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ABSTRACT
Motivation: As research into disease pathology and cellular
function continues to generate vast amounts of data pertain-
ing to protein, gene and small molecule (PGSM) interactions,
there exists a critical need to capture these results in struc-
tured formats allowing for computational analysis. Although
many efforts have been made to create databases that store
this information in computer readable form, populating these
sources largely requires a manual process of interpreting and
extracting interaction relationships from the biological research
literature. Being able to efficiently and accurately automate
the extraction of interactions from unstructured text, would
greatly improve the content of these databases and provide
a method for managing the continued growth of new literature
being published.
Results: In this paper, we describe a system for extracting
PGSM interactions from unstructured text. By utilizing a lexical
analyzer and context free grammar (CFG), we demonstrate
that efficient parsers can be constructed for extracting these
relationships from natural language with high rates of recall
and precision. Our results show that this technique achieved a
recall rate of 83.5% and a precision rate of 93.1% for recogniz-
ing PGSM names and a recall rate of 63.9% and a precision
rate of 70.2% for extracting interactions between these entit-
ies. In contrast to other published techniques, the use of a CFG
significantly reduces the complexities of natural language pro-
cessing by focusing on domain specific structure as opposed to
analyzing the semantics of a given language. Additionally, our
approach provides a level of abstraction for adding new rules
for extracting other types of biological relationships beyond
PGSM relationships.
Availability: The program and corpus are available by request
from the authors.
Contact: gilder@research.ge.com; jtemkin1@comcast.net

INTRODUCTION
The recent publication of the Human Genome Draft Sequence
(Lander et al., 2001; Venter et al., 2001) and the rapid
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proliferation of data generated from biological assays such
as Yeast-2-Hybrid, Co-immunoprecipitation and Microarray
analysis, continues to accelerate the rate at which new dis-
coveries are being published. These discoveries often contain
novel observations about proteins, genes, and small molecules
(PGSMs) such as pharmaceuticals and other foreign com-
pounds and their roles in disease pathology and cellular
function. Several efforts such as BIND (Bader et al., 2001),
KEGG (Kanehisa et al., 2002), EcoCyc (Karp et al., 2002),
DIP (Xenarios et al., 2002), MINT (Zanzoni et al., 2002), and
Transpath (Schacherer et al., 2001) have been developed to
store these data in structured formats allowing for the produc-
tion of protein interaction maps. However, these databases
remain sparsely populated requiring manual curation and
interpretation of the literature in order to populate them with
new experimental data pertaining to PGSM interactions. This
problem continues to accelerate as the rate of new publica-
tions containing PGSM interactions continues to grow. In
order to improve the process of populating these data sources,
new techniques and algorithms capable of accurately and effi-
ciently extracting interaction data from the vast corpus of
scientific literature are required.

Research in the fields of Information Extraction and Natural
Language Processing (NLP) has been focused on developing
techniques to overcome the highly ambiguous and variable
nature of natural language in order to extract information from
unstructured text. Direct application of this research work to
the area of biological text extraction has been focused on the
accurate and efficient recognition and classification of PGSM
names and the extraction of their biological interactions.

Various techniques for recognizing PGSM names have
been proposed. For instance, the use of standardized dic-
tionaries containing the names and synonyms of PGSM has
been shown to be an effective way for recognizing these
entities in free form text (Blaschke et al., 1999; Rind-
flesch et al., 1999). Although applications of this tech-
nique have reported high rates of recall and precision, this
technique remains limited as PGSM names not present in
the dictionaries produce large amounts of false negatives.
Others have addressed the issue of false negatives by using
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templates capable of recognizing common naming patterns
for PGSMs (Fukuda et al., 1998; Ng and Wong, 1999;
Yu et al., 2002). These techniques, which scan potential
names by looking for patterns of capitalization, number-
ing, and use of hyphens have been shown to capture many
of the entities missed by the dictionary approach alone,
thereby reducing the amount of false negatives. However,
these techniques have also been shown to generate a large
number of false positives by recognizing words that match
the templates but are in fact not PGSM names. Altern-
ative approaches have addressed the problems of name
recognition through the use of machine learning (Proux
et al., 1998; Hatzivassiloglou et al., 2001), and through
the use of statistics (Krauthammer et al., 2000; Tanabe and
Wilbur, 2002). Although these techniques have reported
incremental gains in overall recall and precision over the tem-
plate and dictionary based approaches, it has been shown
that these techniques are also limited by the quality and
extent of the training sets used to train the algorithms
(Tanabe and Wilbur, 2002).

Similar to the problem of identifying PGSM names, there
has been a wide range of varying techniques published
for extracting relationships from scientific literature. For
example, several have shown that template and simple rule
based algorithms can be used to recognize interactions achiev-
ing high rates of recall and precision (Blaschke et al., 1999; Ng
and Wong, 1999; Ono et al., 2001; Wong, 2001; Pustejovsky
et al., 2002). However, this technique has been found to be
overall limited in the set of interactions that can be extracted
by the extent of the recognition rules that are implemented,
and also by the complexity of sentences being processed.
Specifically, complicated cases such as interaction descrip-
tions that span several sentences of text are often missed by
these approaches. Others have addressed the issue of complex
sentence structures and some limited work has been done on
extracting interactions spanning several sentences through the
use of parts of speech analysis (Humphreys et al., 2000), and
natural language based approaches (Rindflesch et al., 2000;
Friedman et al., 2001). These approaches, like the rule-based
systems, have also reported high levels of recall and precision.
However, as noted in a recent review article by Hirschman
et al. (2002), a lack of a standard common corpus and a lack of
standard techniques and equations for reporting recall and pre-
cision, has made comparative analysis of different techniques
a difficult problem.

In this paper, we describe an alternative method for extract-
ing PGSM interactions from natural language that achieves
high rates of recall and precision using a lexical analyzer and
an extensible context-free grammar (CFG). We address the
difficulty of natural language processing, by filtering the input
text into a stream of tokens and using an extendable CFG
designed specifically for parsing biological text. As we will
show, CFG provide an easily extendible platform for extract-
ing interactions from free text and are powerful enough to

Fig. 1. System topology.

describe most natural language structure while being able
to be restricted enough to allow for efficient parsing. We also
describe a methodology for creating a corpus for analyzing
techniques that can be extended and potentially used to do
comparative analysis between techniques in the future.

SYSTEM AND METHODS
Overview
Our method for extracting PGSM interactions from
unstructured texts can be divided into three separate parts:

(1) a Pathway Database (PDB) consisting of dictionaries
that are used by

(2) a Lexical Analyzer to tokenize and tag relevant terms
from scientific abstracts retrieved from PubMed whose
output stream of tokens is then passed to

(3) a Parser constructed around a CFG that is used to inter-
pret the collection of tokens and output interactions
based on the rules of the grammar (Fig. 1).

We designed and built the system using the Java (TM
Sun Microsystems) programming language, and utilized the
JavaCC (WebGain) compiler to generate the CFG.

Pathway database dictionaries
The PDB consists of two distinct dictionaries: (1) a name
dictionary for recognizing PGSM names and their synonyms,
and (2) a category/keyword dictionary for identifying terms
describing interactions. The name dictionary was constructed
by combining a limited set of PGSM names from Swiss-
prot (Bairoch and Apweiler, 2000), GenBank (Benson et al.,
2002), and KEGG (Kanehisa et al., 2002). The resulting
name dictionary consists of 67 326 unique names and syn-
onyms describing a total of 37 546 distinct entities. The cat-
egory/keyword dictionary was adapted from Friedman et al.
(2001) and the NIH relevant term list for oncogene expression
(NIH, 1999) with additional categories and keywords found
to be prevalent in our corpus as shown in Table 1.
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Table 1. Interaction keywords

Category Keywords Category Keywords Category Keywords

Activate accumulat (e,ed,es,ion) Break bond cleav (e,ed,es) Inactivate inhibit (s,ed,ion)
activat (e,ed,es,or, ion) demethylat (e,ed,es,ation) reduc (e,ed,es,tion)
elevat (e,ed,es,ion) Dephosphorylat (e,ed,es,ation) repress (ed,es,ion)
hasten (ed,es) sever (e,ed,es) supress (ed,es,ion)
Incite (ed,es) Cause influenc (e,ed,es) Modify modifi (ed,cation)
increas (ed,es) Contain contain (s,ed,es) Process apoptosis
Induc (e,ed,es,tion) Create bond methylat (e,ed,es,ation) myogenesis
Initiat (e,ed,es,ion) phosphorylat (e,ed,es,ation) React interact (s,ed,ion)
promot (e,ed,es) Generate express (ed,es,ion) react (s,ed,ion)
stimulat (e,ed,or,ion) overexpress (ed,es,ion) Release disassembl (e,es,ed)
transactivat (e,ed,es,ion) produc (e,ed,es,tion) discharg (e,es,ed)
up-regulat (e,ed,es,or,ion) Inactivate block (s,ed) Signal mediat (e,ed,es)
Upregulat (e,ed,es,or) decreas (e,ed,es) modulat (e,ed,es,ion)

Association associat (e,ed,es,ion) deplet (e,ed,es,ion) participat (e,ed,es,ion)
Attach add (s,ition) down-regulat (e,ed,es,ion) regulat (e,es,ed,ion)

bind (s),bound downregulat (e,ed,es,ion) Substitute replac (e,ed,es)
catalyz (e,ed,es) impair (s,ed) substitut (e,ed,es,ion)
Complex inactivat (e,ed,es,ion)

Lexical analyzer
The lexical analyzer was designed to accept both unstructured
text in addition to PubMed abstracts from the web. It then
parses the input and generates a stream of tagged tokens based
on the descriptions in Table 2.

The lexical analyzer tags the input text by iterating through
the document as shown in Figure 2. The initial step of the pro-
cess involves the identification and delimitation of sentence
boundaries. Each step beyond this initial process utilizes the
dictionaries in the pathway database for word recognition and
tagging. We have adapted the set of protein and gene name
recognition rules described by Fukuda et al. (1998) in order
to limit the occurrence of false negatives for names that the
lexical analyzer does not recognize during the tagging of the
input text. Only words that match those stored in the dictionar-
ies or those that match based on the adapted name recognition
rules are converted to tokens and placed in the output stream.

The resulting output stream of tokens is available for the
parsing phase of the overall process. This phase is responsible
for analyzing the token stream using the set of CFG produc-
tions for the purposes of extracting interaction information.
As illustrated in Figure 2, the lexical analyzer and parser are
separate component processes that communicate via the token
stream allowing other third-party tools to be easily integrated.
As previously mentioned we chose a Java implementation
because of its ease of portability to all major system platforms.

Context-free grammar
The parser was developed using a concise set of grammar pro-
duction rules allowing for the detection of PGSM interactions.
The production rules were derived by manually analyzing

a large corpus of 500 non-topic specific scientific abstracts
pulled from PubMed containing various representations of
interaction data in unstructured text. Biochemists read and
highlighted the abstracts for relevant sentences describing
interactions that were then used to derive the production rules.
The resulting production rules were combined and represented
in a CFG.

The use of CFGs for validating structure in natural language
was first proposed by Chomsky (1956). A CFG for represent-
ing production rules has four key components as described by
Aho et al. (1986).

1. A set of tokens T , known as terminal symbols.

2. A set of non-terminals N disjoint from T .

3. A set of productions P of the form a → b, where a ∈ N

and b is a sequence of one or more symbols from N ∪T .

4. The start symbol S where S ∈ N .

Therefore, the language generated by a CFG can be enumer-
ated by repeatedly applying production rules, commencing
with the start symbol S, and replacing non-terminals with
their associated production rules until all non-terminals have
been processed.

To address the problem of extracting PGSM interactions
from unstructured text we developed the grammar illustrated
in Table 3 using EBNF (Extended Backus–Naur Form).

The representation of the grammar described in Table 3
depicts terminal symbols using bold print and non-terminals
using plain text. A description for each non-terminal symbol
is provided in Table 4.
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Table 2. Tags recognized and produced by lexical analyzer

Lexical
analyzer
tags

Description Example

BETWEEN Tag for the word
‘between’

Complex between x, y,
and z

BY Tag for the word ‘by’ X blocked by Y

EOC Tag to indicate logical
end-of-sentence

KEY Tag for interaction
keywords stored in the
pathway database
(Fig. 2)

see Figure 2

MOL Tag for combination of
long entity names with
their associated
abbreviated names

Interleukin 10 (IL-10)

MOL_LONG Tag for recognized sets of
words which match
long name descriptions
in the DB

Interleukin 10

MOL_SHORT Tag for recognized
abbreviation or short
name forms of entities
that match entity names
stored in the pathway
database

IL-10

NEGATOR Tag for words or sets of
words which negate the
sentence

X did not inhibit y

X was not shown to
inhibit Y

X inhibited Y , Z, Q, but
not R

OF/ON Tag for ‘of’ and ‘on’ in a
sentence

Addition of X on Y

OF/BY Tag for ‘of’ and ‘by’ in a
sentence

Inhibition of X by Y

TRANSITIVE Tag for the word ‘and’
when followed by a
keyword

X blocks Y and
upregulates Z

WITH Tag for the word ‘with’ X blocks the expression
of Y with Z

As previously stated, tokens are supplied to the parser by
the lexical analyzer. The parser utilizes the non-terminals to
validate that the input stream of tokens is part of the language
described by the grammar.

In general parsing methods fall into one of the two cat-
egories, top-down and bottom-up. In top-down parsing, also
known as recursive descent, construction starts at the root
nodes and progresses towards the leaves while in bottom-
up parsing construction starts at the leaves and progresses
upward. The JavaCC tool from WebGain generates a top-down
LL(1) parser, which allows the use of more general gram-
mars although left recursion is disallowed. As noted by (Aho

Fig. 2. Lexical analyzer processing.

Table 3. Grammar in EBNF form

S (start symbol) Interactions
Interactions MolExpr Interactions | MolExpr
MolExpr Assignment | Relationship
Assignment Expr (Negator)? KEY (Relationship_Conj)? Expr

(TRANSITIVE KEY expr)* Eoc
Eoc EOC
Relationship KEY Relationship_Conj Expr (Relationship_Prep

Relationship_Obj)? (KEY)* Eoc
Relationship_Conj BETWEEN | OF
Relationship_Prep BY | ON | WITH
Relationship_Obj Expr
Expr (Negator)? Molecule ((Negator?) Molecule)*
Negator NEGATOR
Molecule MOL | MOL_LONG | MOL_SHORT

et al., 1986), trade-offs exist between these two approaches.
However, the use of a top-down parser for this application
does not impair the overall performance or effectiveness of
using this technique for extracting interaction data.

Example
An example of the lexical analyzer and parser working in tan-
dem to tag, validate, and parse an input sequence is illustrated
in Figure 3.

A sample sentence from the corpus is presented Figure 3a.
Each word of the input text is read by the lexical analyzer and
checked against the PDB for matches. If a match is found, the
lexical analyzer builds the corresponding tagged token con-
taining the original source text and passes it to the JavaCC
generated parser (Fig. 3b). The parser validates the token
sequence by applying the grammar productions, beginning
with the start symbol S, consuming the stream of tokens gen-
erated by the lexical analyzer as illustrated by the parse tree
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Table 4. Non-terminal symbol descriptions

Non-terminal symbol Description

S Defines ‘Start’ symbol used to identify
starting point for of the grammar

Interactions Defines possible Interaction types
MolExpr Defines types of molecule expressions
Assignment Defines assignment expression
Relationship Defines relationship expression
Expr Defines general form for expressions
Negator Maps directly to terminal symbol

NEGATOR
Relationship_Conj Maps to one of the following terminal

symbols: BETWEEN or OF
Relationship_Prep Maps to one of the following terminal

symbols: BY, ON or WITH
Relationship_Obj Maps directly to the non-terminal

symbol: Expr
Molecule Maps to one of the following terminal

symbols: MOL, MOL_LONG or
MOL_SHORT

Eoc Maps directly to terminal symbol EOC
ε Indicates an epsilon production, i.e. the

empty string
? Indicates 0 or 1 occurrences of the

specified quantity, i.e. optional
* Indicates 0 or more occurrences of the

specified quantity

in Figure 3c. In this particular case, the application of sev-
eral production rules results in the generation of an empty
string, denoted by an epsilon. The net effect of applying
ε-productions is to remove the non-terminal from the string
being generated as shown. We note that a common feature
of parser–generator tools, like JavaCC, is the ability to separ-
ate application specific logic from the parsing rules. This is
illustrated by the recognition of the MolExpr production rule
shown in Figure 3d, where the interaction is inserted into the
database.

Figure 4a–c illustrates the addition of negative interac-
tions that are initiated by encountering the NEGATOR token
derived from the text: did not. Figure 4d–f illustrates the pro-
duction of two false negatives by the failure of the lexical
analyzer to recognize the E-selectin and P-selectin proteins.
Figure 4g–i illustrates the generation of a large number of
false positives when the lexical analyzer and CFG encounter
sentences with a problematic sentence structure.

RESULTS AND DISCUSSION
In order to test our lexical analyzer and CFG, we developed
a test corpus from 100 randomly selected scientific abstracts
from PubMed and were not part of the original 500 abstracts
used to derive the production rules. The corpus was manu-
ally analyzed for PGSM names in addition to any interaction

relationships present in each abstract within the corpus by
biochemists within our laboratory. Analysis of the corpus
revealed 562 distinct references to PGSM names and a total
of 239 distinct references to interaction relationships. Tests of
the system were performed over the same set of 100 articles,
by capturing the set of molecules and interactions recognized
by the system and comparing this output against the manually
analyzed results previously described. We measured recall
and precision rates for both the ability to recognize PGSM
names in text in addition to the ability of the system to extract
interactions based on the following calculations:

1. Recall = TP/(TP + FN)

2. Precision = TP/(TP + FP)

where TP, FN, and FP are defined as:

• TP—is the number of PGSM names; or interactions that
were correctly identified by the system and were found
in the corpus.

• FN—is the number of PGSM names; or interactions that
the system failed to recognize in the corpus.

• FP—is the number of PGSM names; or interactions that
were recognized by the system but were not found in the
corpus.

Analysis of the output generated by the system demon-
strated recall and precision rates for recognizing PGSM names
to be 83.5 and 93.1%, respectively, while the recall and preci-
sion rates for extracting interactions was calculated to be 63.9
and 70.2%, respectively.

The results show that the system performs accurate extrac-
tions of interaction data when the lexical analyzer and parser
encounter sentences that match the specified grammar. This
includes complex sentences such as the one depicted in
Figure 3, where the method correctly identified and extracted
the observation that endothelin is involved in the activation of
ERK and p38 MAP Kinase. Additionally, the system accur-
ately extracts observations that dispute potential interactions
such as those depicted in Figure 4a–c, which is an example of
the system correctly extracting the fact that Ox-LDL did not
change the expression of FASL, FADD or FLICE.

For the cases in which the system generated false negatives
and/or false positives while extracting interactions, the root
cause was typically due to one of the following conditions
regarding the lexical analyzer:

1. The lexical analyzer failed to correctly identify a word
as a PGSM leading to generation of a false negative, or

2. The lexical analyzer incorrectly identified a word as a
PGSM leading to generation of a false positive.

An example of the first condition is shown in Figure 4d–f
where the failure of the lexical analyzer to correctly recognize
the E-Selectin and P-Selectin protein names resulted in the
subsequent failure of the CFG rules to extract the interaction
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Fig. 3. Lexical analysis and parsing example.

Fig. 4. Additional examples.

between Ox-LDL and these entities. However, we anticipate
that through expanding the content of the PGSM diction-
ary this problem can be obverted and subsequently eliminate
many of the false negatives generated by this condition raising
overall recall and precision of the system.

Additionally, the results demonstrate that the lexical ana-
lyzer and grammar have some limitations in recognizing
interactions and can generate false positives when sentences
such as the one described in Figure 4g–i are encountered.
In this case, a long sentence describing three separate ideas
was encountered. Analysis of this sentence revealed that com-
mas and no other logical indicators were present to separate
the three distinct ideas being conveyed. This resulting output
from the lexical analyzer was a valid stream of tokens that

matched a set of rules within the grammar leading to the cre-
ation of a large number of false positive interactions. If the
boundaries separating these ideas had been correctly identi-
fied these additions could have been avoided. However, this
example does demonstrate how various unstructured text rep-
resentations can negatively impact overall effectiveness. We
note that in general, the incidence of false-positive entries
were minimal as shown by the high level of precision rates
achieved from the overall analysis of the corpus.

Direct comparison of our work to the work of others is not
possible, since the corpuses used to evaluate and report on
each method have differed due to the lack of a standard cor-
pus in the field. Despite these limitations, we have shown that
our approach generates high recall and precision rates using a
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broad, non-topic specific corpus, whereas other reported res-
ults have focused on smaller sets of pre-selected articles or
specific domain topics. For example, in the area of recogniz-
ing names in text, many have reported high level of recall and
precision using varying corpuses. Fukuda et al. has repor-
ted a recall of 99% and precision of 95% for recognizing
protein names in text. However, the corpus used consisted
of 30 abstracts specific to the SH3 domain in addition to 50
abstracts specific to the topic of signal transduction (Fukuda
et al., 1998). Proux et al. has reported a recall of 94% and
precision of 91% using a corpus of 1200 sentences containing
gene names found within the Drosophila genome (Proux et al.,
1998) while Krauthammer et al. has reported a recall of 79%
and precision of 72% compiled using a single hand curated
review article (Krauthammer et al., 2000).

Similarly, when comparing techniques used to extract inter-
actions from text, corpuses have also varied. For example,
Friedman et al. has reported a recall of 63% and precision
of 96%. However, these results were compiled from a single
hand-annotated paper from Cell (Friedman et al., 2001). Ono
et al. has reported a recall rate between 83 and 86% and pre-
cision of 94% using a corpus consisting of a collection of
sentences specific to the Yeast and Escherichia coli genomes
where each sentence within the corpus had at least two protein
names and at least one interaction keyword present in the text
(Ono et al., 2001). Pustejovsky et al. reported a recall of 57%
and precision of 90% using a corpus of 500 hand annotated
abstracts all having the property of having derivatives of the
word inhibit present within the text (Pustejovsky et al., 2002).

Our results do show that our reported recall and precision
rates for each of these problems fall within these reported
ranges despite the use of different corpuses. However, our use
of a broad based non-species or topic specific corpus for ana-
lyzing recall and precision may offer a more representative
measure for reporting the overall effectiveness of an extrac-
tion technique for generalizing what level of accuracy can be
expected when the technique is applied over the entire set of
available scientific literature. We therefore conclude that our
reported recall and precision rates for extracting PGSM inter-
actions from unstructured text shows the potential to be able to
mine the larger set of scientific literature available in order to
populate structured representations for capturing interaction
data for further computational analysis.

CONCLUSION
In conclusion, we have demonstrated that the problem of
extracting PGSM interactions from unstructured text can be
solved with high rates of recall and precision by using a
CFG to recognize specific patterns used to describe interac-
tions. We have shown that the use of a lexical analyzer and
domain specific dictionary to convert the unstructured text
into a stream of parsable tokens effectively reduces the prob-
lem of information extraction into one of pattern matching that

can be efficiently solved by CFGs. This approach significantly
reduces the complexities associated with natural language pro-
cessing. We have also demonstrated that the addition of new
rules can be easily facilitated by the use of CFGs. We intend
on further utilizing this feature to expand the capabilities of
the system to be able to extract other relationships such as
reported correlations between the expression of certain genes
and proteins in disease processes, tissues and cells. In addi-
tion, our approach of using a non-topic specific corpus can
be used to analyze the overall accuracy of an extraction tech-
nique for achieving the overall goal for mining the larger set
of scientific literature available in the field.
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