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Abstract: Environmental pollution has particular implications for the whole geosystem and increases
the global risk to human and ecological health. In this regard, investigations were carried out on
soil samples to perform the quality status assessment by determining: pH, texture, structure and
metal concentration, as well as carrying out an assessment of anthropogenic activity by determining
pollution indices: Cf (contamination factor), Cd (degree of contamination), PLI (pollution load index),
Er (ecological risk index) and PERI (potential ecological risk index). Analyses on soil samples showed
high concentrations of metals (Cu: 113–2996 mg kg−1; Pb: 665–5466 mg kg−1; Cr: 40–187 mg kg−1;
Ni: 221–1708 mg kg−1). The metal extraction experiments were carried out by bioleaching using
Thiobacillus ferrooxidans, microorganisms at different amounts of bioleaching solution (20 mL and
40 mL 9K medium) and a stirring time of up to 12 h. The results on the degree of contamination,
pollution loading index PLI (2.03–57.23) and potential ecological risk index PERI (165–2298) indicate
that the soils in the studied area have a very high degree of pollution. The decontamination procedure by
bioleaching showed a decrease, but at the end of the test (12 h), the followed indices indicate high values,
suggesting that bioleaching should continue. The depollution yield after 12 h of treatment is, however,
encouraging: Cu 29–76%, Pb: 10–32%, Cr: 39–72% and Ni 44–68%. The use of yield–time correlation
equations allows the identification of the optimal exposure time on the bioleaching extraction process to
obtain optimal results. The aim of the research is to determine the soil quality, soil environmental risk,
extraction of metals from polluted soils by bioleaching and to identify influencing factors in achieving
high remediation yields.

Keywords: 9K medium; bioleaching; Thiobacillus ferrooxidans; pollution indices; ecological risk

1. Introduction

The interest in a cleaner and healthier environment has increased in recent years,
becoming a pressing need due to the awareness of the negative impact that pollution has
on the quality of life and health of the population [1,2].

The presence of metals generates the most widespread chemical pollution of soil,
and its adverse effects are particularly strong. Metal concentrations in uncontaminated
dry soils in Romania range from: Cu 20–40 mg kg−1; Pb 22 mg kg−1; Cr 10 mg kg−1;
Ni 25–40 mg kg−1 [3]. Naturally high levels of metals can be found in soil as a result of
geological processes. However, concentrations are mostly very high due to anthropogenic
influences from excessive agriculture and intensive industrial pollution [4–7].

The accumulation of metals in soil affects the surrounding environment through
quantity and toxicity, but also through chemical bonds that influence soil reaction, resulting
in degradation or loss of soil functions [6–8]. Soil pollution with metals affects the physical
and chemical properties of soil. High concentrations of Cu alter the humus composition,
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and Pb inhibits enzymatic processes, reducing the intensity of carbon dioxide removal, both
of them reducing the number of microorganisms and nutrient uptake by plants [6,9,10].

These pollutants also affect the health of the population, because copper compounds,
through ingestion, can cause digestive and nervous disorders. In high concentrations these
copper compounds can even trigger paralysis or cardio-respiratory arrest. Lead is a metal
that can cause, even in very low concentrations, serious damage to the brain and nervous
system [4,5,10]. Chromium is deposited in the liver, spleen and kidneys, and nickel is
carcinogenic and, in some people, can cause allergies [7,10].

The phenomenon of environmental pollution is no longer local or regional, but global,
with particular implications for the entire geosystem and leading to an increase in the
global risk to human and ecological health [1,2,4,5].

Bioleaching, or bacterial leaching, has gained increased attention as it is innovative,
environmentally friendly, and economical [11,12]. The bioleaching process relies on the ability
of micro-organisms to transform solid compounds into soluble and extractable elements that
can be recovered [13,14]. Acidophile microorganisms (Sulfolobus acidocaldarius, Acidithiobacillus,
Leptospirillum and Thiobacillus ferrooxidans) live in highly acidic environments (pH 1–3.0) and
in the presence of very high concentrations of metals [14–18].

The microorganisms or bacteria that are used in the aerobic bioleaching process directly
or indirectly oxidize inorganic compounds. Oxidation and acid-producing activities by
sulfo-oxidizing bacteria are essential [13].

In the direct process, bacteria can directly oxidize the sulfur ion from metal sulfide
into sulfate. This process is shown in Equations (1) and (2) [13,19,20]:

MS −−−→ M2+ + S2− (1)

S2− + 2O2
bacteria−−−−→ MSO2−

4 (2)

A general reaction is used to express the biological oxidation of a metal sulfide in-
volved in bioleaching. Metal sulfides can be iron-based (pyrites) or other metal-based
(Equation (3)) [13]:

MS + 2O2
bacteria−−−−→ MSO4 (3)

In the indirect process, the oxidation of metal sulfides is done by microbially generated
ferric ions (Equation (4)):

MS + 2Fe3+ −−−→ M2+ + 2Fe2+ + S0 (4)

The ferrous iron that is formed is re-oxidized by bacteria. When sulfur is formed, the
presence of bacteria is indispensable for its oxidation to sulfuric acid and thus maintaining
the solubilized metal (Equation (5)) [13]:

S + H2O + 3/2O2
bacteria−−−−→ H2SO4 (5)

The production of sulfuric acid maintains the acidity of the solution at a favorable pH,
and leads to the growth of ferro-oxidizing and sulfo-oxidizing bacteria and the solubiliza-
tion of metals [14]. The general indirect leaching process involves the ferric–ferric cycle [19]
(Equation (6)):

4FeSO4 + O2 + 2H2SO4
bacteria−−−−→ 2Fe2(SO4)3 + 2H2O (6)

Microorganisms can alter the mobility of metals in the environment through its physi-
cal or chemical changes by microbial redox reactions. These microorganisms help in the
development of mechanisms that alter solubility, mobility and/or toxicity (Figure 1) and
allow soil remediation by separating or dissolving contaminants [21]. Separation or immo-
bilization involves mechanisms of bioabsorption (uptake of contaminants into biomass), as
well as changes in the redox state (reduction of oxidized metal to an insoluble form), and
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the accumulation, precipitation and/or volatilization of pollutants by phytoremediation.
Dissolution or mobilization includes the processes of bioleaching metals and metalloids
and changes in the redox state (oxidation of small insoluble metal forms to soluble forms),
which favor dissolution or volatilization. The removal of inorganic pollutants can be
achieved according to the following principles: (1) after precipitation, the pollutants are
immobilized; (2) the concentration of the pollutant reduces the volume of the contaminated
matrix; (3) the separation of metals is in an environment with lower risk potential [21].
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Figure 1. Interactions between metals and microorganisms.

Organisms are exposed to the presence of different types of metals and metalloids
in the environment. Interaction between them develops defense mechanisms, which
sometimes generates benefits and sometimes is to their detriment [21]. Microorganisms
use metals for structural and/or catalytic functions and have the ability to bind metal ions
present on the outside of the cell surface or transport them to the cell interior for various
intracellular functions (Ca and Mg have structural and catalytic functions, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn, Mo and Se in low concentrations can participate in catalytic functions). Some
prokaryotic microorganisms can use, during metabolism, metal species that may exist with
different valences, such as Cr, Mn, Fe, Co, Cu and Ca, because they act as acceptors or
donors of electrons [21].

Having a very rich and mobile enzymatic apparatus, the microorganisms have a
true advantage in their use for biotechnological soil depollution processes. This also
mainly happens because they have a high biosynthesis capacity and a high adaptability to
environmental conditions. Generally, the following microorganism species are used for the
bioleaching of metals: Thiobacillus, Leptospirillum or Sulfolobus [10].

Thiobacillus ferrooxidans, are single-celled, rod-shaped microorganisms, 1–2 microns
long and 0.5–1.0 microns wide. They are tolerant of high acidity and are found in soils
with a pH of 2.2, continuing to live even at pH below 0.6, but these organisms grow best at
pH 2–5 and at temperatures between 25–35 ◦C [22].

Thiobacillus ferrooxidans use Fe2+ as an energy source. Equation (7) shows the oxidation
relationship of Fe2+:

4Fe2+ + O2 + 4H+ −−−→ 4Fe3+ + 2H2O (7)

The assessment of soil metal contamination is done by calculating several parameters
that indicate the pollution of the soil. These parameters are used to monitor soil quality
and ensure future sustainability [23,24] by highlighting the degree of contamination and
the potential ecological risk [25,26].
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To highlight the influence of anthropogenic activities on soil quality and to assess
soil metal pollution, a simultaneous evaluation of the contamination index (Cf), degree of
contamination (Cd), pollution index (PLI), ecological risk factor (Er) and potential ecological
risk index (PERI) parameters can be performed [27–29].

The PLI index is used for the overall assessment of the degree of contamination in the
soil and provides an easy way to demonstrate the deterioration of soil conditions due to
metal accumulation [23]. The PERI index allows the identification of various environmental
effects (toxicology, environmental chemistry and ecology) and can assess the environmental
risks caused by metals [8,30].

Rouchalova (2020) pointed out that particle size (71–100 µm), pH (1.8) and microorgan-
ism density (9K medium) are the most important parameters in achieving high depollution
yields [31]. Groudev et al. (2001) pointed out that microbial activity is the most important
factor in Cu, Zn, Cd and As bioleaching, the exception being Pb [32].

Studies in the literature have shown that bioleaching is efficient for the extraction of
metals from water treatment sludge (Cr 92.6%, Cu 80.6%, Fe 95.6%, Mg 91%, Ni 89.7%,
Pb 99.5%, Zn 93% [33–35], Fe 76.5%, Cu 82%, Pb 89.9%, Zn 90%) [31] or from municipal
and industrial waste [36]. Pyrotite bioleaching could increase Fe recovery by bacterial
adaptation and biological contact oxidation [37], and Fe can be removed (18%) by adding
9K medium [38].

Results obtained in the literature regarding the bioleaching of metals from soils,
obtained under similar experimental conditions (use of Thiobacillus microorganisms, sample
agitation (120–170 rpm), extraction time (5–48 days) and temperature (28–30 ◦C)) have
shown that good extraction yields can be obtained for: Cu: 44% [39], 46% [40], 20–73% [41],
72. 8% [42], 69–92% [43], 95% [44,45], 51–72% [46], 78% [47], 80.6% [33–35], 82% [31],
83% [48], 89–96% [49], 95–96% [50]; Pb: 10–54% [43], 16–60% [50], 18% [40], 33–72% [51],
39.4% [42], 75–84% [49]; Ni: 10–47% [50], 35–65% [51], 69–92% [43], 75–93% [49], 78% [40],
90% [33–35]; and Cr: 14% [40], 10–41% [43], 9–20% [51], 53–92% [49], 64% [39].

As a result, based on the information present in the literature, it can be said that
in order to obtain a high yield of soil metal extraction technologies, it is important to
know the optimal parameters: pH, texture, structure, type and quantity of microorganisms,
temperature and extraction time, used in the extraction process. At the same time, it
can be said that there is still a number of controversies worldwide, especially in terms
of the effectiveness of the process (i.e., the optimal intervention time needed to obtain a
satisfactory degree of depollution) which vary according to the specific characteristics of the
soil and the initial concentration of the pollutant and the type of pollutant. It should also
be mentioned that, due to the high degree of inhomogeneity of the soils, it is particularly
important to accumulate as many experimental results as possible. Accumulating the
necessary data generates the possibility to assess, on a case-by-case basis, the parameters
necessary to obtain a satisfactory degree of decontamination, such as the duration of
intervention, the concentration and quantity of the pollutant, etc.

The aim of the paper is to highlight the factors that influence the yield of the bioleach-
ing process, these being mainly the amount of bioleaching solution and the duration of the
extraction process of potentially toxic elements (metals), in relation to the environmental
risk assessment. The use of yield–time correlation equations allows the identification of the
optimal exposure time on the bioleaching extraction’s potentially toxic elements to obtain
optimal results.

2. Materials and Methods
2.1. Soil Sampling

In order to study the assesed parameters, soil samples from two different areas in
Romania were extracted. These areas are particulary known for generating industrial activ-
ities (area P1—Maramures, County and area P2—Alba County). Soil from three different
depths was analyzed for each of the two areas: 0–10 cm, 10–20 cm and 20–30 cm. The
analysis of the data was performed according to the Romanian standard STAS 7184/1-84
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and were processed according to ISO 11464:1998 [52,53]. The investigated areas are specific
to mining areas and adjacent to these types of activities, being known as polluted areas
in Romania [54–56].

2.2. Soil Analysis

Characterization of the soil samples was carried out in terms of pH, texture, structure
and content of metals (Cu, Pb, Cr and Ni). Soil pH was determined in soil/water extract
1/5 (w/v) using a HANNA pH meter. Soil texture was determined by gravimetric method
with RETSCH AS 200 sieve and soil structure was determined by Sekera method. Soil metal
content was determined by atomic absorption spectrometry (AAS) with a SHIMADZU
AA-6800 spectrometer (Shimadzu, Tokyo, Japan) using the aqua regia digestion. The soil
samples were dried, grounded to a fine powder and sieved through a 100 µm sieve. Three
grams of each sample of soil were weighed into a beaker and 7 mL of HCl and 21 mL
of HNO3 were added. The mixture was then refluxed for 2 h. After cooling to room
temperature, the supernatant was filtered and diluted to 100 mL.

2.3. Bioleaching Process

The extraction of metals from contaminated soil was achieved by bioleaching using
180 Thiobacillus ferrooxidans (TF) microorganisms inoculated in 9K medium in different
quantities: 20 mL and 40 mL. The 9K medium contained: (NH4)2SO4—3.0 g; KCl—0.1 g;
K2HPO4—0.5 g; MgSO4·7H2O—0.5 g; Ca(NO3)2·4H2O—0.01 g; FeSO4·7H2O—44.2 g; and
distilled water up to 1000 mL [57].

From each soil sample, 10 g of soil (from the 2 mm soil fraction) was weighed and
20 mL and 40 mL of 9K medium was added. Samples were stirred using an orbitally
oscillating–rotating platform shaker (200 rpm) for 2 h, 4 h, 6 h, 8 h, 10 h and 12 h. Research
was carried out in laboratory conditions under constant temperature, real air humidity
and ventilation conditions (T = (27 ± 1) ◦C, RH = (65 ± 2)%), without forced ventilation of
ambient air. At regular time intervals (2 h, 4 h, 6 h, 8 h, 10 h, 12 h) the leachate was filtered
and the concentrations of the four metals (Cu, Pb, Cr, Ni) were determined by Atomic
Absorption Spectrometry (AAS). To ensure repeatability and reproducibility, the results
were recorded as the average of three successive measurements.

2.4. Ecological Risk Assessment Methodology

Based on previous studies and results [8,27,28,58–61], Cf contamination index and Er
ecological risk parameters were calculated for each sample and for each type of pollutant
and measurable indices for general assessment of the soil condition were analyzed, i.e., Cd,
PLI and PERI.

The calculation of the parameters were performed using background values of: Cu:
25; Pb: 20; Cr: 35; Ni: 20 [62]. The degree of Cd contamination was calculated by summing
the contamination indices according to Equation (8):

Cf =
CAi

CNi
− 1 (8)

where,

CAi—analyte concentration,
CNi—background value (in the case of soil).

Cd =

n

∑
i=1

(Cf) (9)

PLI = n
√

cf1 ∗ cf2 ∗ cf3 ∗ . . . . ∗ cfn (10)

Er = Cf ∗ Tr (11)

where,
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Er—ecological risk index of the metal i,
Cf—contamination factor of the metal i,
Tr—metal toxicity response coefficient for each metal: Cu: 5, Pb: 5, Cr: 2, Ni: 5 [8,63].

PERI =

n

∑
i=1

Er (12)

The results obtained from the calculations are interpreted according to the values of the
corresponding parameters by comparison with the information available in the literature
(Table 1) and presented also in colors, in order to easily asses the degree of pollution and/or
ecological risk.

Table 1. Metal pollution indices used for soil quality assessment.

PA
R

A
M

ET
ER

S

Cf—Contamination
factor [8,27,28]

Cf < 1—Low contamination factor
1 ≤ Cf < 3—Moderate contamination factor

3 ≤ Cf < 6—Considerable contamination factor
Cf ≥ 6—Very high contamination factor

Cd—Degree of
Contamination [8,58]

Cd < 8—Low degree of contamination
8 ≤ Cd ≤ 16—Moderate degree of contamination

16 ≤ Cd ≤ 32—Considerable degree of contamination
Cd > 32—Very high degree of contamination

PLI—Pollution Load
Index [27,28,59]

PLI < 1—Not polluted soil
PLI = 1—Soil with normal background level

PLI > 1—Polluted soil

Er—Ecological risk
index [8,60]

Er < 40—Low ecological risk
40 < Er ≤ 80—Moderate ecological risk

80 < Er ≤ 160—Considerable ecological risk
160 < Er ≤ 320—High ecological risk

Er > 320—Serious ecological risk

PERI—Potential
Ecological Risk Index

[8,61]

PERI < 150—Low ecological risk
150 ≤ PERI < 300—Moderate ecological risk

300 ≤ PERI < 600—High potential ecological risk
PERI ≥ 600—Significantly high ecological risk

During the entire experimental program, the evolution of the “soil health status” was
monitored. This parameter was expressed as the accumulation of all the factors influencing
this aspect, as well as the kinetics of the evolution of each type of pollutant in relation to
the duration of exposure to the bioleaching solution, the amount of 9K medium used, the
depth of soil sampling and the pH of the soil. The kinetics of the decontamination process
was followed by decreasing the concentration of the pollutant in relation to the time of
action of each type of solution.

The effectiveness of the extraction process (ER) was determined with Equation (13) [64]:

removal efficiency (%) =
Ci − Cf

Ci
× 100 (13)

where:

Ci is the initial metals’ concentration (mg kg−1) of soil;
Cf is the final concentration of metals (mg kg−1) in soil, after soil bioleaching treatment.

In order to estimate the time needed to apply the process until a satisfactory degree of
depollution is obtained, a series of equations correlating the yield with the time of action
were identified on the basis of experimental data. In this respect, the identified correlation
relationship was considered acceptable if the condition R2 ≥ 0.9 was satisfied.
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3. Results and Discussions
3.1. Analysis and Assessment of Ecological Risks for Initial Soil Samples

The results of the pH tests indicate that all soil samples show a low pH (acid reaction)
with varying degrees of acidity. Samples P1 show a pH value of 5.2–5.5 (medium acidic
reaction), while samples P2 show a pH value of 2.3–2.5 (highly acidic reaction). In both
investigated locations, the soil was found to be well structured and has a sandy loam
texture with the following composition: 21.8% clay, 40.2% silt and 38% sand, according to
the USDA classification [65].

Initial testing of the soil samples indicated that, depending on the location and depth
of extraction, metal concentrations vary substantially. As shown in Figure 2, a slight
decrease in Pb concentration with an increasing depth of investigation was observed at
both investigated locations. On the other hand, the Cu, Ni and Cr content increased with
the depth of investigation. This can be explained by the fact that Pb is associated with the
acid-soluble and reducible phases, while the other metals studied are mainly associated
with the oxidization phase. These metal migration trends in the top layer (up to 30 cm) are
in agreement with the literature. Regarding the different concentrations of metals, between
the two areas investigated, it can be appreciated that the fact that these areas are part of
two different regions, with two different types of exploitation and pollution, lead to the
presented results.
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The metal concentration values of the investigated samples show that they exceed
the normal values: 20 mg kg−1 (Cu, Pb and Ni) and 30 mg kg−1 (Cr), according to the
Romanian legislation (Order no. 756/1997). In the case of sample P1, the concentrations
are so high that they even exceed the action threshold: 1000 mg kg−1 (Pb), 500 mg kg−1

(Cu and Ni) [66]. Comparing the calculated indicators, Cd, Er, PLI and PERI with the
admissibility thresholds (Figure 3), it can be seen that all these indicators indicate the need
for decontamination intervention. The sources of the pollution in this area are the mining
activities carried out in the area over the years. At the moment, all the mines in the area
are closed.

3.2. Environmental Risk Assessment during the Bioleaching Process

After applying the metal extraction treatment by bioleaching, with 20 mL and 40 mL
of 9K medium, the results obtained show that the Cd indicator decreases steadily over time
(Figure 4), indicating the overall efficiency of the decontamination process. From the shape
of the curves, it can be seen that the variation of this indicator is directly influenced by the
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duration of the soil being exposed to the bioleaching solution, i.e., a linear dependence of
the Cd parameter on time.
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On the other hand, soil with a more acidic pH, but also with an initially lower con-
taminant content, shows a variation much closer to the ideal situation of linear variation.
However, the plot area indicates a slower rate of change of the Cd indicator in this case
(compared to the more contaminant-rich soil with a higher pH). These observations suggest
that, in addition to the length of time of exposure to the soil decontamination method, the
evolution of the Cd indicator is influenced by both the concentration of contaminant metals
and soil pH. The positioning of the experimental results, grouped for each soil type, even
for the three different sampling depths, may be an indication that the sampling depth is
not a factor directly influencing the evolution of the extraction process.

Results obtained for the Cd indicator are also found for the other two indicators, PLI
(Figure 5) and PERI (Figure 6). The evolution of these indicators, on the other hand, is
influenced by the evolution of the pollutant concentration which is a direct influence in the
evolution of the Er indicator.
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As shown in the figures above, in contradiction to the evolution of the concentrations
of the three polyunsaturated metals, Cu, Pb and Ni, the Cr concentration shows a different
variation. During the first 4–5 h of treatment, the concentration and its impact on the
general soil characterization decreases. Afterwards, a continuous and constant increase of
this parameter in terms of pollution is observed.

This can be explained by the specificity of the bioleaching process using TF microor-
ganisms, whose metabolism contributes to the transition from Cr(IV) to Cr(III) [6,11,67].
Bacteria can degrade Cr(VI) to Cr(III) in anaerobic environments, where it uses chromate as
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a terminal electron acceptor, and in aerobic environments via cellular depleting agents. The
transformation of Cr(VI) to Cr(III) leads to a reduction of toxicity, showing the stabilization
of Cr in the soil with little migration of Cr to the plant [6]. It can also be noticed that,
although the measuring equipment records this Cr concentration, the advantage of the
process is the ability of the element to change from its form which is hazardous to human
health to a less hazardous form. In accordance with the specifications in the literature,
results show a very high degree of contamination (Cd > 32), a pollution index PLI > 1
and a significant ecological risk for both soil samples that were analyzed in this study
(Figures 7–9). Results obtained on both soil samples show that interventions are required
for the decontamination and reduction of both the pollution index and the environmental
risk. Although the extraction process by bioleaching was applied for 12 h, the aforemen-
tioned parameters, at the end of the test, were not positioned in safe zones, which indicates
the need for further treatment.
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and sampling depth using 40 mL 9K medium.

Most of the soil samples presented Cf ≥ six values, resulting in a very high degree of
pollution (Table 2). Although samples have shown high values in terms of the analyzed
parameters, the Cr parameter showed values < one for most samples. A relatively small
number of samples (seven samples) had a Cf ranging from three to six, indicating consider-
able contamination (Cr = Ni < Cu). The Cf contamination index has the following order:
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Pb > Cu > Ni > Cr. The soil in the studied areas shows a high degree of contamination,
with the PLI pollution index greater than one and the Cd contamination degree greater
than 32 at the end of the 12 h of treatment, regardless of the amount of 9K medium used.
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Table 2. Calculated values for the Cf (contamination factor), Cd (contamination degree) and PLI
(pollution load index).

Sample Cf

Cd PLI
Code Sampling

Depth [cm]
Time

[h]
9K Medium

[mL] Cu Pb Cr Ni

P1

0–10
Initial - 28.44 272.30 0.24 59.30 360.28 18.17
Final

(after 12 h)
20 19.92 198.95 0.24 22.65 241.76 12.12
40 18.84 189.10 0.44 32.70 241.08 15.05

10–20
Initial - 92.44 261.15 4.34 69.35 427.28 51.93
Final

(after 12 h)
20 42.60 229.60 2.07 37.70 311.97 29.56
40 35.52 224.60 1.61 33.70 295.43 25.67

20–30
Initial - 118.84 254.65 4.20 84.40 462.09 57.23
Final

(after 12 h)
20 36.60 229.00 1.94 34.65 302.19 27.41
40 28.60 224.00 1.66 34.15 288.41 24.54

P2

0–10
Initial - 8.44 52.75 0.14 13.25 74.58 5.39
Final

(after 12 h)
20 5.24 41.80 0.33 3.55 50.92 3.99
40 4.04 39.10 0.44 3.30 46.88 3.89

10–20
Initial - 4.32 37.55 1.80 10.05 53.72 7.36
Final

(after 12 h)
20 1.68 29.60 0.43 2.80 34.51 2.79
40 1.24 29.10 0.18 2.60 33.12 2.03

20–30
Initial - 11.44 32.25 2.66 18.05 64.40 11.53
Final

(after 12 h)
20 7.12 25.15 0.26 7.55 40.08 4.32
40 6.80 24.10 0.03 6.50 37.43 2.35

Legend:
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Final  

(after 12 h) 
20 42.60 229.60 2.07 37.70 311.97 29.56 
40 35.52 224.60 1.61 33.70 295.43 25.67 

20–30 
Initial - 118.84 254.65 4.20 84.40 462.09 57.23 
Final  

(after 12 h) 
20 36.60 229.00 1.94 34.65 302.19 27.41 
40 28.60 224.00 1.66 34.15 288.41 24.54 

P2 

0–10  
Initial - 8.44 52.75 0.14 13.25 74.58 5.39 
Final  

(after 12 h) 
20 5.24 41.80 0.33 3.55 50.92 3.99 
40 4.04 39.10 0.44 3.30 46.88 3.89 

10–20 
Initial - 4.32 37.55 1.80 10.05 53.72 7.36 
Final  

(after 12 h) 
20 1.68 29.60 0.43 2.80 34.51 2.79 
40 1.24 29.10 0.18 2.60 33.12 2.03 

20–30 
Initial - 11.44 32.25 2.66 18.05 64.40 11.53 
Final  

(after 12 h) 
20 7.12 25.15 0.26 7.55 40.08 4.32 
40 6.80 24.10 0.03 6.50 37.43 2.35 

Legend: 

 
 Cf < 1—Low contamination factor  
 Cf: 1–3—Moderate contamination factor 
 Cf: 3–6—Considerable contamination factor 

 Cf ≥ 6—Very high contamination factor 
 Cd > 32—Very high degree of contamination 
 PLI > 1—Polluted soil 

The Er ecological risk factor values for the studied areas ranged from 0.06 to 1361.50 
(Table 3). Samples from the investigation area P1 (ER > 320) show very high values in all 
studied cases (Pb, Cu and Ni). For samples of P2 (ER < 40), an increase in Pb is observed, 
which highlights an increased risk or considerable risk of contamination. P2 samples 
generally show a low or moderate environmental risk for Cu, Cr and Ni. Cr is the only 
element with a low environmental risk regardless of the location of the soil sample. 
Analyzing the degree of ecological risk for the samples studied, the following order can 
be established: Pb > Ni > Cu > Cr. 

Figure 10 shows the evolution of the Er parameter for samples P1 and P2 (extracted 
from a 0–10 cm depth). As seen in the figure, the samples have similar evolutions in terms 
of the analyzed parameters. 

PLI > 1—Polluted soil

The Er ecological risk factor values for the studied areas ranged from 0.06 to 1361.50
(Table 3). Samples from the investigation area P1 (ER > 320) show very high values in
all studied cases (Pb, Cu and Ni). For samples of P2 (ER < 40), an increase in Pb is
observed, which highlights an increased risk or considerable risk of contamination. P2
samples generally show a low or moderate environmental risk for Cu, Cr and Ni. Cr is the
only element with a low environmental risk regardless of the location of the soil sample.
Analyzing the degree of ecological risk for the samples studied, the following order can be
established: Pb > Ni > Cu > Cr.
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Table 3. Ecological risk index Er and PERI potential ecological risk, recorded after 12 h of treatment
with 20 mL and 40 mL 9K medium solution, respectively.

Sample Er

PERI
Code

Sampling
Depth
[cm]

Time
[h]

9K Medium
[mL] Cu Pb Cr Ni

P1

0–10
Initial - 142.20 1361.50 0.47 296.50 1800.67
Final

(after 12 h)
20 99.60 994.75 0.48 113.25 1208.08
40 94.20 945.50 0.88 163.50 1204.08

10–20
Initial - 462.20 1305.75 8.69 346.75 2123.39
Final

(after 12 h)
20 213.00 1148.00 4.14 188.50 1553.64
40 177.60 1123.00 3.23 168.50 1472.33

20–30
Initial - 594.20 1273.25 8.40 422.00 2297.85
Final

(after 12 h)
20 183.00 1145.00 3.89 173.25 1505.14
40 143.00 1120.00 3.31 170.75 1437.06

P2

0–10
Initial - 42.20 263.75 0.29 66.25 372.49
Final

(after 12 h)
20 26.20 209.00 0.65 17.75 253.60
40 20.20 195.50 0.88 16.50 233.08

10–20
Initial - 21.60 187.75 3.60 50.25 263.20
Final

(after 12 h)
20 8.40 148.00 0.87 14.00 171.27
40 6.20 145.50 0.36 13.00 165.06

20–30
Initial - 57.20 161.25 5.31 90.25 314.01
Final

(after 12 h)
20 35.60 125.75 0.51 37.75 199.61
40 34.00 120.50 0.06 32.50 187.06

Legend:
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The values obtained for the potential environmental risk index (PERI) for samples 
extracted from area P1 range from 1204.08 to 2297.85, far exceeding the PERI = 600 value. 
This indicates a significantly high degree. The PERI values obtained for samples extracted 
from area P2 indicate a moderate ecological risk, except two initial samples (depth 0–10 
cm and 20–30 cm, respectively).  

The Cd contamination degree, and the PLI pollution parameters have very high 
values for all 18 samples investigated. The PERI indicator shows high concentrations for 
samples extracted from area P1 and a moderate ecological risk for those from area P2. The 
results of the analyzed indicators suggest that the area has a high level of soil pollution 
and indicate a strong anthropogenic influence on the soil in the studied area. 

From the point of view of the yield of the extraction process (Figures 11 and 12), it 
can be said that, regardless of whether 20 mL or 40 mL 9K medium was used, the depth 
of the sample extraction does not directly influence this parameter or the rate of reduction 
of the pollutant concentration (Figures 13 and 14). Indirectly, through the concentration 
of the pollutant in the analyzed samples, both the yield and the speed of the pollutant 
concentration reduction process are influenced, but a direct correlation, expressed by a 
mathematical dependence function of each of the two measurable indicators with the 
depth of extraction of the soil samples, cannot be made. 

On the other hand, it can be seen that the type of pollutant directly influences both 
the speed of the extraction process and its rate of reduction from the soil. Thus, in the case 
of Pb, the lowest yield is observed for the use of 20 mL of 9K medium, for a soil with a pH 
of 5.2–5.5. In contrast, in the case of soil with a pH of 2.3–2.5, the lowest yield of the 
depollution process is observed for Cr. In the two studied areas, the depollution process 
has a good yield in the case of Cu. In terms of the rate at which the pollutant concentration 
is reduced, in the case of soil with pH 5, poor results are observed in the case of Cr. All 
these observations lead to the appreciation that, in addition to the type of pollutant, the 
duration of action and the amount of 9K solution used, the initial concentration of the 
pollutant is of great importance in the mechanism of depollution by this process. A high 
concentration of pollutant will determine a good yield of the depollution process as well 
as a good speed of reduction of the concentration of the pollutant. This, however, varies 
greatly depending on the type of metal pollutant. The results obtained for Pb (10–32%) 
and Ni (44–68%) using TF are higher compared to the yields obtained using Aspergillus 
niger: Pb: 13% and Ni: 21% [68]. The same can be observed for Cu (39–72%), and when 
using Acidithiobacillus, Sulfobacillus and Ferroplasma, where Cu amounts to 27% [69], 
Pleurotus florida (18%) and Pseudomonas spp. (16.6%) [70]. 

Er < 40—Low ecological risk
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The values obtained for the potential environmental risk index (PERI) for samples 
extracted from area P1 range from 1204.08 to 2297.85, far exceeding the PERI = 600 value. 
This indicates a significantly high degree. The PERI values obtained for samples extracted 
from area P2 indicate a moderate ecological risk, except two initial samples (depth 0–10 
cm and 20–30 cm, respectively).  

The Cd contamination degree, and the PLI pollution parameters have very high 
values for all 18 samples investigated. The PERI indicator shows high concentrations for 
samples extracted from area P1 and a moderate ecological risk for those from area P2. The 
results of the analyzed indicators suggest that the area has a high level of soil pollution 
and indicate a strong anthropogenic influence on the soil in the studied area. 

From the point of view of the yield of the extraction process (Figures 11 and 12), it 
can be said that, regardless of whether 20 mL or 40 mL 9K medium was used, the depth 
of the sample extraction does not directly influence this parameter or the rate of reduction 
of the pollutant concentration (Figures 13 and 14). Indirectly, through the concentration 
of the pollutant in the analyzed samples, both the yield and the speed of the pollutant 
concentration reduction process are influenced, but a direct correlation, expressed by a 
mathematical dependence function of each of the two measurable indicators with the 
depth of extraction of the soil samples, cannot be made. 

On the other hand, it can be seen that the type of pollutant directly influences both 
the speed of the extraction process and its rate of reduction from the soil. Thus, in the case 
of Pb, the lowest yield is observed for the use of 20 mL of 9K medium, for a soil with a pH 
of 5.2–5.5. In contrast, in the case of soil with a pH of 2.3–2.5, the lowest yield of the 
depollution process is observed for Cr. In the two studied areas, the depollution process 
has a good yield in the case of Cu. In terms of the rate at which the pollutant concentration 
is reduced, in the case of soil with pH 5, poor results are observed in the case of Cr. All 
these observations lead to the appreciation that, in addition to the type of pollutant, the 
duration of action and the amount of 9K solution used, the initial concentration of the 
pollutant is of great importance in the mechanism of depollution by this process. A high 
concentration of pollutant will determine a good yield of the depollution process as well 
as a good speed of reduction of the concentration of the pollutant. This, however, varies 
greatly depending on the type of metal pollutant. The results obtained for Pb (10–32%) 
and Ni (44–68%) using TF are higher compared to the yields obtained using Aspergillus 
niger: Pb: 13% and Ni: 21% [68]. The same can be observed for Cu (39–72%), and when 
using Acidithiobacillus, Sulfobacillus and Ferroplasma, where Cu amounts to 27% [69], 
Pleurotus florida (18%) and Pseudomonas spp. (16.6%) [70]. 

Er: 40–80—Moderate ecological risk
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The values obtained for the potential environmental risk index (PERI) for samples 
extracted from area P1 range from 1204.08 to 2297.85, far exceeding the PERI = 600 value. 
This indicates a significantly high degree. The PERI values obtained for samples extracted 
from area P2 indicate a moderate ecological risk, except two initial samples (depth 0–10 
cm and 20–30 cm, respectively).  

The Cd contamination degree, and the PLI pollution parameters have very high 
values for all 18 samples investigated. The PERI indicator shows high concentrations for 
samples extracted from area P1 and a moderate ecological risk for those from area P2. The 
results of the analyzed indicators suggest that the area has a high level of soil pollution 
and indicate a strong anthropogenic influence on the soil in the studied area. 

From the point of view of the yield of the extraction process (Figures 11 and 12), it 
can be said that, regardless of whether 20 mL or 40 mL 9K medium was used, the depth 
of the sample extraction does not directly influence this parameter or the rate of reduction 
of the pollutant concentration (Figures 13 and 14). Indirectly, through the concentration 
of the pollutant in the analyzed samples, both the yield and the speed of the pollutant 
concentration reduction process are influenced, but a direct correlation, expressed by a 
mathematical dependence function of each of the two measurable indicators with the 
depth of extraction of the soil samples, cannot be made. 

On the other hand, it can be seen that the type of pollutant directly influences both 
the speed of the extraction process and its rate of reduction from the soil. Thus, in the case 
of Pb, the lowest yield is observed for the use of 20 mL of 9K medium, for a soil with a pH 
of 5.2–5.5. In contrast, in the case of soil with a pH of 2.3–2.5, the lowest yield of the 
depollution process is observed for Cr. In the two studied areas, the depollution process 
has a good yield in the case of Cu. In terms of the rate at which the pollutant concentration 
is reduced, in the case of soil with pH 5, poor results are observed in the case of Cr. All 
these observations lead to the appreciation that, in addition to the type of pollutant, the 
duration of action and the amount of 9K solution used, the initial concentration of the 
pollutant is of great importance in the mechanism of depollution by this process. A high 
concentration of pollutant will determine a good yield of the depollution process as well 
as a good speed of reduction of the concentration of the pollutant. This, however, varies 
greatly depending on the type of metal pollutant. The results obtained for Pb (10–32%) 
and Ni (44–68%) using TF are higher compared to the yields obtained using Aspergillus 
niger: Pb: 13% and Ni: 21% [68]. The same can be observed for Cu (39–72%), and when 
using Acidithiobacillus, Sulfobacillus and Ferroplasma, where Cu amounts to 27% [69], 
Pleurotus florida (18%) and Pseudomonas spp. (16.6%) [70]. 

Er: 80–160—Considerable ecological risk
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The values obtained for the potential environmental risk index (PERI) for samples 
extracted from area P1 range from 1204.08 to 2297.85, far exceeding the PERI = 600 value. 
This indicates a significantly high degree. The PERI values obtained for samples extracted 
from area P2 indicate a moderate ecological risk, except two initial samples (depth 0–10 
cm and 20–30 cm, respectively).  

The Cd contamination degree, and the PLI pollution parameters have very high 
values for all 18 samples investigated. The PERI indicator shows high concentrations for 
samples extracted from area P1 and a moderate ecological risk for those from area P2. The 
results of the analyzed indicators suggest that the area has a high level of soil pollution 
and indicate a strong anthropogenic influence on the soil in the studied area. 

From the point of view of the yield of the extraction process (Figures 11 and 12), it 
can be said that, regardless of whether 20 mL or 40 mL 9K medium was used, the depth 
of the sample extraction does not directly influence this parameter or the rate of reduction 
of the pollutant concentration (Figures 13 and 14). Indirectly, through the concentration 
of the pollutant in the analyzed samples, both the yield and the speed of the pollutant 
concentration reduction process are influenced, but a direct correlation, expressed by a 
mathematical dependence function of each of the two measurable indicators with the 
depth of extraction of the soil samples, cannot be made. 

On the other hand, it can be seen that the type of pollutant directly influences both 
the speed of the extraction process and its rate of reduction from the soil. Thus, in the case 
of Pb, the lowest yield is observed for the use of 20 mL of 9K medium, for a soil with a pH 
of 5.2–5.5. In contrast, in the case of soil with a pH of 2.3–2.5, the lowest yield of the 
depollution process is observed for Cr. In the two studied areas, the depollution process 
has a good yield in the case of Cu. In terms of the rate at which the pollutant concentration 
is reduced, in the case of soil with pH 5, poor results are observed in the case of Cr. All 
these observations lead to the appreciation that, in addition to the type of pollutant, the 
duration of action and the amount of 9K solution used, the initial concentration of the 
pollutant is of great importance in the mechanism of depollution by this process. A high 
concentration of pollutant will determine a good yield of the depollution process as well 
as a good speed of reduction of the concentration of the pollutant. This, however, varies 
greatly depending on the type of metal pollutant. The results obtained for Pb (10–32%) 
and Ni (44–68%) using TF are higher compared to the yields obtained using Aspergillus 
niger: Pb: 13% and Ni: 21% [68]. The same can be observed for Cu (39–72%), and when 
using Acidithiobacillus, Sulfobacillus and Ferroplasma, where Cu amounts to 27% [69], 
Pleurotus florida (18%) and Pseudomonas spp. (16.6%) [70]. 

Er: 160–320—High ecological risk
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The values obtained for the potential environmental risk index (PERI) for samples 
extracted from area P1 range from 1204.08 to 2297.85, far exceeding the PERI = 600 value. 
This indicates a significantly high degree. The PERI values obtained for samples extracted 
from area P2 indicate a moderate ecological risk, except two initial samples (depth 0–10 
cm and 20–30 cm, respectively).  

The Cd contamination degree, and the PLI pollution parameters have very high 
values for all 18 samples investigated. The PERI indicator shows high concentrations for 
samples extracted from area P1 and a moderate ecological risk for those from area P2. The 
results of the analyzed indicators suggest that the area has a high level of soil pollution 
and indicate a strong anthropogenic influence on the soil in the studied area. 

From the point of view of the yield of the extraction process (Figures 11 and 12), it 
can be said that, regardless of whether 20 mL or 40 mL 9K medium was used, the depth 
of the sample extraction does not directly influence this parameter or the rate of reduction 
of the pollutant concentration (Figures 13 and 14). Indirectly, through the concentration 
of the pollutant in the analyzed samples, both the yield and the speed of the pollutant 
concentration reduction process are influenced, but a direct correlation, expressed by a 
mathematical dependence function of each of the two measurable indicators with the 
depth of extraction of the soil samples, cannot be made. 

On the other hand, it can be seen that the type of pollutant directly influences both 
the speed of the extraction process and its rate of reduction from the soil. Thus, in the case 
of Pb, the lowest yield is observed for the use of 20 mL of 9K medium, for a soil with a pH 
of 5.2–5.5. In contrast, in the case of soil with a pH of 2.3–2.5, the lowest yield of the 
depollution process is observed for Cr. In the two studied areas, the depollution process 
has a good yield in the case of Cu. In terms of the rate at which the pollutant concentration 
is reduced, in the case of soil with pH 5, poor results are observed in the case of Cr. All 
these observations lead to the appreciation that, in addition to the type of pollutant, the 
duration of action and the amount of 9K solution used, the initial concentration of the 
pollutant is of great importance in the mechanism of depollution by this process. A high 
concentration of pollutant will determine a good yield of the depollution process as well 
as a good speed of reduction of the concentration of the pollutant. This, however, varies 
greatly depending on the type of metal pollutant. The results obtained for Pb (10–32%) 
and Ni (44–68%) using TF are higher compared to the yields obtained using Aspergillus 
niger: Pb: 13% and Ni: 21% [68]. The same can be observed for Cu (39–72%), and when 
using Acidithiobacillus, Sulfobacillus and Ferroplasma, where Cu amounts to 27% [69], 
Pleurotus florida (18%) and Pseudomonas spp. (16.6%) [70]. 

Er > 320—Serious ecological risk
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The values obtained for the potential environmental risk index (PERI) for samples 
extracted from area P1 range from 1204.08 to 2297.85, far exceeding the PERI = 600 value. 
This indicates a significantly high degree. The PERI values obtained for samples extracted 
from area P2 indicate a moderate ecological risk, except two initial samples (depth 0–10 
cm and 20–30 cm, respectively).  

The Cd contamination degree, and the PLI pollution parameters have very high 
values for all 18 samples investigated. The PERI indicator shows high concentrations for 
samples extracted from area P1 and a moderate ecological risk for those from area P2. The 
results of the analyzed indicators suggest that the area has a high level of soil pollution 
and indicate a strong anthropogenic influence on the soil in the studied area. 

From the point of view of the yield of the extraction process (Figures 11 and 12), it 
can be said that, regardless of whether 20 mL or 40 mL 9K medium was used, the depth 
of the sample extraction does not directly influence this parameter or the rate of reduction 
of the pollutant concentration (Figures 13 and 14). Indirectly, through the concentration 
of the pollutant in the analyzed samples, both the yield and the speed of the pollutant 
concentration reduction process are influenced, but a direct correlation, expressed by a 
mathematical dependence function of each of the two measurable indicators with the 
depth of extraction of the soil samples, cannot be made. 

On the other hand, it can be seen that the type of pollutant directly influences both 
the speed of the extraction process and its rate of reduction from the soil. Thus, in the case 
of Pb, the lowest yield is observed for the use of 20 mL of 9K medium, for a soil with a pH 
of 5.2–5.5. In contrast, in the case of soil with a pH of 2.3–2.5, the lowest yield of the 
depollution process is observed for Cr. In the two studied areas, the depollution process 
has a good yield in the case of Cu. In terms of the rate at which the pollutant concentration 
is reduced, in the case of soil with pH 5, poor results are observed in the case of Cr. All 
these observations lead to the appreciation that, in addition to the type of pollutant, the 
duration of action and the amount of 9K solution used, the initial concentration of the 
pollutant is of great importance in the mechanism of depollution by this process. A high 
concentration of pollutant will determine a good yield of the depollution process as well 
as a good speed of reduction of the concentration of the pollutant. This, however, varies 
greatly depending on the type of metal pollutant. The results obtained for Pb (10–32%) 
and Ni (44–68%) using TF are higher compared to the yields obtained using Aspergillus 
niger: Pb: 13% and Ni: 21% [68]. The same can be observed for Cu (39–72%), and when 
using Acidithiobacillus, Sulfobacillus and Ferroplasma, where Cu amounts to 27% [69], 
Pleurotus florida (18%) and Pseudomonas spp. (16.6%) [70]. 

PERI: 150–300—Moderate ecological risk
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The values obtained for the potential environmental risk index (PERI) for samples 
extracted from area P1 range from 1204.08 to 2297.85, far exceeding the PERI = 600 value. 
This indicates a significantly high degree. The PERI values obtained for samples extracted 
from area P2 indicate a moderate ecological risk, except two initial samples (depth 0–10 
cm and 20–30 cm, respectively).  

The Cd contamination degree, and the PLI pollution parameters have very high 
values for all 18 samples investigated. The PERI indicator shows high concentrations for 
samples extracted from area P1 and a moderate ecological risk for those from area P2. The 
results of the analyzed indicators suggest that the area has a high level of soil pollution 
and indicate a strong anthropogenic influence on the soil in the studied area. 

From the point of view of the yield of the extraction process (Figures 11 and 12), it 
can be said that, regardless of whether 20 mL or 40 mL 9K medium was used, the depth 
of the sample extraction does not directly influence this parameter or the rate of reduction 
of the pollutant concentration (Figures 13 and 14). Indirectly, through the concentration 
of the pollutant in the analyzed samples, both the yield and the speed of the pollutant 
concentration reduction process are influenced, but a direct correlation, expressed by a 
mathematical dependence function of each of the two measurable indicators with the 
depth of extraction of the soil samples, cannot be made. 

On the other hand, it can be seen that the type of pollutant directly influences both 
the speed of the extraction process and its rate of reduction from the soil. Thus, in the case 
of Pb, the lowest yield is observed for the use of 20 mL of 9K medium, for a soil with a pH 
of 5.2–5.5. In contrast, in the case of soil with a pH of 2.3–2.5, the lowest yield of the 
depollution process is observed for Cr. In the two studied areas, the depollution process 
has a good yield in the case of Cu. In terms of the rate at which the pollutant concentration 
is reduced, in the case of soil with pH 5, poor results are observed in the case of Cr. All 
these observations lead to the appreciation that, in addition to the type of pollutant, the 
duration of action and the amount of 9K solution used, the initial concentration of the 
pollutant is of great importance in the mechanism of depollution by this process. A high 
concentration of pollutant will determine a good yield of the depollution process as well 
as a good speed of reduction of the concentration of the pollutant. This, however, varies 
greatly depending on the type of metal pollutant. The results obtained for Pb (10–32%) 
and Ni (44–68%) using TF are higher compared to the yields obtained using Aspergillus 
niger: Pb: 13% and Ni: 21% [68]. The same can be observed for Cu (39–72%), and when 
using Acidithiobacillus, Sulfobacillus and Ferroplasma, where Cu amounts to 27% [69], 
Pleurotus florida (18%) and Pseudomonas spp. (16.6%) [70]. 

PERI: 300–600—High potential ecological risk

Materials 2022, 15, x FOR PEER REVIEW 14 of 22 
 

 

(after 12 h) 40 34.00 120.50 0.06 32.50 187.06 

Legend: 
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The values obtained for the potential environmental risk index (PERI) for samples 
extracted from area P1 range from 1204.08 to 2297.85, far exceeding the PERI = 600 value. 
This indicates a significantly high degree. The PERI values obtained for samples extracted 
from area P2 indicate a moderate ecological risk, except two initial samples (depth 0–10 
cm and 20–30 cm, respectively).  

The Cd contamination degree, and the PLI pollution parameters have very high 
values for all 18 samples investigated. The PERI indicator shows high concentrations for 
samples extracted from area P1 and a moderate ecological risk for those from area P2. The 
results of the analyzed indicators suggest that the area has a high level of soil pollution 
and indicate a strong anthropogenic influence on the soil in the studied area. 

From the point of view of the yield of the extraction process (Figures 11 and 12), it 
can be said that, regardless of whether 20 mL or 40 mL 9K medium was used, the depth 
of the sample extraction does not directly influence this parameter or the rate of reduction 
of the pollutant concentration (Figures 13 and 14). Indirectly, through the concentration 
of the pollutant in the analyzed samples, both the yield and the speed of the pollutant 
concentration reduction process are influenced, but a direct correlation, expressed by a 
mathematical dependence function of each of the two measurable indicators with the 
depth of extraction of the soil samples, cannot be made. 

On the other hand, it can be seen that the type of pollutant directly influences both 
the speed of the extraction process and its rate of reduction from the soil. Thus, in the case 
of Pb, the lowest yield is observed for the use of 20 mL of 9K medium, for a soil with a pH 
of 5.2–5.5. In contrast, in the case of soil with a pH of 2.3–2.5, the lowest yield of the 
depollution process is observed for Cr. In the two studied areas, the depollution process 
has a good yield in the case of Cu. In terms of the rate at which the pollutant concentration 
is reduced, in the case of soil with pH 5, poor results are observed in the case of Cr. All 
these observations lead to the appreciation that, in addition to the type of pollutant, the 
duration of action and the amount of 9K solution used, the initial concentration of the 
pollutant is of great importance in the mechanism of depollution by this process. A high 
concentration of pollutant will determine a good yield of the depollution process as well 
as a good speed of reduction of the concentration of the pollutant. This, however, varies 
greatly depending on the type of metal pollutant. The results obtained for Pb (10–32%) 
and Ni (44–68%) using TF are higher compared to the yields obtained using Aspergillus 
niger: Pb: 13% and Ni: 21% [68]. The same can be observed for Cu (39–72%), and when 
using Acidithiobacillus, Sulfobacillus and Ferroplasma, where Cu amounts to 27% [69], 
Pleurotus florida (18%) and Pseudomonas spp. (16.6%) [70]. 

PERI ≥ 600—Significantly high ecological risk

Figure 10 shows the evolution of the Er parameter for samples P1 and P2 (extracted
from a 0–10 cm depth). As seen in the figure, the samples have similar evolutions in terms
of the analyzed parameters.

The values obtained for the potential environmental risk index (PERI) for samples
extracted from area P1 range from 1204.08 to 2297.85, far exceeding the PERI = 600 value.
This indicates a significantly high degree. The PERI values obtained for samples extracted
from area P2 indicate a moderate ecological risk, except two initial samples (depth 0–10 cm
and 20–30 cm, respectively).

The Cd contamination degree, and the PLI pollution parameters have very high values
for all 18 samples investigated. The PERI indicator shows high concentrations for samples
extracted from area P1 and a moderate ecological risk for those from area P2. The results of
the analyzed indicators suggest that the area has a high level of soil pollution and indicate
a strong anthropogenic influence on the soil in the studied area.

From the point of view of the yield of the extraction process (Figures 11 and 12), it
can be said that, regardless of whether 20 mL or 40 mL 9K medium was used, the depth of
the sample extraction does not directly influence this parameter or the rate of reduction
of the pollutant concentration (Figures 13 and 14). Indirectly, through the concentration
of the pollutant in the analyzed samples, both the yield and the speed of the pollutant
concentration reduction process are influenced, but a direct correlation, expressed by a
mathematical dependence function of each of the two measurable indicators with the depth
of extraction of the soil samples, cannot be made.



Materials 2022, 15, 3973 13 of 21Materials 2022, 15, x FOR PEER REVIEW 13 of 22 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 10. Evolution of the Er indicator as a function of metal, location and sampling depth: (a) Cu, 
(b) Pb, (c) Cr and (d) Ni. 

Table 3. Ecological risk index Er and PERI potential ecological risk, recorded after 12 h of treatment 
with 20 mL and 40 mL 9K medium solution, respectively. 

Sample Er 

PERI 
Code 

Sampling 
Depth 
[cm] 

Time 
[h] 

9K Medium 
[mL] 

Cu Pb Cr Ni 

P1 

0–10 
Initial - 142.20 1361.50 0.47 296.50 1800.67 
Final  

(after 12 h) 
20 99.60 994.75 0.48 113.25 1208.08 
40 94.20 945.50 0.88 163.50 1204.08 

10–20 
Initial - 462.20 1305.75 8.69 346.75 2123.39 
Final  

(after 12 h) 
20 213.00 1148.00 4.14 188.50 1553.64 
40 177.60 1123.00 3.23 168.50 1472.33 

20–30 
Initial - 594.20 1273.25 8.40 422.00 2297.85 
Final  

(after 12 h) 
20 183.00 1145.00 3.89 173.25 1505.14 
40 143.00 1120.00 3.31 170.75 1437.06 

P2 

0–10 
Initial - 42.20 263.75 0.29 66.25 372.49 
Final  

(after 12 h) 
20 26.20 209.00 0.65 17.75 253.60 
40 20.20 195.50 0.88 16.50 233.08 

10–20 
Initial - 21.60 187.75 3.60 50.25 263.20 
Final  

(after 12 h) 
20 8.40 148.00 0.87 14.00 171.27 
40 6.20 145.50 0.36 13.00 165.06 

20–30 
Initial - 57.20 161.25 5.31 90.25 314.01 
Final  20 35.60 125.75 0.51 37.75 199.61 

Figure 10. Evolution of the Er indicator as a function of metal, location and sampling depth: (a) Cu,
(b) Pb, (c) Cr and (d) Ni.

Materials 2022, 15, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 11. Yield of extraction process with 20 mL of 9K medium. 

 
Figure 12. Yield of extraction process with 40 mL of 9K medium. 

 
Figure 13. Reduction rate of pollutant concentration, depending on sample, sampling depth, 
amount of 9K medium and extraction time (20 mL 9K medium). 

Figure 11. Yield of extraction process with 20 mL of 9K medium.

On the other hand, it can be seen that the type of pollutant directly influences both
the speed of the extraction process and its rate of reduction from the soil. Thus, in the case
of Pb, the lowest yield is observed for the use of 20 mL of 9K medium, for a soil with a
pH of 5.2–5.5. In contrast, in the case of soil with a pH of 2.3–2.5, the lowest yield of the
depollution process is observed for Cr. In the two studied areas, the depollution process
has a good yield in the case of Cu. In terms of the rate at which the pollutant concentration
is reduced, in the case of soil with pH 5, poor results are observed in the case of Cr. All these
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observations lead to the appreciation that, in addition to the type of pollutant, the duration of
action and the amount of 9K solution used, the initial concentration of the pollutant is of great
importance in the mechanism of depollution by this process. A high concentration of pollutant
will determine a good yield of the depollution process as well as a good speed of reduction
of the concentration of the pollutant. This, however, varies greatly depending on the type of
metal pollutant. The results obtained for Pb (10–32%) and Ni (44–68%) using TF are higher
compared to the yields obtained using Aspergillus niger: Pb: 13% and Ni: 21% [68]. The same
can be observed for Cu (39–72%), and when using Acidithiobacillus, Sulfobacillus and Ferroplasma,
where Cu amounts to 27% [69], Pleurotus florida (18%) and Pseudomonas spp. (16.6%) [70].

By analyzing the yield of the extraction process for each type of metal, in relation to
the time of action of the 9K medium, and by analyzing the plot area, it can be seen that
this process indicator could be modeled based on polynomial equations. Figure 15 shows
the identified equations and yield–time correlation indices for the situation of P1 and P2
samples extracted from a 0–10 cm depth and treated with 20 mL of 9K medium. The results
indicate that the yield of the extraction process varies, for all the analyzed metals, with
respect to time according to polynomial 3-degree equations. Therefore, the evolution of the
extraction process could be assessed, in time, with significantly good accuracy (correlation
index R2 > 0.95) for each type of polluted metal.
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Table 4 shows the correlation equations of the extraction process yield with time and
the correlation factor R2. However, the fact that the mathematical equations identified are
of degree three (ax3 + bx2 + cx + d) leads to the hypothesis that, although time might be the
main determinant of the yield process, there are other influencing factors. Among them,
the most important is the type of polluting metal and its concentration. The importance of
identifying these yield–time correlation equations lines is the possibility of demonstrating
the influence that the exposure time has on the yield of the process, or more precisely, the
need to carry out longer tests to demonstrate and quantify the efficiency of this method
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of depollution. On the other hand, based on these equations, it is possible to estimate
the duration necessary for the process of extraction by bioleaching to obtain the best
results, i.e., maximum yield, and to restore the ecological balance of the soil. Analyzing
the relationships, two exceptions are observed for Pb (R2 = 0.8697) and Ni (R2 = 0.734).
These equations are not considered to be representative for assessing the evolution of the
decontamination phenomenon. It is considered that these situations may be due to the
high degree of inhomogeneity of the soil sample.

When analyzing the rate of reduction of the pollutant concentration, different results
can be observed, as the kinetics of this process can be appreciated, over time, with a
significantly good accuracy (R2 >0.95) for some polluted metals, respectively, with a lower
accuracy for other samples analyzed (0.85 < R2 < 0.9). The results show that for samples
extracted from area P1 (in terms of Pb) and area P2 (in terms of Cu) the kinetics of the
phenomenon cannot be appreciated as having an evolution characterized by an equation
as a function of time. Therefore, the rate of depollution is considered to depend on a
combination of several factors, not just time.

The results obtained in the research regarding extraction yields for Pb (10–32%) support
the claims of Blais J.F. (10–54%) [43], Chen S.Y. (16–60%) [50] and Beolchini F. (18%) [40],
but the yields are slightly lower than those obtained by Chen S.Y. (33–72%) [33], Zhou Q.
(39%) [42] and Li Q. (75–84%) [49].

The results obtained in the case of Cu and Pb are similar to those obtained by other
researchers, while in the case of Cr and Ni, higher yields were obtained than in most of the
studies studied. For example, Cr was extracted by 39–72%, while Beolchini F. (14%) [40],
Blais J.F. (10–41%) [43] and Chen S.Y (9–20%) [51] obtained lower yields, and at the opposite
pole are the results obtained by Li Q. who extracted 53–92% of Cr [49].

The Ni concentrations extracted (44–68%) are comparable to those of Chen S.Y.
(35–65%) [51], much lower than those of Blais J.F. (69–92%) [43], Beolchini F. (78%) [40],
Kamizela T. (90%) [33], but higher than the yields obtained by Chen S.Y. (10–47%) [51].

The Cu yield (39–72%) falls within the same values as those obtained by Duyusen G.
44% [39] and Beolchini F. 46% [40], but most studies in the literature show higher yields
with values above 80% [31,43,47,48] or even above 95% [44,45,49,50].

The investigated samples show very high values for the investigated indices (Cd, PLI and
PERI) indicating that the investigated areas have a high level of soil pollution with a strong
anthropogenic influence. This demonstrates that the two areas show complex, multi-element
contamination, typical of areas with a long history of mining-specific industrial activities, and
is comparable with the results of studies reported by other researchers [71–73].

Table 4. Correlation equations of extractive process yield with time and correlation factor R2.

Code Sampling Depth [cm] Pollutant Correlation Equation of Extraction Yield with Time Correlation Index, R2

20 mL 9K medium

P1

0–10

Cu y = 0.078x3 − 1.9413x2 + 16.186x − 20.154 R2 = 0.9861
Pb y = −0.0512x3 + 1.1711x2 − 4.9763x + 6.7447 R2 = 0.9707
Cr y = −0.0933x3 + 2.5869x2 − 19.709x + 63.356 R2 = 0.9672
Ni y = 0.01x3 − 0.4502x2 + 10.728x − 20.287 R2 = 0.9899

10–20

Cu y = −0.1323x3 + 2.9061x2 − 15.246x + 46.49 R2 = 0.9751
Pb y = −0.0002x3 + 0.0314x2 + 0.7325x − 0.8138 R2 = 0.9982
Cr y = 0.0557x3 − 1.5327x2 + 15.658x − 20.428 R2 = 0.9927
Ni y = −0.0779x3 + 1.3926x2 − 2.5333x + 8.6472 R2 = 0.9811

20–30

Cu y = −0.0195x3 + 0.5892x2 − 3.0349x + 54.717 R2 = 0.9442
Pb y = 0.0309x3 − 0.5623x2 + 3.5127x − 4.8439 R2 = 0.9667
Cr y = 0.0114x3 − 0.1962x2 + 2.8585x + 17.582 R2 = 0.9985
Ni y = 0.0204x3 − 0.3889x2 + 5.0498x + 17.721 R2 = 0.9679
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Table 4. Cont.

Code Sampling Depth [cm] Pollutant Correlation Equation of Extraction Yield with Time Correlation Index, R2

P2

0–10

Cu y = 0.0701x3 − 1.4368x2 + 10.889x − 10.876 R2 = 0.9976
Pb y = 0.0573x3 − 0.9811x2 + 5.3503x − 1.9845 R2 = 0.9646
Cr y = −0.0072x3 + 0.0637x2 + 4.335x − 7.4167 R2 = 0.9982
Ni y = 0.0573x3 − 1.3858x2 + 15.07x − 10.526 R2 = 0.9662

10–20

Cu y = 0.0322x3 − 0.4043x2 + 3.4665x + 11.779 R2 = 0.9548
Pb y = −0.0095x3 + 0.3439x2 − 1.1457x + 1.1673 R2 = 0.9989
Cr y = 0.129x3 − 2.7375x2 + 20.897x − 30.102 R2 = 0.9934
Ni y = 0.122x3 − 2.5767x2 + 20.829x − 22.926 R2 = 0.9794

20–30

Cu y = 0.0581x3 − 1.245x2 + 10.208x − 8.3601 R2 = 0.9869
Pb y = 0.019x3 − 0.2151x2 + 1.2339x + 4.9123 R2 = 0.9924
Cr y = 0.0645x3 − 1.3256x2 + 10.484x + 20.104 R2 = 0.9706
Ni y = −0.0881x3 + 1.7938x2 − 4.9839x + 8.3115 R2 = 0.9875

40 mL 9K medium

P1

0–10

Cu y = 0.0761x3 − 1.9138x2 + 15.763x − 11.866 R2 = 0.9259
Pb y = −0.0866x3 + 1.7478x2 − 6.8215x + 10.062 R2 = 0.9982
Cr y = 0.0075x3 − 0.1242x2 + 4.1427x + 11.239 R2 = 0.9583
Ni y = 0.2053x3 − 5.0242x2 + 39.427x − 59.204 R2 = 0.9726

10–20

Cu y = 0.0237x3 − 0.4359x2 + 5.534x + 17.352 R2 = 0.9646
Pb y = 0.0128x3 − 0.2366x2 + 2.2303x − 1.0236 R2 = 0.9965
Cr y = 0.0966x3 − 2.2616x2 + 18.62x − 12.941 R2 = 0.986
Ni y = 0.1115x3 − 2.7581x2 + 21.812x − 6.0412 R2 = 0.9615

20–30

Cu y = −0.0089x3 + 0.2983x2 − 0.4406x + 52.492 R2 = 0.9773
Pb y = 0.0165x3 − 0.2933x2 + 2.2293x − 1.6559 R2 = 0.8697
Cr y = 0.0114x3 − 0.2845x2 + 3.5453x + 27.473 R2 = 0.9972
Ni y = 0.1245x3 − 3.0828x2 + 24.233x − 2.42 R2 = 0.9588

P2

0–10

Cu y = −0.0579x3 + 1.3477x2 − 5.7293x + 20.904 R2 = 0.9894
Pb y = 0.0168x3 − 0.2763x2 + 2.8752x + 1.5814 R2 = 0.9967
Cr y = −0.1264x3 + 3.0672x2 − 18.985x + 54.917 R2 = 0.982
Ni y = 0.0954x3 − 2.084x2 + 18.132x − 11.345 R2 = 0.9766

10–20

Cu y = −0.0748x3 + 1.3971x2 − 2.7604x + 18.546 R2 = 0.9819
Pb y = 0.018x3 − 0.288x2 + 3.0948x − 4.9287 R2 = 0.9718
Cr y = 0.1227x3 − 2.3933x2 + 18.265x − 17.483 R2 = 0.9607
Ni y = 0.1477x3 − 3.2954x2 + 26.529x − 30.769 R2 = 0.9905

20–30

Cu y = 0.0826x3 − 2.1972x2 + 19.483x − 22.508 R2 = 0.9825
Pb y = −0.0656x3 + 1.3786x2 − 6.4111x + 16.04 R2 = 0.9709
Cr y = 0.0245x3 − 0.2959x2 + 3.2722x + 33.177 R2 = 0.9967
Ni y = 0.1461x3 − 3.7235x2 + 31.939x − 41.032 R2 = 0.734

4. Conclusions

Results obtained on the analyzed soil samples used in the current study showed
that the soil is well structured, has a sandy loam texture, a medium acidic to highly
acidic reaction and is highly contaminated with metals, exceeding normal values or even
exceeding the alert and intervention thresholds, according to Romanian legislation.

Analyzing the ecological risk (Er) (Pb > Ni> Cu > Cr) and the contamination index (Cf)
(Pb > Cu > Ni > Cr) revealed that the greatest danger is posed by Pb, and at the opposite
pole is Cr. Analyzing the PERI, we can conclude that the potential ecological risk index
differs in the two studied areas, so that the samples from area P1 predict a significantly
high risk and those from area P2, a moderate ecological risk. Thus, after analyzing the
results of Cd, PLI and PERI, which have very high values for all the samples analyzed, it
can be stated that the soils in the studied area have a very high degree of pollution, which
is caused by anthropogenic activity in the area.
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The results obtained by the extraction of metals by bioleaching allowed us to highlight
the factors influencing the yield of the process, these being mainly the amount of bioleaching
solution and the duration of the extraction process. It was found, for all metals investigated,
that a higher amount of bioleaching solution allows for the obtaining of a higher metal
extraction efficiency. It can be appreciated that a longer time duration leads to a higher
yield of the extraction process.

The identification of the yield–time correlation equations allows the possibility of
demonstrating the influence that the exposure time has on the yield of the process and the
appreciation of the necessary duration of the extraction process by bioleaching to obtain
the best results, i.e., maximum yield, and to restore the ecological balance at soil level.
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