issue in more detail.

We will see, in the next section, that at each iteration of the STFR method, with
θ as an initial guess, the algorithm chooses terms that are in V (θ) to extract the
envelope. Hence, having θ (t) = ωt in (1.4), the maximum number of terms that can
be collected by the STFR method for the envelope a (θ), based on dictionary (1.3)
and (1.7), is kmax =

⌊

ω
4p

⌋

. For b (θ), this value is kmax =
⌊

ω
4p + 1

2

⌋

. In other words,

the approximated envelopes ã (θ), b̃ (θ), at an iteration having the initial guess as
θ (t) = ωt, would look like

ã (θ) =

⎧

⎪

⎨

⎪

⎩

J0

(

△ ω

p

)

+ 2

⌊ ω
4p⌋
∑

k=1

J2k

(

△ ω

p

)

cos
(

2k
p

ω
θ
)

⎫

⎪

⎬

⎪

⎭

,(1.10)

b̃ (θ) = −

⎧

⎪

⎨

⎪

⎩

2

⌊ ω
4p

+ 1
2⌋

∑

k=1

J2k−1

(

△ ω

p

)

sin
(

(2k − 1)
p

ω
θ
)

⎫

⎪

⎬

⎪

⎭

.(1.11)

Obviously, if ω
4p ≪ 1, the only term that will be collected by the STFR method is

J0
(

△ω
p

)

. The other terms would all be discarded. The consequence of this incom-
plete extraction is that the STFR method will break an intrawave signal into many
subharmonics.

In order to capture more terms of a (θ) and b (θ), in the STFR algorithms, we
need to modify the dictionary (1.3), or more precisely the filter, as follows:

(1.12) V (θ) =

{

1, cos

(

θ

λ

)

, sin

(

θ

λ

)

| λ � λ0 > 0

}

.

Here, λ0 should be as small as possible such that enough terms in a (θ) and b (θ) can
be collected. In this case, the maximum number of terms that can be collected by
the STFR method, based on dictionary (1.12), is kmax =

⌊

ω
4pλ0

⌋

for a (θ). For b (θ),

this value is kmax =
⌊

ω
4pλ0

+ 1
2

⌋

. Obviously, using the new filter (dictionary) (1.12),

the algorithm is now able to collect more terms. Consequently, there will be fewer
subharmonics in the residue and a more precise analysis.

The choice of λ0 depends on the decay rate of Jk
(

△ω
p

)

and the ratio ω
p
. However,

if the original signal is polluted with noise, this parameter should be chosen carefully.
Now it is time to have a formal definition of an intrawave signal.

Definition 1.1 (intrawave signal). An IMF x (t) = a (t) cos θ (t), having only
one extremum between two consequent zeros, is an IS in a phase coordinate θ if the
envelope a > 0 in the θ-coordinate, and when decomposed by the Fourier transform,
has terms like cos νθ and sin νθ for ν ≥ 1

2 .
This definition clearly covers the sample intrawave that we picked earlier. In (1.4)

and (1.7), the envelope of the intrawave in the θ-coordinate system with θ = ωt has
terms that are more oscillatory compared to cos

(

θ
2

)

, sin
(

θ
2

)

. Now we can present
a summary of the problem that we want to solve, as well as the road map to the
solution.
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1.3. Summary. The main difficulty in dealing with intrawave signals comes
from the fact that they have a wide band representation in the frequency domain.
Hence, any time-frequency method that uses short band filters, either explicitly or
implicitly, would not be able to decompose such signals properly. In this paper, we
will show that by modifying the envelope dictionary (1.3), in an STFR framework, the
intrawave signals can be extracted with reasonable accuracy. The small modification
would allow us to treat intrawave signals without major changes in the original STFR
algorithm. The convergence of the modified algorithm will be proven for the case of
periodic signals, with or without noise.

We remark that by enlarging the filter band width, we require that the IMF
components of an IS be well separated in the time-frequency domain. In our tech-
nical terms, they must have large-scale separation. In fact, a wide band filter might
collect parts of another IMF. This is why we require that they have large-scale sep-
aration. However, this limitation can be alleviated by extracting the nonseparable
time-frequency intrawave IMFs simultaneously. We will report this method in detail
in a future work. In this paper, we will only demonstrate this idea in one of the
numerical examples. Finally, we remark that the method of proof in this paper is
similar in spirit to that reported in our previous paper [9].

The rest of the paper is organized as follows. In section 2, we present the STFR
algorithms as well as their extensions, which can analyze intrawave signals. The
theorems shown in section 3 will then explain why such algorithms would work. In
section 4, we present several numerical examples to demonstrate the effectiveness of
our algorithms and provide support for our convergence theorems. Some concluding
remarks are made in section 5. Several technical estimates are deferred to Appendices
A, B, and C.

2. Algorithmic analysis. In this section, we present the STFR methods and
algorithms. The STFR method was inspired by the EMD/EEMD method [13, 21],
recently developed compressive sensing theory [4, 5], and matching pursuit [16]. The
main idea in the STFR method is to decompose a signal into the sparsest collection
of IMFs. The set of the collection of IMFs constitutes a dictionary.

Definition 2.1 (IMF dictionary). The IMF dictionary D is defined as

(2.1) D =

{

a (t) cos θ (t) | a (t) ∈ V (θ (t)) , a (t) > 0,
dθ (t)

dt
> 0

}

.

In mathematical terms, finding the sparsest decomposition of a signal can be
formulated as the following nonlinear optimization problem:

(2.2)
Minimize M

subject to s (t) =
∑M

i=1 ai (t) cos θi (t) , ai (t) cos θi (t) ∈ D, i = 1, . . . ,M.

This problem is an L0 minimization. The constraint s (t) =
∑M

i=1 ai (t) cos θi (t) can
be relaxed into an inequality if noise is present in the data. Solving this problem is
fundamentally difficult. Hence, one should try to find an appropriate approximation
of this problem.

There are several ways to approximate the above L0 minimization problem by a
more tractable algorithm; see [8, 7]. The main idea behind all of the simplifications
is to decompose the signal into two parts, a mean and a modulated oscillatory part:

(2.3) s = a0 + a1 cos θ.
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Here, θ, a1, and a0 are unknown phase function, envelope, and mean, respectively.
This sequential decomposition is nothing but a matching pursuit [16] to find one of
the IMFs a1 cos θ. After the extraction of a1 cos θ, the residue (mean) a0 is treated
as a new signal, and the same procedure is repeated until the final residue is small
enough.

Here we review the periodic STFR algorithm. Without loss of generality, we
assume that the signal is sampled over a uniform grid tj =

j
N

for j = 0, 1, . . . , N − 1
and even N .

• k = 1, rk−1 = s.
• Step 0: n = 0, θnk = θ0.
• Step 1: Interpolate rk−1 from the t-coordinate into a uniform grid in θ-
coordinate. In other words, for j = 0, . . . , N − 1,

(2.4)
(

rk−1
θn
k

)

j
= Interpolate

(

t, rk−1, (θnk )j

)

.

• Step 2: Apply the Fourier transform to rk−1
θn
k

for (θnk )j = 2πLθn
k

j
N
:

(2.5) Fθn
k

(

rk−1
θn
k

)

ω
=

1

N

N
∑

j=1

(

rk−1
θn
k

)

j
e
−iω

(θnk )
j

Lθn
k , ω = −N

2
+ 1, . . . ,

N

2
.

• Step 3: For the Fourier inverse defined as
(2.6)

(

F−1
θn
k

(

Fθn
k

(

rk−1
θn
k

)))

j
=

1

N

N
2
∑

ω=−N
2
+1

Fθn
k

(

rk−1
θn
k

)

ω
e
iω

(θnk )
j

Lθn
k , j = 0, . . . , N − 1,

apply a cutoff function χ to Fθn
k

(

rk−1
θn
k

)

to calculate the envelopes

akθn
k
= F−1

θn
k

[(

Fθn
k

(

rk−1
θn
k

)

ω+Lθn
k

+ Fθn
k

(

rk−1
θn
k

)

ω−Lθn
k

)

χ

(

ω

Lθn
k

)

]

,(2.7)

bkθn
k
= F−1

θn
k

[

−i

(

Fθn
k

(

rk−1
θn
k

)

ω+Lθn
k

−Fθn
k

(

rk−1
θn
k

)

ω−Lθn
k

)

χ

(

ω

Lθn
k

)

]

.(2.8)

The cutoff function is

(2.9) χ (ω) =

{

1, − 1
2 < ω < 1

2 ,

0 otherwise.

• Step 4: Interpolate the calculated envelopes’ background into the t-coordinate
for j = 0, . . . , N − 1:

(

akn
)

j
= Interpolate

(

θnk , a
k
θn
k
, tj

)

,(2.10)

(

bkn
)

j
= Interpolate

(

θnk , b
k
θn
k
, tj

)

.(2.11)

• Step 5: Update the phase function

△θ′ = PVM0

(

d

dt
arctan

(

bkn
akn

))

,△θ (t) =

∫ t

0

△θ′ (s) ds,(2.12)

θn+1
k = θnk − β△θ.(2.13)
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Here, β ∈ [0, 1] is chosen in a way that the phase function is always strictly
increasing:

(2.14) β = max

{

α ∈ [0, 1] | d

dt
(θnk − α△θ) > 0

}

.

The projection, PVM0
, into VM0

= span
{

ei2πkt, |k| ≤ M0, k ∈ Z
}

is a smooth-
ing step. M0 is fixed.

• Step 6: If
∥

∥θn+1
k − θnk

∥

∥ ≤ ǫI , then IMFk = akn cos θ
n
k + bkn sin θ

n
k , n ← 0,

rk = rk−1 − IMFk, k ← k + 1. Else, n ← n+ 1, goto Step 1.
• Step 7: If

∥

∥rk
∥

∥ ≤ ǫII , stop. Else, goto Step 0.
There is also a similar nonperiodic algorithm. This algorithm is based on solving the
discrete form of the following minimization problem:

(2.15)

Minimize δ (‖a(t)‖1 + ‖b(t)‖1) + ‖s(t)−A(t) cos θ(t)‖22
subject to A(t) =

∫∞
2 (a(λ) cos θ(t)

λ
+ b(λ) sin θ(t)

λ
)dλ,

dθ(t)
dt

> 0.

Here, A(t) =
∫∞
2

(a(λ) cos θ(t)
λ

+ b(λ) sin θ(t)
λ

)dλ means that the envelope A (t) must
be represented by terms in V (θ). The coefficients of that representation are a(λ) and
b(λ).

In order to solve such an optimization problem in the discrete case, we need the
following:

A (θ) = āc +
∑

l

ackl
cos

θ

kl
+ bckl

sin
θ

kl
,(2.16)

{kl}ml=1 ⊂ [2,∞) .(2.17)

We need the same thing for B (θ):

(2.18) B (θ) = ās +
∑

l

askl
cos

θ

kl
+ bskl

sin
θ

kl
.

In fact, A (θ) and B (θ) are approximations of the envelope of the IMF. In other
words, we assume that the IMF looks like A (θ) cos θ+B (θ) sin θ. In this assumption,
we set θ (0) = 0. In the discrete domain, for i = 1, . . . , N ,

(2.19) θ = {θi} , C =
{

cos θi
kl

}

= {Cil} , S =
{

sin θi
kl

}

= {Sil} .

Now, define vectors A, B:

(2.20) A = [C,S,1]

⎡

⎣

ac

bc

āc

⎤

⎦ , B = [C,S,1]

⎡

⎣

as

bs

ās

⎤

⎦ .

We still need a few more matrices to be able to describe the algorithm:

Ψ = [C,S,1] , sin = diag (sin θ) ,

x =
[

ac bc āc as bs ās
]T

, cos = diag (cos θ) ,
(2.21)

H = [cosΨ, sinΨ] .(2.22)

We are now ready to explain how the nonperiodic STFR algorithm works. Take the
sampled signal to be like a column vector u. The STFR algorithm would then be the
following.
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• k = 1, rk−1 = u.

• Step 0: n = 0, θ
(n)
k = θ0.

• Step 1: Find x
(n)
k =

([

ac bc āc as bs ās
]T )(n)

k
by solving the following

convex minimization problem:

(2.23) Minimize δ
∥

∥

∥x
(n)
k

∥

∥

∥

1
+
∥

∥

∥s−H
(n)
k x

(n)
k

∥

∥

∥

2

2
.

• Step 2: Find

(2.24) An
k = [C,S,1]

(n)
k

⎛

⎝

⎡

⎣

ac

bc

āc

⎤

⎦

⎞

⎠

(n)

k

, Bn
k = [C,S,1]

(n)
k

⎛

⎝

⎡

⎣

as

bs

ās

⎤

⎦

⎞

⎠

(n)

k

.

• Step 3: Update the phase vector1

(2.25) θ
(n+1)
k = θ

(n)
k − arctan

(

Bn
k

An
k

)

.

• Step 4: If
∥

∥θ(n) − θ(n−1)
∥

∥ ≤ ǫI , then IMFk = H
(n)
k x

(n)
k , n ← 0, rk =

rk−1 − IMFk, k ← k + 1. Else, n ← n+ 1, goto Step 1.
• Step 7: If

∥

∥rk
∥

∥ ≤ ǫII , stop. Else, goto Step 0.
One might be curious about the presence of the least-squares l1-regularized mini-
mization in this algorithm. In fact, the presence of the l2-regularized–l1 optimization
(2.23) is twofold. First, we assume that the envelope can be approximated by a sparse
number of terms, as the original approximation asserts. Second, it acts as a stabilizer
of the l2 norm.

As stated before in detail, the remedy to the failure of time-frequency methods in
handling the intrawave signals lies in the fact that the filters of the methods must be
modified in a way to capture the thick tail of the intrawave signals in the frequency
domain. It is not clear how to achieve this within the framework of the EMD [13] or
synchrosqueezed wavelet methods [6, 17]. However, for the STFR methods [8], this is
straightforward: The filters or envelope dictionaries must be made wider. This fact
manifests itself in the shape of the cutoff function in the periodic algorithm as

(2.26) χ (ω) =

{

1, − 1
λ
< ω < 1

λ
,

0 otherwise,

where λ is a measure of the span of the filter. In this paper, we prove that convergence
enhances if λ → 1+. However, our numerical results will show that under intense
frequency modulation in the original IMF, λ → 0+ can also be used successfully,

1In fact, like before, we have

△θ′ = PVM0

(

d

dt
arctan

(

Bn
k

An
k

))

, △θ (t) =

∫ t

0

△θ′ (s) ds,

θn+1
k

= θnk − β△θ,

and β ∈ [0, 1] is chosen in a way that the phase function is always strictly increasing:

β = max

{

α ∈ [0, 1] |
d

dt
(θnk − α△θ) > 0

}
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Table 1
Coordinates and symbols.

Domain Symbol Analysis Synthesis

θ Fθ (.) (Fθ (g))k = 1
|θend−θ0|

∫ θend
θ0

g (θ) e
−i2πkθ

|θend−θ0| dθ g (θ) =
∞
∑

k=−∞
(Fθ (g))k e

i2πkθ

|θend−θ0|

t ∈ [0, 1] F (.) (F (g))k =
∫ 1

0
g (t) e−i2πktdt g (t) =

∞
∑

k=−∞
(F (g))k ei2πkt

θ̄ (̂)θ̄ f̂θ̄ (k) =
∫ 1

0
f
(

θ̄
)

e−i2πkθ̄dθ̄ f
(

θ̄
)

=
∞
∑

k=−∞

f̂θ̄ (k) e
i2πkθ̄

t PVM0
(.) PVM0

(g) =
M0
∑

k=−M0

(F (g))k ei2πkt RVM0
(g) =

∑

|k|>M0

(F (g))k ei2πkt

k ∈ Z ‖.‖1,M0
‖z‖1,M0

=
∑

|k|≤M0

|z (k)|

though with extreme caution. For the nonperiodic STFR algorithm, the modification
happens where we define the envelope dictionary as

(2.27) {kl}ml=1 ⊂ [λ,∞) .

We remark that the filter parameter λ must be chosen based on the characteristics
of the intrawave signal. Ideally, we should choose λ adaptive to the strength of the
frequency modulation of different IMFs. This problem will be investigated in our
future research. From our experience, the choice of λ = 1+ often provides a good
practical initial value for λ.2 For the choice of λ = 1+, we can prove the convergence
of the periodic algorithm for λ > 1.

3. Theoretical analysis.

3.1. Convergence analysis. In this section, we prove that, for an intrawave
signal, increasing the filter span would reduce the extraction error. We will show
that the STFR algorithm will converge to an IMF that is close to the intrawave IMF,
but with an error associated with the width (span) of the filter. Before proving our
convergence result, we introduce some notation in Table 1.

In this section, we assume that an IS can be represented in the following format:

(3.1) f (t) = f0 (t) + f1 (t) cos θ (t)

for f1 (t) > 0, θ′ > 0, and t ∈ [0, 1]. We assume that the signal is periodic with mean
zero. In fact, even if the signal f (t) is periodic with a nonzero mean, we can redefine
it by reducing the mean of the signal from the signal itself. Next, we need a lemma
that helps us to bound the nth derivative of the mth approximated phase function θ̄m.
This lemma can later be used to bound some of the integrals in the main theorem.

Lemma 3.1. If
(

θ̄m
)′ ∈ VM0

, where VM0
= span

{

ei2πkt, |k| ≤ M0, k ∈ Z
}

, then

(3.2)
∣

∣

∣

(

θ̄m
)(n)

(t)
∣

∣

∣ ≤ (2πM0)
n−1

∥

∥

∥F
(

(

θ̄m
)′)

∥

∥

∥

1

for n ∈ N.

2In this paper, the symbol λ = t+ is used extensively. By using this symbol, we mean λ = t+ σ

for some positive small σ.
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Proof. By definition, we have

∣

∣

∣

(

θ̄m
)(n)

(t)
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∑

|k|≤M0

(

F
(

(

θ̄m
)(n)

))

k
ei2πkt

∣

∣

∣

∣

∣

∣

≤
∑

|k|≤M0

∣

∣

∣

(

F
(

(

θ̄m
)(n)

))

k

∣

∣

∣

≤
∑

|k|≤M0

∣

∣

∣

(

F
(

(

θ̄m
)(n)

))

k

∣

∣

∣
=

∑

|k|≤M0

|i2πk|n−1
∣

∣

∣

(

F
(

(

θ̄m
)′))

k

∣

∣

∣

=(2πM0)
n−1

∥

∥

∥F
(

(

θ̄m
)′)

∥

∥

∥

1
.

Using this lemma, we can now present the next lemma to bound integrals like
∣

∣

∫ 1

0
eiδ△θe−iǫθ̄m

dθ̄m
∣

∣ that occur frequently in the main theorem. These integrals
would be bounded by the norm of the Fourier transform of the phase correction △θ′.
In fact, this bound would help us construct a contraction in the main theorem.

Lemma 3.2. If
(

θ̄m
)′

> 0, t ∈ [0, 1], θ̄m (0) = 0, θ̄m (1) = 1, and
(

θ̄m
)′
,△θ′ ∈

VM0
. Also, if eiδ△θe−iǫθ̄m

is periodic, then for ǫ �= 0, we have

(3.3)

∣

∣

∣

∣

∫ 1

0

eiδ△θe−iǫθ̄m

dθ̄m
∣

∣

∣

∣

≤ Pn
mMn

0

|ǫ|n
n
∑

j=1

|δ|j (2πM0)
−j (‖F (△θ′)‖1)

j
.

Proof. Using integration by parts, we have

∫ 1

0

eiδ△θe−iǫθ̄m

dθ̄m =
1

(iǫ)
n

∫ 1

0

(

dn

d
(

θ̄m
)n e

iδ△θ

)

e−iǫθ̄m

dθ̄m.

Now, using the previous lemma, we have

∣

∣

∣

∣

∫ 1

0

eiδ△θe−iǫθ̄m

dθ̄m
∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

|ǫ|n
∫ 1

0

(

dn

d
(

θ̄m
)n e

iδ△θ

)

dθ̄m

∣

∣

∣

∣

∣

≤
P

(

‖F((θ̄m)
′
)‖

1

min(θ̄m)
′ , n

)

Mn
0

(

min
(

θ̄m
)′)n

|ǫ|n
n
∑

j=1

|δ|j (2πM0)
−j

(‖F (△θ′)‖1)
j

=
Pn
mMn

0

|ǫ|n
n
∑

j=1

|δ|j (2πM0)
−j

(‖F (△θ′)‖1)
j
.

Here, P (x, n) is a polynomial of degree n − 1 and Pn
m = P

(‖F((θ̄m)′)‖1

min(θ̄m)′
, n
)

. This

completes the proof.
Remark 3.1. Here we present a simple calculation on how to compute the poly-
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nomial P (x, n) for small n. For example, for n = 2, we have
∣

∣

∣

∣

∣

d2

d
(

θ̄m
)2

eiδ△θ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

i

⎛

⎜

⎝

(δ△θ)′′

(

(

θ̄m
)′
)2

−
(δ△θ)′

(

θ̄m
)′′

(

(

θ̄m
)′
)3

+ i

(

(δ△θ)′
)2

(

(

θ̄m
)′
)2

⎞

⎟

⎠
eiδ△θ

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

(δ△θ)′′

(

(

θ̄m
)′
)2

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

(δ△θ)′
(

θ̄m
)′′

(

(

θ̄m
)′
)3

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

(

(δ△θ)′
)2

(

(

θ̄m
)′
)2

∣

∣

∣

∣

∣

∣

∣

≤
max

∣

∣(δ△θ)′′
∣

∣

min
(

(

θ̄m
)′
)2

+
max

∣

∣(δ△θ)′
∣

∣max
∣

∣

∣

(

θ̄m
)′′

∣

∣

∣

min
(

(

θ̄m
)′
)3

+
max

∣

∣

∣

(

(δ△θ)′
)2

∣

∣

∣

min
(

(

θ̄m
)′
)2

≤
1

min
(

(

θ̄m
)′
)2

⎡

⎢

⎣

⎛

⎜

⎝
1 +

∥

∥

∥F
(

(

θ̄m
)′
)∥

∥

∥

1

min
(

θ̄m
)′

⎞

⎟

⎠
2πM0

∥

∥F
(

(δ△θ)′
)∥

∥

1
+

∥

∥F
(

(δ△θ)′
)∥

∥

2

1

⎤

⎥

⎦
,

where we have used
(

θ̄m
)′
,△θ′ ∈ VM0

. In simple words, we have P (x, 2) = K (x+ 1)
for some positive constant K.

Having all these preliminaries, we can now present the convergence theorem. The
essence of the algorithm is as follows. We try to construct a contraction iterative
scheme on

∥

∥F (θ − θm)
′∥
∥

1
, where θm is the approximate value of θ at the mth step.

This contraction is built upon the error bounds of the extracted envelopes at each
iteration of the algorithm. The notation of this proof follows the notation of the
algorithm.

Theorem 3.1 (convergence theorem). Assume that the instantaneous frequency
in (3.1) is M0-sparse; i.e., θ

′ ∈ VM0
. Furthermore, assume that

∣

∣

∣f̂0,θ̄ (k)
∣

∣

∣ ≤ C0

|k|p ,
∣

∣

∣f̂1,θ̄ (k)
∣

∣

∣ ≤ C0

|k|p

for C0 > 0 and p ≥ 4. If the initial guess satisfies ‖F(△θ0)′‖1

2πM0
≤ 1

4 , then there exists
an η0 > 0 such that for L > η0, we have

∥

∥

∥
F
(

θ − θm+1
)′
∥

∥

∥

1
≤ Γ1λ

2p−2L−p+2 + 1
2

∥

∥F (θ − θm)′
∥

∥

1

for λ > 1 and Γ1 > 0.
Proof. We know that if △θm = θ − θm, then am = f1 cos∆θm, and bm =

−f1 sin∆θm. Let ãm, b̃m be approximate envelope functions. Set the error in en-
velopes as △am = a − ãm, and set △bm = b − b̃m. Using these, we get f =

f0 + am cos θm + bm sin θm. Let Lm = θm(1)−θm(0)
2π and θ̄m = θm

2πLm
. Then, we

have f = f0 + am cos 2πLmθ̄m + bm sin 2πLmθ̄m. If we take the Fourier transform in
θ̄m coordinate (see Table 1), we get

f̂θ̄m (k) = f̂0,θ̄m (k)+
1

2
(âm

θ̄m (k − Lm) + â
m
θ̄m (k + Lm))+

1

2i

(

b̂
m
θ̄m (k − Lm)− b̂

m
θ̄m (k + Lm)

)

.

Consequently, one can find

âm
θ̄m (k) = f̂θ̄m (k + Lm) + f̂θ̄m (k − Lm)

−f̂0,θ̄m (k + Lm)− f̂0,θ̄m (k − Lm)

+
1

2

(

−âm
θ̄m (k + 2Lm)− âm

θ̄m (k − 2Lm)
)

+
1

2i

(

b̂m
θ̄m (k + 2Lm)− b̂m

θ̄m (k − 2Lm)
)
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and

b̂m
θ̄m (k) = if̂θ̄m (k + Lm)− if̂θ̄m (k − Lm)

−if̂0,θ̄m (k + Lm) + if̂0,θ̄m (k − Lm)

+
i

2

(

−âm
θ̄m (k + 2Lm) + âm

θ̄m (k − 2Lm)
)

+
1

2

(

b̂m
θ̄m (k + 2Lm) + b̂m

θ̄m (k − 2Lm)
)

.

In the periodic STFR algorithm, ˆ̃am
θ̄m ,

ˆ̃
bm
θ̄m are approximated as

ˆ̃am
θ̄m (k) =

{

f̂θ̄m (k + Lm) + f̂θ̄m (k − Lm) , −Lm

λ
≤ k ≤ Lm

λ
,

0 otherwise,

ˆ̃
bm
θ̄m (k) =

{

i
(

f̂θ̄m (k + Lm)− f̂θ̄m (k − Lm)
)

, −Lm

λ
≤ k ≤ Lm

λ
,

0 otherwise.

Here, 1 < λ defines the width of the filter. Hence, for △âm
θ̄m and △b̂m

θ̄m , we have

△âm
θ̄m (k) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{

−f̂0,θ̄m (k + Lm)− f̂0,θ̄m (k − Lm)

+ 1
2

(

−âm
θ̄m (k + 2Lm)− âm

θ̄m (k − 2Lm)
)

|k| ≤ Lm

λ
,

+ 1
2i

(

b̂m
θ̄m (k + 2Lm)− b̂m

θ̄m (k − 2Lm)
)}

,

âm
θ̄m (k) , |k| > Lm

λ
,

△b̂m
θ̄m (k) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{

−if̂0,θ̄m (k + Lm) + if̂0,θ̄m (k − Lm)

+ i
2

(

−âm
θ̄m (k + 2Lm) + âm

θ̄m (k − 2Lm)
)

|k| ≤ Lm

λ
,

+ 1
2

(

b̂m
θ̄m (k + 2Lm) + b̂m

θ̄m (k − 2Lm)
)}

,

b̂m
θ̄m (k) , |k| > Lm

λ
.

The ideal case for updating the phase function is dθnew

dt
= dθm

dt
− d

dt
arctan b̃m

ãm . How-

ever, the algorithm works in a way that we must choose dθm+1

dt
in VM0

. Hence,
dθm+1

dt
= PVM0

(

dθnew

dt

)

. So, at each step, we force dθm

dt
to be in VM0

. In sim-

ple words, dθm

dt
∈ VM0

for all m ≥ 0, m ∈ Z. This short analysis tells us that
dθm+1

dt
= dθm

dt
− PVM0

(

d
dt

arctan b̃m

ãm

)

. Since θ ∈ VM0
is sufficiently differentiable, and

dθm

dt
∈ VM0

, then (θ − θm = △θm) ∈ VM0
. Having these in mind, we can find

d

dt
△θm+1 =

d

dt

(

θ − θm+1
)

=
dθ

dt
− dθm

dt
+ PVM0

(

d

dt
arctan

b̃m

ãm

)

=PVM0

d

dt

(

arctan
b̃m

ãm
− arctan

bm

am

)

+RVM0

(

d

dt
△θm

)

.

We know arctan b̃m

ãm − arctan bm

am is in C1. For any g ∈ C1, we have PVM0

d
dt
(g) =

d
dt
PVM0

(g). Hence, the Fourier transform of the IF error is

(

F
(

△θ
m+1

)′
)

k
=

(

F

(

PVM0

d

dt

(

arctan
b̃m

ãm
− arctan

bm

am

)))

k

+
(

F
(

RVM0
(△θ

m)′
))

k

=(i2πk)

(

F

(

PVM0

(

arctan
b̃m

ãm
− arctan

bm

am

)))

k

+
(

F
(

RVM0
(△θ

m)′
))

k
.
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As (F(PVM0
(arctan b̃m

ãm − arctan bm

am )))k = 0 for |k| > M0, then
∥

∥

∥
F

(

△θm+1
)′
∥

∥

∥

1
≤ (2πM0)

∥

∥

∥
F

(

PVM0

(

arctan b̃m

ãm − arctan bm

am

))∥

∥

∥

1
+

∥

∥

∥
F

(

RVM0
(△θm)′

)∥

∥

∥

1
.

Now, we know that for any function g (t), we have

∥

∥F
(

PVM0
(g)

)∥

∥

1
=

M0
∑

k=−M0

|(F (g))k| =
M0
∑

k=−M0

∣

∣

∣

∣

∫ 1

0

g (t) e−i2πktdt

∣

∣

∣

∣

≤
M0
∑

k=−M0

∫ 1

0

|g (t)| dt ≤
M0
∑

k=−M0

‖g‖∞ = (2M0 + 1) ‖g‖∞ .

Hence, the l1 norm of the Fourier of the IF error is

∥

∥

∥
F

(

△θ
m+1

)′
∥

∥

∥

1
≤ (2πM0) (2M0 + 1)

∥

∥

∥

∥

arctan
b̃m

ãm
− arctan

bm

am

∥

∥

∥

∥

∞

+
∥

∥

∥
F

(

RVM0
(△θ

m)′
)∥

∥

∥

1
.

Since θ′ is sparse in VM0
, then the last term vanishes. In fact, we previously showed

that dθm

dt
∈ VM0

, and hence

(

F (△θm)
′)

k
=
(

F (θ − θm)
′)

k
=

{

(F (θ′))k −
(

F
(

(θm)
′))

k
, |k| ≤ M0,

(F (θ′))k = 0, |k| > M0,

so

RVM0
(△θm)

′
=

∑

|k|>M0

(

F (△θm)
′)

k
ei2πkt =

∑

|k|>M0

(F (θ′))k e
i2πkt = 0,

and then
(

F
(

RVM0
(△θm)

′))
k
= 0. Finally, we have the following bound on the IF

error:
∥

∥

∥F
(

△θm+1
)′
∥

∥

∥

1
≤ (2πM0) (2M0 + 1)

∥

∥

∥arctan b̃m

ãm − arctan bm

am

∥

∥

∥

∞
.

The last term on the right-hand side of this bound can be simplified further. If we

use the fact that x2 + xy ≤ x2

2 − y2 for real x and y, we have

∣

∣

∣

∣

∣

arctan
b̃m

ãm
− arctan

bm

am

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

arctan

(

b̃mam − ãmbm

amãm + bmb̃m

)∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

b̃mam − ãmbm

amãm + bmb̃m

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(am +△am)△bm − (bm +△bm)△am

(am)
2
+ (bm)

2
+ (△am) am + (△bm) bm

∣

∣

∣

∣

∣

≤ (|am|+ |△am|) |△bm|+ (|bm|+ |△bm|) |△am|
(am)2+(bm)2

2 −
(

(△am)2 + (△bm)2
)

≤D (|△am|+ |△bm|)

forD = max
(

f1+|△am|
f2
1
2
−((△am)2+(△bm)2)

,
f1+|△bm|

f2
1
2
−((△am)2+(△bm)2)

)

. In the latter, we have taken

into account that f1 > 0. Now, consider the fact that

|△am (t)| = |△am (θ)| =
∣

∣△am
(

θ̄m
)∣

∣ =

∣

∣

∣

∣

∣

∣

∞
∑

k=−∞

△âm
θ̄m

(k) ei2πkθ̄m

∣

∣

∣

∣

∣

∣

≤
∞
∑

k=−∞

∣

∣△âm
θ̄m

(k)
∣

∣ =
∥

∥△âm
θ̄m

∥

∥

1
,
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and as in general ĝθ̄ (−k) = ĝθ̄ (k) for any g, then |ĝθ̄ (−k)| = |ĝθ̄ (k)|. Consequently,
the bound on the envelopes errors can be expressed as

|△am| ≤
∥

∥△âm
θ̄m

∥

∥

1
≤ 2

∑

(1− 1
λ )Lm≤k≤(1+ 1

λ )Lm

∣

∣

∣
f̂0,θ̄m (k)

∣

∣

∣

+
∑

(2− 1
λ )Lm≤k≤(2+ 1

λ )Lm

(

∣

∣âm
θ̄m (k)

∣

∣+
∣

∣

∣b̂
m
θ̄m (k)

∣

∣

∣

)

+
∑

|k|>Lm
λ

∣

∣âm
θ̄m (k)

∣

∣

and

|△bm| ≤
∥

∥

∥△b̂m
θ̄m

∥

∥

∥

1
≤ 2

∑

(1− 1
λ )Lm≤k≤(1+ 1

λ )Lm

∣

∣

∣f̂0,θ̄m (k)
∣

∣

∣

+
∑

(2− 1
λ )Lm≤k≤(2+ 1

λ )Lm

(

∣

∣âm
θ̄m (k)

∣

∣+
∣

∣

∣b̂mθ̄m (k)
∣

∣

∣

)

+
∑

|k|>Lm
λ

∣

∣

∣b̂mθ̄m (k)
∣

∣

∣ .

We will soon use approximations on these terms. Before that, we recall that according
to one of our assumptions, we have the following: “The observation is periodic with

mean zero.” Hence, f̂0,θ̄m (0) = 0. Furthermore, as ei2πkθ̄e−i2πωθ̄m

is periodic, so is

ei2πθ̄
m(kLm

L
−ω)eik

△θm

L , and then we have the following estimate using these facts and
the previous lemma:
(3.4)
∣

∣

∣
f̂0,θ̄m (ω)

∣

∣

∣
≤ 2C0

(

αλ
|ω|

)p−1

+2C0P
n
m

(

M0λ
2π|εω|

)n

⎛

⎝

p−2
∑

j=1

( γ
L

)j π2

3
+ 2

n
∑

j=p

∣

∣

ω
αλ

∣

∣

j−p+1 ( γ
L

)j
+ 2

( γ
L

)p−1
(

1 +
|ω|
αλ

)

⎞

⎠ .

Here, γ = ‖F(△θm)′‖1

2πM0
. The proof of this inequality can be found in Appendix A. Now

it is time to find the estimate on âm
θ̄m (k). The approach is essentially the same as what

we just had above. The reader can find the approximation procedure in Appendix B.

|âm
θ̄m (ω)| ≤2C0

(

αλ

|ω|

)p−1

+
∣

∣

∣f̂1,θ̄ (0)
∣

∣

∣P
n
m

(

M0

2π |ω|

)n n
∑

j=1

γ
j +C0P

n
m

(

M0λ

2π |εω|

)n
2p

p− 1

n
∑

j=1

2jγj

+ C0P
n
m

(

M0λ

2π |εω|

)n

×

(

p−2
∑

j=1

2j
( γ

L

)j π2

3
+

n
∑

j=p

2j+1
∣

∣

∣

ω

αλ

∣

∣

∣

j−p+1 ( γ

L

)j

+ 2p
( γ

L

)p−1
(

1 +
|ω|

αλ

)

)

.(3.5)

There is a similar bound for b̂m
θ̄m (ω) as well:

∣

∣

∣b̂
m
θ̄m

(ω)
∣

∣

∣ ≤2C0

(

αλ

|ω|

)p−1

+
∣

∣

∣f̂1,θ̄ (0)
∣

∣

∣P
n
m

(

M0

2π |ω|

)n n
∑

j=1

γj + C0P
n
m

(

M0λ

2π |εω|

)n 2p

p− 1

n
∑

j=1

2jγj

+ C0P
n
m

(

M0λ

2π |εω|

)n

×

⎛

⎝

p−2
∑

j=1

2j
( γ

L

)j π2

3
+

n
∑

j=p

2j+1
∣

∣

∣

ω

αλ

∣

∣

∣

j−p+1 ( γ

L

)j
+ 2p

( γ

L

)p−1
(

1 +
|ω|

αλ

)

⎞

⎠ .D
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Now we approximate the terms in the inequality for |△am|. One can find the details
of this approximation in Appendix C. We have a similar inequality for |△bm|. These
can be expressed in the following way:

|△am| ≤ C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ ,(3.6)

|△bm| ≤ C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ ,(3.7)

where C1 and C2 depend on C0, M0, ε, α, P
n
m, n, p. Before moving forward, we need

to show that parameters like α and Pn
m are uniformly bounded. We start with α. We

have

|1− α| =
∣

∣

∣

∣

1− Lm

L

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1−
θm(1)−θm(0)

2π
θ̄m(1)−θ̄m(0)

2π

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∆θm (1)−∆θm (0)

2πL

∣

∣

∣

∣

≤
∥

∥

∥

∥

(∆θm)
′

2πL

∥

∥

∥

∥

∞
≤
∥

∥

∥

∥

F (∆θm)
′

2πL

∥

∥

∥

∥

1

=
γM0

L
≤ M0

4L
≤ 1

8
.(3.8)

Here, we have used the fact that γ ≤ 1
4 . At the last part of the proof, we will show that

this condition remains intact for all iterations. The last inequality in (3.8) can be true
for the condition L ≥ 2M0. Hence,

7
8 ≤ α ≤ 9

8 . In order to prove the boundedness of

Pn
m at every step, we need to find bounds on ‖F((θ̄m)′)‖1 and min

(

θ̄m
)′
. If we take

the condition min
(

θ̄′
)

≥ M0

2L , we get θ̄′ ≥ M0

2L > M0

4L ≥ γM0

L
= ‖F(∆θm)′

2πL ‖1 ≥ | (∆θm)′

2πL |.
Using this, we have

∣

∣

∣

(

θ̄m
)′
∣

∣

∣ =

∣

∣

∣

∣

(θm)
′

2πLm

∣

∣

∣

∣

=

∣

∣

∣

∣

(θ −∆θm)
′

2παL

∣

∣

∣

∣

≥ 8

9

∣

∣

∣

∣

(θ −∆θm)
′

2πL

∣

∣

∣

∣

=
8

9

∣

∣

∣

∣

θ̄′ − (∆θm)
′

2πL

∣

∣

∣

∣

≥ 8

9

(

θ̄′ − (∆θm)
′

2πL

)

≥ 8

9

(

θ̄′ − M0

4L

)

≥8

9

(

θ̄′ − M0

4L

)

≥ 8

9

(

θ̄′ − θ̄′

2

)

≥ 4

9
min

(

θ̄′
)

.

We also have

∥

∥

∥F
(

(

θ̄m
)′)

∥

∥

∥

1
=
1

α

∥

∥

∥

∥

F
(

(θ −∆θm)
′

2πL

)∥

∥

∥

∥

1

=
1

α

∥

∥

∥

∥

∥

F
(

θ̄′
)

− F
(

(∆θm)
′)

2πL

∥

∥

∥

∥

∥

1

≤8

7

(

∥

∥F
(

θ̄′
)∥

∥

1
+

∥

∥F
(

(∆θm)
′)∥
∥

1

2πL

)

=
8

7

(

∥

∥F
(

θ̄′
)∥

∥

1
+

M0γ

L

)

≤8

7

(

∥

∥F
(

θ̄′
)∥

∥

1
+

M0

4L

)

.

These two estimates pave the way to rigorously prove that Pn
m is bounded at every

single step. Now it is time for a bound on D. In fact, if we bound D uniformly over
all steps, we can set a contraction. Assuming that 1 < λ < λ0, and since f1 > 0,
taking the condition

C1λ
2p−2
0

L−p+1
+

C2λ
2n
0

4L−max(−n,−2p+1,−n−p+2,−2p)
≤

√
2

4
min f1
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would result in3

|△am| ≤C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ

≤C1λ
2p−2
0

Lp−2
+

C2λ
2n
0

4L−max(−n,−2p+1,−n−p+2,−2p)
≤

√
2

4
min f1.

Similarly, we have the same bound for |△bm|, and then

D =max

⎛

⎝

f1 + |△am|
f2
1

2 −
(

(△am)
2
+ (△bm)

2
) ,

f1 + |△bm|
f2
1

2 −
(

(△am)
2
+ (△bm)

2
)

⎞

⎠

≤ max f1 +
√
2
4 min f1

min
(

f2
1

2 −
(

(△am)2 + (△bm)2
)) ≤ max f1 +

√
2
4 min f1

min
f2
1

2 − 1
4 min f2

1

=
4max f1 +

√
2min f1

min f2
1

= E0.

The latter shows that D is also bounded. So, we get

∥

∥

∥F
(

△θm+1
)′
∥

∥

∥

1
≤ (2πM0) (2M0 + 1)

∥

∥

∥

∥

∥

arctan
b̃m

ãm
− arctan

bm

am

∥

∥

∥

∥

∥

∞
≤ (2πM0) (2M0 + 1)D (|△am|+ |△bm|)
≤E0 (4πM0) (2M0 + 1)C1λ

2p−2L−p+2

+ E0 (4πM0) (2M0 + 1)C2λ
2nLmax(−n,−2p+1,−n−p+2,−2p)γ.

The last inequality is nothing but

∥

∥

∥F
(

△θm+1
)′
∥

∥

∥

1
≤ Γ1λ

2p−2L−p+2 + Γ2λ
2nLmax(−n,−2p+1,−n−p+2,−2p)

∥

∥F (△θm)
′∥
∥

1
.

If we have the condition that Γ2λ
2n
0 Lmax(−n,−2p+1,−n−p+2,−2p) ≤ 1

2 , we have the
contraction that we were looking for. Before finishing, we need to state the following:
There exists η0 > 0 such that L > η0; then all the conditions

L ≥ 2M0, min
(

θ̄′
)

≥ M0

2L
,

C1λ
2p−2
0

Lp−2
+

C2λ
2n
0

4L−max(−n,−2p+1,−n−p+2,−2p)
≤

√
2

4
min f1,

Γ2λ
2n
0 Lmax(−n,−2p+1,−n−p+2,−2p) ≤ 1

2

would be satisfied. As a result, we have

∥

∥

∥F
(

θ − θm+1
)′
∥

∥

∥

1
≤ Γ1λ

2p−2L−p+2 + 1
2

∥

∥F (θ − θm)
′∥
∥

1
.

Having the latter, the condition γ ≤ 1
4 would remain intact for all iterations. In

other words, when there is a contraction on ‖F(θ− θm+1)′‖1, this term would remain

3Remember that if f1 has a zero crossing, this condition would never be satisfied. Hence, the
rest of the proof will not be valid.
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bounded. Hence, if ‖F(△θ0)′‖1

2πM0
≤ 1

4 for the first iteration, it will remain bounded by
1
4 for all iterations. This completes the proof.

Remark 3.2. In our proof, the convergence of the method depends mainly on
the filter parameter λ and the initial guess of the phase function. In many examples
that we have tested, the convergence of our method does not depend on the filter
parameter λ in a sensitive manner. The convergence is observed in a much wider
range of parameter than what is required by our convergence analysis. Actually, we
found that the choice of λ plays a critical role in obtaining good accuracy. In many
cases, with an inappropriate choice of λ, the method still converges, but the accuracy
would be low.

Remark 3.3. If f0 has only high-frequency components, there would be no in-
terference between f0 and f1 cos θ. In this case, we can prove the convergence of our
method for λ > 0.

Furthermore, there are important facts about this theorem on which we want
to elaborate. We begin with the nonuniqueness issue. It is possible that an IS has
multiple representations.4 This theorem states merely that the algorithm converges
to an IMF in one of these representations. The theorem does not mention which
one the algorithm converges to. The theorem that we observed, in this part, says
that if in a representation we have |f̂0,θ̄(k)| ≤ C0

|k|p , |f̂1,θ̄(k)| ≤ C0

|k|p , then increasing

the width of the filter will reduce the error in extraction. More specifically, if in a
representation we have a wide band signal (like an intrawave signal), we are more
likely to capture it by widening the filter width. This approach helps us to find a
sparser representation compared to the case in which one uses a normal envelope
dictionary (1.3). From the algorithmic point of view, the initial guess θ0 and the
parameter λ define the representation to which we converge. In practice, if the IMFs
that constitute the signal are separated enough in the time-frequency domain, the
reduction of the parameter λ is always beneficial. Let us illustrate this idea in the
following example.

Example 3.1. Again consider generic intrawave IMF x (t) = cos(ωt+ △ω
p

sin(pt)).
We can have many representations for this signal. The first representation would be

(3.9) x (t) = cos

(

ωt+
△ ω

p
sin (pt)

)

for θ̄ = ωt+ △ω
p

sin (pt). The second representation would be

x (θ) =

{

J0

(

△ ω

p

)

+ 2
∞
∑

k=1

J2k

(

△ ω

p

)

cos (2kpt)

}

cos (ωt)

−
{

2

∞
∑

k=1

J2k−1

(

△ ω

p

)

sin ((2k − 1) pt)

}

sin (ωt)

for θ̄ = ωt. So, with a constant initial guess for θ0 close to θ̄ = ωt, the second
representation is the one that is seen by the algorithm at the first iteration. Hence,
if a short band filter (large value of λ) is used, only the first harmonic is extracted
by the algorithm. In order to capture more terms in the envelope of the second
representation, we need a smaller value of λ.

4This is the topic of our future research. We intend to quantify this phenomenon.
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3.2. Recovery of signals polluted by noise. The next theorem shows that if
the observation is polluted by noise, under mild presence of noise, the algorithm still
converges. Take

(3.10) f (t) = f0 (t) + f1 (t) cos θ (t) + ℑ,

where ℑ is a periodic perturbation to the original signal (3.1).
Theorem 3.2 (convergence theorem in the presence of noise). Assume that the

instantaneous frequency in (3.10) is M0-sparse; i.e., θ
′ ∈ VM0

. Furthermore, assume
that

∣

∣

∣
f̂0,θ̄ (k)

∣

∣

∣
≤ C0

|k|p ,
∣

∣

∣
f̂1,θ̄ (k)

∣

∣

∣
≤ C0

|k|p

for C0 > 0 and p ≥ 4. If the initial guess satisfies ‖F(△θ0)′‖1

2πM0
≤ 1

4 , then there exists
an η0 > 0 such that for L > η0 and ‖ℑ‖∞ ≤ ǫ0 (ǫ0 sufficiently small), we have

∥

∥

∥F
(

θ − θm+1
)′
∥

∥

∥

1
≤ Υ0 (L, λ) ‖ℑ (t)‖∞ + Γ1λ

2p−2L−p+2 + 1
2

∥

∥F (θ − θm)
′∥
∥

1

for λ > 1, Γ1 > 0, and Υ0 (L, λ).
Proof. The proof of this theorem is essentially the same as the proof of the

convergence theorem in the absence of noise. There is only one minor change. Using
the same trend of proof as before, we have

△âm
θ̄m (k) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{

−ℑ̂θ̄m (k + Lm)− ℑ̂θ̄m (k − Lm)

−f̂0,θ̄m (k + Lm)− f̂0,θ̄m (k − Lm)
+ 1

2

(

−âm
θ̄m (k + 2Lm)− âm

θ̄m (k − 2Lm)
)

+ 1
2i

(

b̂m
θ̄m (k + 2Lm)− b̂m

θ̄m (k − 2Lm)
)}

, |k| ≤ Lm

λ
,

âm
θ̄m (k) , |k| > Lm

λ
,

△b̂m
θ̄m (k) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{

−iℑ̂θ̄m (k + Lm) + iℑ̂θ̄m (k − Lm)

−if̂0,θ̄m (k + Lm) + if̂0,θ̄m (k − Lm)
+ i

2

(

−âm
θ̄m (k + 2Lm) + âm

θ̄m (k − 2Lm)
)

+ 1
2

(

b̂m
θ̄m (k + 2Lm) + b̂m

θ̄m (k − 2Lm)
)}

, |k| ≤ Lm

λ
,

b̂m
θ̄m (k) , |k| > Lm

λ
.

Here, in simple words, we have △am (t) = ℑm
a,trunc (t)+△amold (t), where ℑm

a,trunc

(

θ̄m
)

is the truncated part of ℑ in a:

ℑm
a,trunc

(

θ̄m
)

=
∞
∑

k=−∞

ℑ̂m
a,trunc,θ̄m

(k) ei2πkθ̄m =
∑

|k|≤Lm
λ

(

−ℑ̂θ̄m (k + Lm)− ℑ̂θ̄m (k − Lm)
)

ei2πkθ̄m .

Also, △amold (t), in Fourier domain, is defined as

△âm
old,θ̄m (k) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{

−f̂0,θ̄m (k + Lm)− f̂0,θ̄m (k − Lm)

+ 1
2

(

−âm
θ̄m (k + 2Lm)− âm

θ̄m (k − 2Lm)
)

+ 1
2i

(

b̂m
θ̄m (k + 2Lm)− b̂m

θ̄m (k − 2Lm)
)}

, |k| ≤ Lm

λ
,

âm
θ̄m (k) , |k| > Lm

λ
.

D
o

w
n
lo

ad
ed

 0
1
/2

9
/1

5
 t

o
 1

3
1
.2

1
5
.7

0
.2

3
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1476 PEYMAN TAVALLALI, THOMAS Y. HOU, AND ZUOQIANG SHI

The latter is telling us that we need only find a bound on ℑm
trunc (t) and then use the

results of the former theorem to finalize the proof. One can simplify ℑm
a,trunc

(

θ̄m
)

,
using

χλ (k) =

{

1, |k| ≤ Lm

λ
,

0, |k| > Lm

λ
,

as

ℑm
a,trunc

(

θ̄m
)

=

∞
∑

k=−∞

(

−ℑ̂θ̄m (k + Lm)− ℑ̂θ̄m (k − Lm)
)

χλ (k) e
i2πkθ̄m

=e−i2πLmθ̄m
∞
∑

k=−∞

(

−ℑ̂θ̄m (k)
)

χλ (k − Lm) ei2πkθ̄
m

+ ei2πLmθ̄m
∞
∑

k=−∞

(

−ℑ̂θ̄m (k)
)

χλ (k + Lm) ei2πkθ̄
m

.

Here, we need to pay attention to
∑∞

k=−∞ ℑ̂θ̄m (k)χλ (k + Lm) ei2πkθ̄
m

for further

simplifications. Rename ℑ̂θ̄m (k)χλ (k + Lm) as P̂1,θ̄m (k). Hence, we have

P1

(

θ̄m
)

=

∫ 1

0

ℑ (τ) χ̌1,λ

(

θ̄m − τ
)

dτ,

where

χ̌1,λ

(

θ̄m
)

=

∞
∑

k=−∞
χλ (k + Lm) ei2πkθ̄

m

=
∑

Lm(− 1
λ
−1)≤k≤Lm( 1

λ
−1)

ei2πkθ̄
m

.

Also, in
∑∞

k=−∞(−ℑ̂θ̄m(k))χλ(k − Lm)ei2πkθ̄
m

, rename (−ℑ̂θ̄m (k))χλ(k − Lm) as

P̂2,θ̄m (k). Hence, we get

P2

(

θ̄m
)

=

∫ 1

0

ℑ (τ) χ̌2,λ

(

θ̄m − τ
)

dτ,

where

χ̌2,λ

(

θ̄m
)

=

∞
∑

k=−∞
χλ (k − Lm) ei2πkθ̄

m

=
∑

Lm(− 1
λ
+1)≤k≤Lm( 1

λ
+1)

ei2πkθ̄
m

.
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As a consequence, one can find

∣

∣ℑm
a,trunc

(

θ̄m
)∣

∣ ≤
∣

∣

∣

∣

∣

e−i2πLmθ̄m
∞
∑

k=−∞

(

−ℑ̂θ̄m (k)
)

χλ (k − Lm) ei2πkθ̄
m

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

e−i2πLmθ̄m
∞
∑

k=−∞

(

−ℑ̂θ̄m (k)
)

χλ (k − Lm) ei2πkθ̄
m

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=−∞
P̂2,θ̄m (k) ei2πkθ̄

m

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∑

k=−∞
P̂1,θ̄m (k) ei2πkθ̄

m

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

ℑ (τ) χ̌2,λ

(

θ̄m − τ
)

dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ 1

0

ℑ (τ) χ̌1,λ

(

θ̄m − τ
)

dτ

∣

∣

∣

∣

≤‖ℑ (t)‖∞
(∫ 1

0

∣

∣χ̌2,λ

(

θ̄m − τ
)∣

∣ dτ +

∫ 1

0

∣

∣χ̌1,λ

(

θ̄m − τ
)∣

∣ dτ

)

.

Since χ̌2,λ

(

θ̄m − τ
)

and χ̌1,λ

(

θ̄m − τ
)

are periodic, we have

∫ 1

0

∣

∣χ̌i,λ

(

θ̄m − τ
)∣

∣ dτ = −
∫ θ̄m−1

θ̄m

|χ̌i,λ (τ)| dτ =

∫ θ̄m

θ̄m−1

|χ̌i,λ (τ)| dτ =

∫ 1
2

− 1
2

|χ̌i,λ (τ)| dτ

for i = 1, 2. So, we get

∣

∣ℑm
a,trunc

(

θ̄m
)∣

∣ ≤‖ℑ (t)‖∞

(

∫ 1
2

− 1
2

|χ̌1,λ (τ)| dτ +

∫ 1
2

− 1
2

|χ̌2,λ (τ)| dτ
)

≤‖ℑ (t)‖∞
∫ 1

2

− 1
2

×

⎛

⎜

⎝

∣

∣

∣

∣

∣

∣

∣

∑

Lm(− 1
λ
−1)≤k≤Lm( 1

λ
−1)

ei2πkτ

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∑

Lm(− 1
λ
+1)≤k≤Lm( 1

λ
+1)

ei2πkτ

∣

∣

∣

∣

∣

∣

∣

⎞

⎟

⎠
dτ.

Now, using the identity ei2πkt = πt
sinπt

∫ k+ 1
2

k− 1
2

ei2πωtdω, we get

∣

∣ℑm
a,trunc

(

θ̄m
)∣

∣ ≤‖ℑ (t)‖∞
∫ 1

2

− 1
2

∣

∣

∣

∣

∣

∣

∣

∑

Lm(− 1
λ
−1)≤k≤Lm( 1

λ
−1)

πt

sinπt

∫ k+ 1
2

k− 1
2

ei2πωtdω

∣

∣

∣

∣

∣

∣

∣

dt

+ ‖ℑ (t)‖∞
∫ 1

2

− 1
2

∣

∣

∣

∣

∣

∣

∣

∑

Lm(− 1
λ
+1)≤k≤Lm( 1

λ
+1)

πt

sinπt

∫ k+ 1
2

k− 1
2

ei2πωtdω

∣

∣

∣

∣

∣

∣

∣

dt

≤π

2
‖ℑ (t)‖∞

∫ 1
2

− 1
2

∣

∣

∣

∣

∣

ei2π(Lm( 1
λ
−1)+ 1

2 )t − ei2π(Lm(− 1
λ
−1)− 1

2 )t

2πit

∣

∣

∣

∣

∣

dt

+
π

2
‖ℑ (t)‖∞

∫ 1
2

− 1
2

∣

∣

∣

∣

∣

ei2π(Lm( 1
λ
+1)+ 1

2 )t − ei2π(Lm(− 1
λ
+1)− 1

2 )t

2πit

∣

∣

∣

∣

∣

dt.

In the last inequality, we have used the fact that max− 1
2
≤t≤ 1

2

(

πt
sinπt

)

≤ π
2 . From the

previous theorem, we know that Lm

L
≤ 9

8 . Hence, the above bound would be
∣

∣ℑm
a,trunc

(

θ̄m
)∣

∣ ≤ Υ(L, λ) ‖ℑ (t)‖∞
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for some constant Υ (L, λ). The same thing is true for |ℑm
b,trunc(θ̄

m)|:
∣

∣ℑm
b,trunc

(

θ̄m
)∣

∣ ≤ Υ(L, λ) ‖ℑ (t)‖∞ .

Hence, we get

|△am| ≤ Υ(L, λ) ‖ℑ (t)‖∞ + C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ ,

|△bm| ≤ Υ(L, λ) ‖ℑ (t)‖∞ + C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ .

Now, if ‖F(△θm)′‖1

2πM0
= γ ≤ 1

4 , one can find η0 > 0 such that L > η0 in a way that all
the following conditions are satisfied for sufficiently small ǫ0 (in ‖ℑ (t)‖∞ ≤ ǫ0):

L ≥ 2M0,

min
(

θ̄′
)

≥ M0

2L
,

Υ(L, λ) ‖ℑ (t)‖∞ +
C1λ

2p−2
0

L−p+1
+

C2λ
2n
0

4L−max(−n,−2p+1,−n−p+2,−2p)
≤

√
2

4
min f1,

Γ2λ
2n
0 Lmax(−n,−2p+1,−n−p+2,−2p) ≤ 1

2
;

then we have, for some real positive constant Υ0 (L, λ),

∥

∥

∥F
(

θ − θm+1
)′
∥

∥

∥

1
≤ Υ0 (L, λ) ‖ℑ (t)‖∞ + Γ1λ

2p−2L−p+2 + 1
2

∥

∥F (θ − θm)′
∥

∥

1
.

4. Numerical results. In this part, we present examples in which we show the
credibility of the STFR method in extracting intrawave IMFs with high accuracy.
Needless to say, these examples will show how the proposed method is capable of
extracting intrawave IMFs when other methods like EMD/EEMD would perform
weakly. This weak performance is even intensified when the data is polluted by noise.

Example 1. In this example, we study the effect of the filter width on one
intrawave IMF with constant envelope. Consider the mild intrawave signal

x (t) = cos

(

8πt+
1

π
sin (4πt)

)

.

The IF of this signal is obviously 8π + 4 sin (4πt). The strength of frequency modu-
lation is 4, and the frequency of the frequency modulation is 4π. Compared to the
carrier frequency, 8π, the modulated frequency is not negligible. Hence, we expect
to get incomplete and inaccurate extraction if a short band filter is used. In Figure
1, the extraction is performed by a normal short band filter, with parameter λ = 2.
As can be seen, the IMF extraction error is relatively large, as expected. On the
other hand, in Figure 2, a wider filter with parameter λ = 1+ is used. As can be
perceived from the figures, increasing the length of the filter enhances the extraction
drastically. The maximum error is now reduced by 10−2. Mentioned before, a short
band filter extracts only one of the harmonics of the intrawave signal. It essentially
acts like a one-mode Fourier transform. However, when making the filter wider, more
subharmonics are collected as a whole. Consequently, the result looks much better.

Finally, there is an observation that we want to mention regarding Figure 1. We
recall that when using a short band filter, the total number of terms that can be
collected by the algorithm is kamax = ⌊ ω

4p⌋ and kbmax = ⌊ ω
4p + 1

2⌋ in the best case for
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Fig. 1. Mild intrawave signal vs. short band filter.
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Fig. 2. Mild intrawave signal vs. wide filter.

a good constant initial guess. In our case, kamax = 0, kbmax = 1. Hence, the main
contribution comes from J0

(

△ω
p

)

, which is 0.9748, in this example. This observation

can be seen perfectly well in Figure 1. The plot in the bottom left corner of the figure
shows that the extracted envelope is roughly 0.975. Also, the extracted IMF in the
bottom right corner of the same figure shows that there is a tiny phase shift, which
we can certainly say is coming from kbmax = 1.

Example 2. Here, we again take the same intrawave signal from the previous
example and mix it with a high-frequency signal

v (t) = (1 + 0.3 cos (8πt))

(

cos

(

40πt+
5

2
sin (2πt)

))

.

This high-frequency signal has small intrawave modulation as well. However, it
is not comparable to the frequency modulation of cos

(

8πt+ 1
π
sin (4πt)

)

. The final
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Fig. 3. Intrawave part of the mixed signal.
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Fig. 4. High-frequency part of the mixed signal.

form of the signal is

x (t) = cos

(

8πt+
1

π
sin (4πt)

)

+ (1 + 0.3 cos (8πt))

(

cos

(

40πt+
5

2
sin (2πt)

))

.

To extract the intrawave part, cos
(

8πt+ 1
π
sin (4πt)

)

, we use a filter with param-
eter λ = 1+, and for the other part, we use a normal filter with parameter of λ = 2.
Figure 3 shows the result of the extraction for the intrawave part of the signal. If a
short band filter were used, this extraction would not be possible. Figure 4 shows the
result of the extraction for the high-frequency part. The maximum error in extraction
is less than 5× 10−3.

There is a subtle point here that we need to emphasize again. As was seen before,
if a wide band filter is used, then the IMFs constituting the signal must have a larger
scale separation. In other words, in the frequency domain, they should be fairly apart
from each other. In a case wherein the signals do not have large-scale separation, they
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Fig. 5. Intense intrawave extraction failure with a short band filter.
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Fig. 6. Intense intrawave extraction with a wide band filter.

must be extracted simultaneously. We will demonstrate this in a later example.

Example 3. In this example, we consider a case in which the intrawave modula-
tion is intense. The signal has very sharp peaks and flat troughs. The mathematical
form of the signal is

x (t) = cos

(

8πt+
21

8πt
sin (8πt)

)

.

Here, even if the filter parameter is taken to be λ = 1+, the results are not
yet acceptable; see Figure 5. In order to overcome this issue, we decrease the filter
parameter to λ = 0.3. As seen in Figure 6, the extraction of this intrawave signal
with strong frequency modulation is now possible. As seen in the bottom left corner
of the figure, the envelope is not recovered exactly; however, the final extraction is
acceptable.
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Fig. 7. Synchrosqueezed wavelet comparison. Top: The frequency spectrum shows that the
synchrosqueezed method detects two major frequency trends. Bottom: The first IMF extracted using
this analysis is like the first dominant subharmonic.

The synchrosqueezed wavelet transform (SWT) [6, 17] is another effective adap-
tive data analysis method for analyzing signals with frequency modulation. Naturally,
we would like to apply the SWT to analyze the above signal and compare with the
result that we obtained using our method. As we can see from Figure 7, the SWT
method tends to decompose the intrawave signal into a number of harmonics. We
used a publicly available MATLAB code for the SWT to perform our decomposition.
This code can be found in [3]. There are a number of parameters in this code, in-
cluding the choice of wavelets being used. In our implementation, the Morlet wavelet
was used. We realize that the performance of the SWT depends on the choice of the
wavelet and the ridge detection method. The parameters that we used in the above
comparison may not be the optimal ones, and there may be a more optimal ridge
detection method that one can use to achieve better results. The parameters that we
presented in the SWT code provided in [3] were the best ones that we could find after
many trials and errors. It is very likely that there exists a better choice of wavelet
and edge detection methods to be used to obtain a more optimal result than the one
presented here.

We continue this example by considering an intense intrawave signal with a chang-
ing envelope. See Figure 8. As before, we take λ = 0.3. Again, the envelope extraction
is not accurate; however, the final extraction of the signal is reliable.

We again compare our results with other methods. This time, we use the EMD
method. Using EMD, the method would not be able to decompose the intrawave in
one piece. The result of this extraction can be seen in Figure 9.

As perceived from this example, our method is more general compared to other
adaptive methods. Next, we consider the noise stability of our method.

Example 4. In this example, we investigate the effect of noise on the extraction
of an intrawave signal. We take an intrawave signal with strong frequency modulation
of the form

x (t) = cos

(

8πt+
21

8πt
sin (8πt)

)

+ 0.1N (0, 1) .
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Fig. 8. Intense intrawave with a nonconstant envelope.
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Fig. 9. EMD extraction result for intrawave signal with a changing envelope. The method
decomposes the IS into many IMFs.
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Fig. 10. Original mildly noisy signal (left) and heavy noisy signal (right).

Here N (0, 1) is a normal Gaussian random variable. The original noisy signal
can be seen in Figure 10. Taking λ = 0.3, the result of the extraction can be seen in
Figure 11. Despite minor error in the extraction of the envelope and the instantaneous
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Fig. 11. Extraction result of the mildly noisy signal.
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Fig. 12. Extraction result of the intensely noisy signal.

frequency, the final extraction is faithful. In this case, the noise perturbation was not
large compared to the energy of the signal.

Next, we take

x (t) = cos

(

8πt+
21

8πt
sin (8πt)

)

+N (0, 1) .

This time, the noise is stronger than the previous case. The original signal is shown in
Figure 10. As can be seen from the figure, the signal is buried in noise. The result of
the extraction using λ = 0.8 is shown in Figure 12. Again, the result of the extraction,
even in the presence of intense noise perturbation, is acceptable. There are errors in
the extracted envelope and IF; however, the final extracted IMF is in a good shape.

We would like to point out that if we had taken smaller values of λ, the algorithm
would have diverged due to the strong presence of noise. In fact, this divergence was
predicted by the convergence theorem on the presence of noise.
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Fig. 13. IF of both IMFs.
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Fig. 14. Results of the extraction of mixed intrawaves.

Example 5. This example is part of our ongoing future research. Here, we
investigate the extraction of two intrawave signals with strong frequency modulation
that do not have well-separated scales. The signal is of the form f(t) = cos θ1+cos θ2.
The IFs are shown in Figure 13. As can be seen from the figure, the IMFs have intense
intrawave characteristics. At the same time, the mode mixture is apparent in the
signal. The signals are not separate in the time-frequency domain. The extraction
of such IMFs is challenging. None of the sparse time frequency methods can extract
them successfully, to the best of our knowledge.

To overcome this difficulty, we extract them simultaneously using the same algo-
rithm presented in this paper. The results are shown in Figure 14. As can be seen, our
method, using a wide band filter combined with the simultaneous extraction, would
result in a fairly successful extraction. The error of the extraction is acceptable, as no
other method is capable of such performance. The only a priori knowledge that we
have used is that there are two IMFs in the original signal. However, this assumption
can be dropped. We will present the results of this kind of extraction in more detail
in a future paper.

It is not hard to show formally why the last example extraction works. Assume
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that the signal can be written as

(4.1) x (t) = cos

(

ω1t+
△ ω1

p1
sin (p1t)

)

+ cos

(

ω2t+
△ ω2

p2
sin (p2t)

)

.

Next, consider that we intend to extract both IMFs simultaneously. Take the initial
guesses as θ1 (t) = ω1t and θ2 (t) = ω2t. Using the expansion in (1.7), we can write
(4.1) as

x (θ1, θ2) =

{

J0

(

△ ω1

p1

)

+ 2
∞
∑

k=1

J2k

(

△ ω1

p1

)

cos

(

2k
p1

ω1
θ1

)

}

cos θ1

−
{

2

∞
∑

k=1

J2k−1

(

△ ω1

p1

)

sin

(

(2k − 1)
p1

ω1
θ1

)

}

sin θ1

+

{

J0

(

△ ω2

p2

)

+ 2

∞
∑

k=1

J2k

(

△ ω2

p2

)

cos

(

2k
p2

ω2
θ2

)

}

cos θ2

−
{

2
∞
∑

k=1

J2k−1

(

△ ω2

p2

)

sin

(

(2k − 1)
p2

ω2
θ2

)

}

sin θ2.(4.2)

The sparse representation of (4.2) suggests the use of definition (1.12) for both θ1 and
θ2 in a singular form (i.e., with a small λ0). In a future work, we will analyze this
method in more detail.

4.1. Uniqueness issues. One of the most important issues here is the unique-
ness of extraction. The theorems, proven in this paper, solely explain that we have
a convergent algorithm. However, the uniqueness issue is not addressed. In fact, the
uniqueness is a difficult theoretical problem. In this section, we explain insights about
how we can handle this topic in implementation and numerical analysis.

Here, we reduce uniqueness into sparsity. In fact, any signal can have many
representations.5 In our STFR methodology, we prefer a representation in which
there is the least number of IMFs extracted from the signal. In other words, a sparse
representation is the unique representation in STFR numerical terminology. One
might ask, What if two different extractions would result in the same number of
IMFs? Then, which one is better? The answer is that both of them are acceptable.
However, we pick the one in which the components have the smoothest envelopes
compared to the IFs.

The most important fact is that the result of a numerical implementation of STFR
must be sparse. In other words, we pick the set of IMFs as the constituent blocks of a
signal if we cannot find another set that contains fewer IMFs. A preferred extraction is
the one that has fewer IMF components. In fact, as we observed, in case of intrawave
signals, widening the filter width would help to find the smallest number of IMFs in
an extraction.

One should keep in mind that if there is any mode mixture present (the IFs are
not separate in the time-frequency domain), it is highly possible to have a nonsparse
extraction. In order to tackle this problem, one should find an estimate of the number
of mode mixtures and then try to extract the mode mixed IMFs simultaneously. The
latter would impose sparsity. The last example of this paper showed this method.

5This is a topic of our future research.
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Quantitatively, having two extractions with the same number of IMFs, the smooth-
ness measure (SM) can be one of the following:

SMTV =
TV (ã (t))

TV
(

˜̇
θ (t)

) ,

SMmax−local = max

(

˜̇a (t)
˜̇
θ (t)

)

.

In these definitions, ã (t) is the extracted envelope,
˜̇
θ (t) is the extracted IF, and TV

is the total variation. In case of many IMFs, one can sum up the SMs of all extracted
IMFs to judge the quality of extraction.

As we mentioned previously, the question of uniqueness is a difficult one. Our
understanding of this subject is still in a very preliminary stage. We will continue to
study this question in our future research.

5. Concluding remarks and future work. In this paper, we presented a
modified version of the STFR method capable of extracting intrawave signals. Tra-
ditionally, the intrawave signals have been challenging problems to analyze. So far,
almost all adaptive signal processing methods have difficulty in extracting intrawave
signals properly. In this paper, we proposed expanding the length of the band filters
used in STFR methods to successfully extract intrawave signals. It was shown theoret-
ically that using a wide filter would reduce the extraction error. We also showed that
the algorithm is convergent and stable to noise. Numerical examples demonstrated
the effectiveness of the modified STFR method. Our numerical study also showed
that our modified STFR method offers superior performance compared with other
well-known time-frequency methods, such as the EMD and synchrosqueezed wavelet
methods. Currently, these other methods have difficulty in extracting the intrawave
signals properly. Our method has a strong mathematical foundation. It offers an
effective alternative as an adaptive data analysis method.

We also stated that using a wide band filter in any STFR algorithm can cause
some problems if the IMFs are not well separated in the time-frequency domain. This
shortcoming was alleviated by extracting mixed (nonseparated) IMFs simultaneously.
The last example in this paper clearly showed the merit of simultaneous extraction
and a wide band filter in the extraction of mixed intrawave IMFs. However, the
latter is still a topic of future work. We intend to show the robustness of this method
analytically and also examine the stability of this method in the presence of noise
perturbation.

Finally, in our future work, we will also address the nonuniqueness of the IMF
representations. In fact, we believe this nonuniqueness is as fundamental as the un-
certainty principle. We believe that looking for the sparsest decomposition within
some appropriately chosen dictionary would be the most effective way to address the
uniqueness issue. We hope to address this issue in a future paper in depth.

Appendix A. Approximating |f̂
0,θ̄m (ω) |. In this appendix, we will derive

a bound for |f̂0,θ̄m (ω) |, which is given in (3.4). In the following calculations, we will
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bound some of the summations by integrals. Specifically, we have

∣

∣

∣
f̂0,θ̄m (ω)

∣

∣

∣
=

∣

∣

∣

∣

∫ 1

0

f0
(

θ̄m
)

e−i2πωθ̄m

dθ̄m
∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

f0
(

θ̄m
(

θ̄
))

e−i2πωθ̄m

dθ̄m
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

k 
=0

f̂0,θ̄ (k)

∫ 1

0

ei2πθ̄
m(αk−ω)eik

△θm

L dθ̄m

∣

∣

∣

∣

∣

∣

≤
∑

|αk|> |ω|
λ

∣

∣

∣
f̂0,θ̄ (k)

∣

∣

∣
+

∑

0<|αk|≤ |ω|
λ

∣

∣

∣
f̂0,θ̄ (k)

∣

∣

∣

∣

∣

∣

∣

∫ 1

0

ei2πθ̄
m(αk−ω)eik

△θm

L dθ̄m
∣

∣

∣

∣

.

Since we have |f̂0,θ̄ (k) | ≤ |k|−p for k �= 0, and using the first two lemmas in section
3, we get

∣

∣

∣f̂0,θ̄m (ω)
∣

∣

∣

≤C0

∑

|k|> |ω|
αλ

|k|−p
+ C0

∑

0<|k|≤ |ω|
αλ

|k|−p

∣

∣

∣

∣

∫ 1

0

ei2πθ̄
m(αk−ω)eik

△θm

L dθ̄m
∣

∣

∣

∣

≤2C0 (αλ)
p−1 |ω|−p+1

+ 2C0P
n
m

(

M0λ

2π

)n

|εω|−n
∑

0<|k|≤ |ω|
αλ

n
∑

j=1

|k|j−p

(
∥

∥F (△θm)
′∥
∥

1

2πM0L

)j

≤2C0

(

αλ

|ω|

)p−1

+ 2C0P
n
m

(

M0λ

2π |εω|

)n

×

⎛

⎜

⎝

∑

0<|k|≤ |ω|
αλ

⎛

⎝

p−2
∑

j=1

|k|j−p
( γ

L

)j

+
n
∑

j=p

|k|j−p
( γ

L

)j

+ |k|−1
( γ

L

)p−1

⎞

⎠

⎞

⎟

⎠

≤2C0

(

αλ

|ω|

)p−1

+ 2C0P
n
m

(

M0λ

2π |εω|

)n

×

⎛

⎝

p−2
∑

j=1

( γ

L

)j π2

3
+ 2

n
∑

j=p

∣

∣

∣

ω

αλ

∣

∣

∣

j−p+1 ( γ

L

)j

+ 2
( γ

L

)p−1
(

1 +
|ω|
αλ

)

⎞

⎠ .

In the inequalities above, we have also used the fact that if 0 < k ≤ ω
αλ

, then 1
ω−αk

<

λ
λ−1

1
ω
< λ

ε
1
ω
provided 0 < ε ≪ 1 and λ ≥ 1 + ε. Also we called ‖F(△θm)′‖1

2πM0
= γ. We

recall that in these calculations n > p. This finalized the derivation of the bound on
(3.4).

Appendix B. Approximating
∣

∣âm
θ̄m

(ω)
∣

∣. This approximation (see (3.5)) is
essentially the same as the one we derived in the previous part, except that we also
use Jensen’s inequality. In the main theorem of this section, we extensively use this
lemma. So, we present the following lemma to introduce the inequality.

Lemma B.1 (Jensen’s inequality). If ϕ is a convex function, and ai ∈ R
+ for

i ∈ N, i > 1, then

(B.1) ϕ

(∑

aixi
∑

ai

)

≤
∑

aiϕ (xi)
∑

ai
.

D
o

w
n
lo

ad
ed

 0
1
/2

9
/1

5
 t

o
 1

3
1
.2

1
5
.7

0
.2

3
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STFR FOR INTRAWAVE SIGNAL 1489

A proof of this lemma can be found in [2]. A consequence of this lemma is that,
for a positive integer j, we have

(B.2) 2−j

∣

∣

∣

∣

1 +
k

L

∣

∣

∣

∣

j

=

∣

∣

∣

∣

1

2
1 +

1

2

k

L

∣

∣

∣

∣

j

≤ 1

2

(

|1|j +
∣

∣

∣

∣

k

L

∣

∣

∣

∣

j
)

.

This bound is used several times in the next approximations. As mentioned above,
we also bound summations by integrals. So, for

∣

∣âm
θ̄m (ω)

∣

∣ we have

∣

∣âm
θ̄m (ω)

∣

∣ =

∣

∣

∣

∣

∫ 1

0

am
(

θ̄m
)

e−i2πωθ̄m

dθ̄m
∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

am
(

θ̄m
(

θ̄
))

e−i2πωθ̄m

dθ̄m
∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

∫ 1

0

(

ei∆θm

+ e−i∆θm
)

∞
∑

k=−∞
f̂1,θ̄ (k) e

i2πθ̄m(αk−ω)eik
△θm

L dθ̄m

∣

∣

∣

∣

∣

≤1

2

∣

∣

∣

∣

∣

∫ 1

0

∞
∑

k=−∞
f̂1,θ̄ (k) e

i2πθ̄m(αk−ω)ei△θm( k
L
+1)dθ̄m

∣

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∣

∫ 1

0

∞
∑

k=−∞
f̂1,θ̄ (k) e

i2πθ̄m(αk−ω)ei△θm( k
L
−1)dθ̄m

∣

∣

∣

∣

∣

.

Now, we break up the the summation
∑∞

k=−∞ into summations over k = 0, |αk| > |ω|
λ
,

and 0 < |αk| ≤ |ω|
λ

and also use the first and second lemmas in section 3 to get

∣

∣âm
θ̄m (ω)

∣

∣ ≤2C0

(

αλ

|ω|

)p−1

+
∣

∣

∣f̂1,θ̄ (0)
∣

∣

∣P
n
m

(

M0

2π |ω|

)n n
∑

j=1

γj

+ C0P
n
m

(

M0λ

2π |εω|

)n
∑

0<|k|≤ |ω|
αλ

|k|−p
n
∑

j=1

(

∣

∣

∣

∣

1 +
k

L

∣

∣

∣

∣

j

+

∣

∣

∣

∣

1− k

L

∣

∣

∣

∣

j
)

γj

≤2C0

(

αλ

|ω|

)p−1

+
∣

∣

∣f̂1,θ̄ (0)
∣

∣

∣Pn
m

(

M0

2π |ω|

)n n
∑

j=1

γj

+ C0P
n
m

(

M0λ

2π |εω|

)n
∑

0<|k|≤ |ω|
αλ

|k|−p
n
∑

j=1

2j

(

1 +

∣

∣

∣

∣

k

L

∣

∣

∣

∣

j
)

γj

≤2C0

(

αλ

|ω|

)p−1

+
∣

∣

∣f̂1,θ̄ (0)
∣

∣

∣Pn
m

(

M0

2π |ω|

)n n
∑

j=1

γj

+ C0P
n
m

(

M0λ

2π |εω|

)n
2p

p− 1

n
∑

j=1

2jγj

+ C0P
n
m

(

M0λ

2π |εω|

)n

×

⎛

⎝

p−2
∑

j=1

2j
( γ

L

)j π2

3
+

n
∑

j=p

2j+1
∣

∣

∣

ω

αλ

∣

∣

∣

j−p+1 ( γ

L

)j

+ 2p
( γ

L

)p−1
(

1 +
|ω|
αλ

)

⎞

⎠ .

The latter completes the derivation of the bound on
∣

∣âm
θ̄m (ω)

∣

∣; see (3.5).

Appendix C. Estimates on |△am|, |△bm|. In this appendix, we derive the
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bound on |△am| (see (3.6)). We first check the term involving |f̂0,θ̄m (ω) |. We have

2
∑

(1− 1
λ )Lm≤ω≤(1+ 1

λ )Lm

∣

∣

∣f̂0,θ̄m (ω)
∣

∣

∣

≤4
∑

(1− 1
λ )Lm≤ω≤(1+ 1

λ )Lm

C0

(

αλ

|ω|

)p−1

+ 4
∑

(1− 1
λ )Lm≤ω≤(1+ 1

λ )Lm

C0P
n
m

(

M0λ

2π |εω|

)n p−2
∑

j=1

( γ

L

)j π2

3

+ 8
∑

(1− 1
λ )Lm≤ω≤(1+ 1

λ )Lm

C0P
n
m

(

M0λ

2π |εω|

)n
⎛

⎝

n
∑

j=p

∣

∣

∣

ω

αλ

∣

∣

∣

j−p+1 ( γ

L

)j
+

( γ

L

)p−1
(

1 +
|ω|

αλ

)

⎞

⎠ .

Here, we can use a trick to bound the summations with integrals. When
(

1− 1
λ

)

Lm ≤
ω ≤

(

1 + 1
λ

)

Lm, we know that ω will at least start from 1. The latter is due to the

fact that λ > 1, and hence
(

1− 1
λ

)

Lm > 0. So, we can always find a fixed ε > 0

such that 0 < |1− 1
1−ε

|Lm < min
((

1− 1
λ

)

Lm, 1
)

. We can take this ε to be the same
as the one we used before. So, the whole inequality, using the fact that Lm = αL,
becomes

2
∑

(1− 1
λ )Lm≤ω≤(1+ 1

λ )Lm

∣

∣

∣
f̂0,θ̄m (ω)

∣

∣

∣

≤
4C0α

p− 2

(

ε

1− ε

)−p+2

λ
p−1

L
−p+2 +

4π2C0P
n
m

(

M0λ

2πε

)n
α−n+1

3 (n− 1)
L

−n+1

(

ε

1− ε

)−n+1 p−2
∑

j=1

(

γ

L

)j

+ 8C0

(

M0λ

2πε

)n

P
n
mα

−n+2

(

ε

1− ε

)−n+2

L
−p+2 1

p+ 2

n
∑

j=p

( γ

L

)j

+ 8C0P
n
m

(

M0λ

2πε

)n
( γ

L

)p−1

⎛

⎜

⎝

(

αL
(

ε
1−ε

))−n+1

n− 1
+

(

αL
(

ε
1−ε

))−n+2

αλ (n− 2)

⎞

⎟

⎠
.

Here, we use the assumption that γ ≤ 1
4 . This assumption would remain intact

throughout the steps for large enough L. In fact, the condition γ ≤ 1
4 would remain

intact for all iterations. In other words, when there is a contraction on ‖F(θ −
θm+1)′‖1, this term would remain bounded. Hence, if ‖F(△θ0)′‖1

2πM0
≤ 1

4 for the first

iteration, it will remain bounded by 1
4 for all iterations. Hence, using this, we have

∑p−2
j=1

(

γ
L

)j ≤
(

γ
L

)
∑∞

j=1

(

γ
L

)j−1 ≤ 4γ
3L . For the second sum, we use the same trick,

namely
∑n

j=p

(

γ
L

)j ≤
(

γ
L

)p∑∞
j=1

(

γ
L

)j−1 ≤ (4L)−p 4γ
3L . So, we get

2
∑

(1− 1
λ )Lm≤ω≤(1+ 1

λ )Lm

∣

∣

∣f̂0,θ̄m (ω)
∣

∣

∣

≤
4C0α

p− 2

(

ε

1− ε

)−p+2

λ
p−1

L
−p+2 +

4π2C0P
n
m

(

M0λ

2πε

)n
α−n+1

3 (n− 1)
L

−n+1

(

ε

1− ε

)−n+1
4γ

3L

+ 8C0

(

M0λ

2πε

)n

P
n
mα

−n+2

(

ε

1− ε

)−n+2

L
−p+2 1

p+ 2
(4L)−p 4γ

3L

+ 8C0P
n
m

(

M0λ

2πε

)n
( γ

L

)p−1

⎛

⎜

⎝

(

αL
(

ε
1−ε

))−n+1

n− 1
+

(

αL
(

ε
1−ε

))−n+2

αλ (n− 2)

⎞

⎟

⎠
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Simplifying further, we get

2
∑

(1− 1
λ )Lm≤ω≤(1+ 1

λ )Lm

∣

∣

∣f̂0,θ̄m (ω)
∣

∣

∣

≤
4C0α

p − 2

(

ε

1− ε

)−p+2

λp−1L−p+2 +
16

9
π2C0P

n
m

(

M0

2πε

)n α−n+1

n− 1

(

ε

1− ε

)−n+1

L−nλnγ

+
8

3
C0P

n
m

(

M0

2πε

)n

α−n+2

(

ε

1− ε

)−n+2 4−p+1

p+ 2
L−2p+1λnγ

+ 8C0P
n
m

(

M0

2πε

)n

α−n+1

⎛

⎜

⎝

(

ε
1−ε

)−n+1

n− 1
L−n−p+1λnγ +

(

ε
1−ε

)−n+2

n− 2
L−n−p+2λn−1γ

⎞

⎟

⎠
.

Now, it is time to check the term involving
∣

∣âm
θ̄m (k)

∣

∣+ |b̂m
θ̄m (k) |. We have

∑

(2− 1
λ )Lm≤ω≤(2+ 1

λ)Lm

(

∣

∣âm
θ̄m (ω)

∣

∣+
∣

∣

∣b̂
m
θ̄m (ω)

∣

∣

∣

)

≤
∑

(2− 1
λ )Lm≤ω≤(2+ 1

λ)Lm

⎛

⎝4C0

(

αλ

|ω|

)p−1

+ 2
∣

∣

∣f̂1,θ̄ (0)
∣

∣

∣P
n
m

(

M0

2π |ω|

)n n
∑

j=1

γj

⎞

⎠

+ 2
∑

(2− 1
λ )Lm≤ω≤(2+ 1

λ )Lm

C0P
n
m

(

M0λ

2π |εω|

)n
2p

p− 1

n
∑

j=1

2jγj

+ 2
∑

(2− 1
λ )Lm≤ω≤(2+ 1

λ )Lm

C0P
n
m

(

M0λ

2π |εω|

)n p−2
∑

j=1

2j
( γ

L

)j π2

3

+ 2
∑

(2− 1
λ )Lm≤ω≤(2+ 1

λ )Lm

C0P
n
m

(

M0λ

2π |εω|

)n n
∑

j=p

2j+1
∣

∣

∣

ω

αλ

∣

∣

∣

j−p+1 ( γ

L

)j

+ 2
∑

(2− 1
λ )Lm≤ω≤(2+ 1

λ )Lm

C0P
n
m

(

M0λ

2π |εω|

)n

2p
( γ

L

)p−1
(

1 +
|ω|
αλ

)

.

In this case, due to the presence of the term
(

2− 1
λ

)

Lm ≤ ω ≤
(

2 + 1
λ

)

Lm, the
substitution of the sum with an integral is much easier. Since λ > 1, we have 1 <
2− 1

λ
< 2. As a result, αL = Lm <

(

2− 1
λ

)

Lm ≤ ω. Hence, for any ζ > 1 we have

∑

(

2− 1
λ

)

Lm≤ω≤
(

2+ 1
λ

)

Lm

1

ωζ
≤

∑

αL<ω

1

ωζ
=

1

(αL)ζ

∑

1< ω
αL

1
(

ω
αL

)ζ
=

1

(αL)ζ

∑

1<k

1

kζ
≤ 1

(αL)ζ

∫

∞

1

1

kζ
=

(αL)−ζ

ζ − 1
.

Consequently, we get
∑

(2− 1
λ )Lm≤ω≤(2+ 1

λ )Lm

(

∣

∣âm
θ̄m

(ω)
∣

∣+
∣

∣

∣
b̂m
θ̄m

(ω)
∣

∣

∣

)

≤
4C0

p− 2
λp−1L−p+1 +

8

3

∣

∣

∣f̂1,θ̄ (0)
∣

∣

∣P
n
m

(

M0

2π

)n α−n

n− 1
L−nγ +

16p

p− 1
C0P

n
m

(

M0

2πε

)n α−n

n− 1
L−nλnγ

+
8π2

3
C0P

n
m

(

M0

2πε

)n α−n

n− 1
L−n−1λnγ + 2−p+4C0P

n
m

(

M0

2πε

)n

α−nL−2pλnγ

+ 2−p+3C0P
n
m

(

M0

2πε

)n α−n

n− 1
L−n−p+1λnγ + 2−p+3C0P

n
m

(

M0

2πε

)n α−n

(n− 2)λ
L−n−p+2λnγ.
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Finally, it is time to find the bound on the term that involves
∣

∣âm
θ̄m (k)

∣

∣. This term
appears in the bound of |△am|. We have

∑

|ω|>Lm
λ

∣

∣âm
θ̄m (ω)

∣

∣ ≤2
∑

|ω|>Lm
λ

C0

(

αλ

|ω|

)p−1

+
∑

|ω|>Lm
λ

∣

∣

∣f̂1,θ̄ (0)
∣

∣

∣Pn
m

(

M0

2π |ω|

)n n
∑

j=1

γj

+
∑

|ω|>Lm
λ

C0P
n
m

(

M0λ

2π |εω|

)n
2p

p− 1

n
∑

j=1

2jγj

+
∑

|ω|>Lm
λ

C0P
n
m

(

M0λ

2π |εω|

)n p−2
∑

j=1

2j
( γ

L

)j π2

3

+
∑

|ω|>Lm
λ

C0P
n
m

(

M0λ

2π |εω|

)n n
∑

j=p

2j+1
∣

∣

∣

ω

αλ

∣

∣

∣

j−p+1 ( γ

L

)j

+
∑

|ω|>Lm
λ

C0P
n
m

(

M0λ

2π |εω|

)n

2p
( γ

L

)p−1
(

1 +
|ω|
αλ

)

.

Again we have for any ζ > 1

∑

|ω|>Lm
λ

1

|ω|ζ
= 2

(

λ

αL

)ζ
∑

λω
αL

>1

1
(

λω
αL

)ζ
= 2

(

λ

αL

)ζ
∑

1<k

1

kζ
≤ 2

(

λ

αL

)ζ ∫ ∞

1

1

kζ
= 2

(

λ

αL

)ζ 1

ζ − 1
.

Hence, we can again bound the summations with integrals. So, we get

∑

|ω|>Lm
λ

∣

∣âm
θ̄m (ω)

∣

∣ ≤ 4C0

p− 2
λ2p−2L−p+1 +

8

3

∣

∣

∣f̂1,θ̄ (0)
∣

∣

∣P
n
m

(

M0

2π

)n
α−n

n− 1
L−nλnγ

+
16p

p− 1
C0P

n
m

(

M0

2πε

)n
α−n

n− 1
L−nλ2nγ

+
8π2

3
C0P

n
m

(

M0

2πε

)n
α−n

n− 1
L−n−1λ2nγ

+ 2−p+5C0P
n
m

(

M0

2πε

)n

α−nL−2p−1λ2n−2γ

+ 2−p+5C0P
n
m

(

M0

2πε

)n
α−n

n− 1
L−n−p+1λ2nγ

+ 2−p+5C0P
n
m

(

M0

2πε

)n
α−n

(n− 2)λ
L−n−p+2λ2n−2γ.

In all of the previous estimates, each term can be bounded by either λ2p−2L−p+2 or
λ2nLmax(−n,−2p+1,−n−p+2,−2p)γ. Thus, we prove that

|△am| ≤ C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ .

This completes the derivation of the bound for (3.6). This bound can be used, as it

is, for the term that includes
∑

|k|>Lm
λ

|b̂m
θ̄m (k) | in (3.7).
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