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Abstract. This paper proposes a new algorithm for pattern extraction from

Stratified Ordered Trees (SOT). It first describes the SOT data structure that

renders possible a representation of structured sequential data. Then it shows
how it is possible to extract clusters of similar recurrent patterns from any SOT.

The similarity on which our clustering algorithm is based is a generalized edit

distance, also described in the paper. The algorithms presented have been tested

on text mining: the aim was to detect recurrent syntactical motives in texts
drawn from classical literature. Hopefully, this algorithm can be applied to

many different fields where data are naturally sequential (e.g. financial data,

molecular biology, traces of computation, etc.)

1 Introduction

Much work has been done in fields as molecular biology [8], music [7] or text

analysis to compare sequences of characters. In the past, an important amount of good

results have been obtained on the exact matching problems between strings, areas or

binary trees [4], [5]. Other approaches have dealt with approximate pattern matching.

Some of them used dynamic programming techniques based on the notion of edit

distance [9]; however, those techniques mainly consider flat sequential data, such as

strings, without any structure. Some authors have attempted to replace flat sequential

data by binary or n-ary ordered or non-ordered trees, but the inherent complexity of

pattern extraction algorithms makes them intractable in general cases. It has been

proved that some efficient procedures exist [11] under strict conditions, but the

imposed restrictions preclude their use for practical machine learning problems. This

paper shows that, by restricting the structured input to SOT, i.e. to Stratified Ordered

Trees, it is possible to build a new efficient pattern extraction algorithm. This

algorithm uses as input a huge SOT containing 100,000 or more nodes, and generates
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clusters of small similar SOTs that appear to have multiple occurrences in the input

SOT. The technique can be used in many different applications, the one presented

here being text mining, i.e. the detection of approximate syntactical patterns with

multiple occurrences in natural language texts. Of course, there are numerous other

applications to machine learning in all domains where data are essentially sequential,

as is the case with financial data, molecular biological data, etc.

The main body of the paper consists of four main parts. The first section briefly

introduces the notion of SOT; the second recalls the classical definition of edit

distance and shows how it has been generalized to be able to deal with SOTs. The

third section presents the generation algorithm that builds the similarity graph and the

clustering procedure which induces patterns with multiple approximate occurrences.

The fourth and final section provides some information about the use of the algorithm

on text mining and considers its efficiency in practical terms.

2 Stratified Ordered Trees

2.1 Ordered Trees

According to a classical definition, an ordered tree is a tree where left to right order

between siblings is significant. All sequential data can obviously be represented with

a depth-1 ordered tree. By adding levels to ordered trees, it is possible to organize

data in a way that represents implicit background knowledge. For instance, a text, i.e.

a sequence of characters, is a list of sentences, each of which is composed of words

and punctuation marks. Therefore, it can be represented using a depth-3 tree that

makes this structure explicit.

2.2 Sorts and Stratification

Ordered trees increase representation power and it is possible to detect similar sub-

trees, with respect to this data organization. It is also possible to extract general

patterns that have multiple approximate occurrences. For instance, any specific

recurrent sequence of syntactical groups extracted from a parsing tree may be

detected without considering the corresponding words or their categories.

Nevertheless, due to the high number of potential pairs of sub-trees recurrent pattern

detection is intractable. To make it manageable, nodes are categorized into sorts in
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such a way that two successfully matched nodes must be of the same sort. In other

words, a match between two trees is valid if and only if the corresponding nodes in

the matching are of the same sort.

In addition, we suppose that there exists a total order on the set of sorts and that, with

respect to this order, the sort of the son(s) is identical to, or immediately follows that

of the father. This constraint defines the so-called stratification and the resulting

structure is a SOT — Stratified Ordered Tree —. More formally, by defining an

ordered set,  (set of sorts), and a function sort(x) which associates a sort to each

labeled node belonging to , we can specify a SOT as an ordered tree where each

node sort is either equal to its father sort or to its immediate successor, except for the

root which has no father. In case of syntactical trees resulting from natural language

text parsing, it means that the ordered set of sorts  may contain five categories

{Text, Sentence, Syntagma, Category, Word} such that Text < Sentence < Syntagma

< Category < Word. Let us note that Syntagmas may correspond to syntactical groups

or propositions, depending on the syntactical parser, and that they can be recursive.

For instance, the son of a proposition may be a proposition.

3 Edit Distance and Similarity Measure

3.1 Edit model

Edit distances have been widely used to detect approximate string pattern matching

[9] and a general overview of these techniques can be found in [1]. Let us just recall

here some of the basic principles.

Definition: An edition is an operator that replaces one character or one sub-string of a

string, or more generally one node of a tree, by another one. For instance, a

substitution is an edition if it transforms a character of a string into another one in the

same position. An insertion (respectively deletion) which inserts (respectively deletes)

a character in a string is also an edition.

Remark: in the following, we note  any set of editions, i.e. any set of

transformations from a string or a tree, and  the standard set of editions composed

of the three basic operations, substitution, deletion and insertion.

Definition: An edit distance between two strings or two trees is based on the

minimum number of editions that transform one string or one tree into another. For
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instance, here is an edit transformation based on the standard set of editions  from

the string “WHICH” to the string “THAT”:

W    H    I    C   H

Substitutions                  Deletion

T    H    A    T

Fig. 1.  A set of editions that derives THAT from WHICH

It follows from this definition that the edit distance from “WHICH” to “THAT”, i.e.

edit (WHICH, THAT), is lower than the cost of this transformation (Cf. fig. 1) which is

equal to the sum of all the corresponding edition costs, i.e. cost(substitution(W, T)) +

cost(substitution(I, A)) + cost(substitution(C, T) + cost(deletion(H)).

3.2 Edit distance between strings

Let us now consider that strings x and y are given as two tables of length n and m, i.e.

as x[1..n] and y[1..m]. Then it is possible to build a matrix (n+1)·( m+1) called

EDIT  where EDIT (i, j) is filled with the value of edit (x[1..i], y[1..j]) for i˛ [1..n]

and j˛ [1..m], while EDIT(0, j) corresponds to the cost of the insertion of y(j) i.e.

insertion(y(j)), and EDIT(i, 0) to the cost of the deletion of x(i), i.e. deletion(x[i]). A

simple formula summarizes the way the matrix elements are computed:

    

edit (x[1..i],y[1..j]) = min
edit (x[1..i -1],y[1..j]) + deletion(x( i))
edit (x[1..i -1],y[1..j -1])+ substitution(x( i), y( j))
edit (x[1..i], y[1..j - 1]) + insertion(y( j))

ì 
í 
ï 

î ï 

(1 )

where deletion(x(i)), insertion(y(j)) and substitution(x(i), y(j)) correspond to the cost

of respectively the deletion of x(i), the insertion of y(j) and the substitution of x(i) by

y(j).

This recursive definition is appropriate for computation since the distance between

two chains of size n is obtained from the distance between chains with a size less than

n. Since the edit distance increases with the size of the chains, the closest pairs will be

computed first. So, given a threshold beyond which pairs of chains are not considered

as similar, it will be easy to discard pairs of chains when some of their sub-chains

have already been discarded.

170 J.-G. Ganascia



3.3 Extension of the edit model to SOTs

The edit model can easily be extended to SOTs (Stratified Ordered Trees). It is just to

remark that the left-hand exploration (i.e. the pre-order) of a SOT unambiguously

represents it as a list of node occurrences. Due to the stratification of SOTs, the node

sorts refer directly to their level in trees. This representation is unambiguous since if

the subsequent node sort is greater than the current node sort, it is its son ; if it is

equal it is its brother ; if it is lower, it is one of its ancestors.

Therefore the comparison of sequences of nodes resulting from the left-hand

exploration of two trees is equivalent to the comparison of those trees. Taking this

remark into account, the edit distance between two SOTs is equivalent to the edit

distance between the sequences of nodes resulting from the left-hand exploration of

those SOTs. In a more formal way, by denoting lhe(T) the left-hand exploration of

SOT T, the edit distance edit(T, T') between two SOTs T and T' can be expressed by

edit (lhe(T), lhe(T')).

1. The Whole Processing Chain

To summarize, the whole processing chain that transforms a natural language text into

a set of frequent patterns is given below (fig. 2)

Fig. 2.  The whole processing chain

The main input of the system consists of a natural language text that is a sequence of

sentences, each being affirmative, interrogative or exclamatory. A natural language

analysis performs the first step, through parsing or categorization. It associates labels

to words (noun, verb, etc.) and to groups of words (noun group, verb group, etc.).

Since the paper is not focused on this natural language analysis, the parser and the

categorization process used are not described in detail. We shall just focus on the

generality of the approach that has as input any natural language parsing tree with

different grammar and different sets of labels. The important point is that the analysis

transforms texts into trees or forests, i.e. into sequences of trees, which means that

general graphs are excluded. Most of the time, trees are layered, i.e. depending on the

Parsing

Input:

Natural language texts

Generation of the

similarity graph

Parsing
 trees

Output:

Recurrent patterns

Similarity
graph

Clustering
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level of the trees, labels belong to distinct classes. For instance, one level corresponds

to non-recursive syntagmas, i.e. noun groups or verb groups; the second to word

categories, i.e. articles or nouns; the third to attributes like gender or number; the

following one to lemma, i.e. canonical forms of verbs or nouns, and the last to words

as they appear in sentences. Note that our approach is not restricted to syntactical

decomposition in non-recursive groups. The only limitation is that the result of the

analysis has to be structured in a Stratified Ordered Tree (SOT)

2. The Similarity Graph

Using the edit distance, a labeled graph called the similarity graph is built making the

distances between patterns explicit when they do not go beyond a fixed threshold.

4.1.1 Patterns
This similarity graph is of crucial importance; it constitutes the main input of the

clustering module and includes all the patterns that generalize sub-trees of the input

SOT. This implicit generalization is a key-point in the overall algorithm, since it

generates all general patterns including non-balanced ordered trees. In the case of

natural language parsing trees, generated patterns may look like the following:

mot
" elle "

Center
cat: K

Group
cat: K
fs3

Group
cat: V

fs3

Group
cat: N
ms3

mot
" qu' "

Center
cat: O

Group
cat: O
ms3

mot
" elle "

Center
cat: K

Group
cat: K
fs3

Center
cat: W

Periph
cat: z
ms.

Group
cat: V

fs3

word
" : "

Connect
cat: E

Group
cat: G

Sentence

Fig. 3.  A non-balanced pattern covering "Elle exécuta ce qu'elle avait projeté :"

Note that in Vergne [10] parsing formalism Group is a kind of syntagmas that refers

to a syntactical group while Center, Periph and Connect are syntactical categories

corresponding to the central or peripheral role of the word in the syntactical group and

to a connector (here an external connector, i.e. a punctuation mark).

4.1.2 Computing the Similarity Graph
To compute the similarity graph, all pairs of patterns T1 and T2 have to be produced

and then the value of the edit distance from T1 to T2 has to be checked. The upper
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bound of the computational complexity of this algorithm is |S(T)|2, S(T) being the set

of all sub-trees of T. However, it may be considerably reduced using properties of the

edit distance on which the similarity graph relies.

Given any total order <e on patterns, the symmetry of the edit distance reduces the test

to ordered pairs of patterns {T1, T2} where T1 <e T2.

A second important property of the edit distance comes from the restriction to the

standard set of editions, i.e. to the three basic operations insertion, deletion and

substitution. Let us now suppose that T1 £ e T2, and that edit(T1, T2) ‡ q. It is then easy

to prove that edit(T1, T3) ‡ q for any T3 such that T2 £ e T3.

4.2 Pattern extraction

The last step is the pattern extraction. Since the similarity graph records all

similarities between patterns, it is natural to extract clusters of similar patterns from

this graph. However, the way in which we can build such clusters may differ.

The classical approach is to detect highly connected sub-graphs of the similarity

graph [4], [5]. However, for many reasons, this approach appears to be inappropriate

to solve our problem. A more satisfactory approach is adopted here. Called the

“center star” algorithm, it has been introduced by Gusfield [2] to detect homology on

molecular biology data. Then Rolland and Ganascia [7] developed and applied it to

extract patterns in music. As this approach has already been published, we shall not

describe it here in detail. Let us just define a star centered on N as a graph of which

all vertices contain node N. In other words, a star centered on N is composed of all

nodes P such that the pair {N, P} is a vertex.

To each node N of the similarity graph is associated its centered star that is ranked

taking into account two criteria: the number of nodes belonging to it and their

similarity to the center. The following formula provides a way to evaluate the

centered star associated to each node of the similarity graph and to classify it:

  

star_ value(N ) = similarity(N, ¢ N )
{ ¢ N /{N, ¢ N }˛Similarity _graph}

å (2 )

Once the similarity graph has been built, this function is easy to compute. However,

the evaluation of each arc of the similarity graph, i.e. its similarity, has to be derived

from the edit distance that needs to be converted. Given a distance (here the edit

distance), many different similarity measures can be introduced such that they obey

the classical definition.

Because the edit distance heavily depends on the length of patterns, we have

introduced this length in the similarity formula. It means that the error ratio, i.e. the
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number of tolerated deletions, insertions and substitutions, depends on the size of the

patterns considered. Among the possible formulae the following has been proved to

be efficient and useful in practice, even if some others have been tested without

substantially modifying the results.

  

sa (i, j) =
1

1 +a · (edit( i, j) / min(length( i), length( j)))4
(3 )

Remark: a is a positive number acting as a parameter. Its current value is fixed to 0.01

in all our experiments. However, it was experimentally modified from 0.05 to 0.001

without notably changing the obtained results.

Using any similarity measure, the “center star” algorithm first computes all the star

evaluations for all nodes of the similarity graph, then the best star is selected and the

nodes belonging to it are discarded from the similarity graph before the process

iterates.

5 Evaluation

The generated patterns are mathematically specified as recurrent sub-trees, i.e. as sub-

trees with multiple occurrences. Edit distance renders possible to extend this

definition to approximate occurrences; clustering makes it possible to specify the

minimum number of occurrences belonging to patterns. As a consequence, the global

evaluation of the overall algorithm does not relate to the nature of the results which

are perfectly specified, but to the practical complexity and to the usefulness of the

system. This is the reason why it was evaluated on some practical application.

5.1 Application to syntactical pattern extraction

Among many applications of our algorithm, we focus here on the extraction of

syntactical patterns resulting from syntactical analysis of natural language texts. The

goal of this application is to detect some recurrent syntactical patterns in natural

language texts, i.e. patterns with multiple approximate occurrences. There are three

reasons for doing this research. The first is to characterize the personal style of

authors as we claim that the style of writing is embedded within their choice of

syntactical structure and lexicon. The second reason is educational. Our aim is to help

school children, students or young writers to evaluate the richness and the diversity of

their own writing style, to identify classical mistakes and propose corrections. The

third reason is an academic one. The science of language, linguistics, could take
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advantage of such a study in order to distinguish different registers of language and to

characterize them.

The system was tested on more than 75 18th and 19th centuries short stories and

novels written by Madame de Lafayette, Guy de Maupassant, Alphonse Allais,

Marcel Schwob, Alphonse Daudet, Eugène Mouton, Hégésippe Moreau and George

Sand, among others. The texts were first parsed using the Vergnes-98 analyzer [10]

and then the resulting sequence of syntactical trees was transformed into one SOT.

5.2 Efficiency

We studied the empirical complexity by relating execution time in seconds to input

size in thousands of words, by reporting it on a log-log scale, and by applying a linear

regression algorithm. It clearly appears (see figure 4) that the regression coefficient

(i.e. the slope of the line) is equal to 2, which empirically shows that the temporal

complexity is quadratic.

Fig. 4.  Empirical Evaluation on 75 Short Stories and Novels (with the same parameters)

This first empirical result is highly satisfactory since the theoretical complexity of our

algorithm is at least quadratic with the size of the input text. It comes from the way

our algorithm computes the similarity graph, by exploring all the pairs of patterns.

Because of the tree structure of texts, the number of sub-trees is linear with the

number of sentences, so the global complexity cannot be any lower. To avoid

misunderstanding, it should be said that in the case of exact repetition [4] the

procedure is clearly more efficient, but not in the case of approximate matching, as it

is the case. On the other hand, the center star algorithm that is a greedy algorithm,

Running time (LOG LOG sca
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appears to be linear with the size of the similarity graph, i.e. quadratic with the

number of nodes it contains. Here again, the complexity should not be any lower.

The system has been implemented in C++ and tests are run on a Macintosh G3, with a

300 MHz processor. Extracting patterns from short stories takes a few seconds while,

in the case of full novels, it may take one hour or more. This means in practice that it

is possible to apply our algorithm to extract patterns that are characteristic of full

books, but not to deal with the lifetime work of an author. However, as we shall see in

the next subsection, it can already be of great help.

5.3 Examples of extracted patterns

The pattern extraction program is completed by a discrimination procedure. Given

two texts, this procedure detects the recurrent patterns covering multiple occurrences

of some syntactical structure in the first text without detecting any occurrence of this

structure in the second. This discrimination procedure has been employed to detect

syntactical structures characteristic of one author, i.e. that distinguish this author from

others. The author chosen was Madame de Lafayette, and the two texts, a short story

entitled La comtesse de Tende and a famous novel, La princesse de Clèves. More than

25 short stories from three 19th century authors, Guy de Maupassant, Georges Sand

and Marcel Schwob, were used by the discrimination procedure.

Word
"de"

Connect I
cat: q

Word
"le"

Periph
cat: M

s

Central
cat: I
ms3

Group
cat: qI
ms3

Word
"d' "

Connect I
cat: p

Word
"en"

Connect I
cat: p

Central
cat: S

s3

Group
cat: ppN

s3

Periph
cat: j

Word
"bien"

Periph
cat: j

Word
"faits"

Central
cat: z
mp

Group
cat: z
mp

Fig. 5.  Three Patterns present in the Lafayette texts without any occurrences in other texts

Among others, the first pattern (cf. fig. 5) covers the following French expression: "de

le supplier", "de l'éviter", "de l'aimer", and others like "de la tromper", "à le servir",

"pour l'obliger" etc. The second covers "d'en avoir", "d'en attendre", "d'en garantir",

"d'en faire" etc. but also, "sans en avoir" and others which appear to have a very

similar structure. While the third covers the following three fragments

"admirablement bien faits", "parfaitement bien faits", "très bien fait".

There are many others specific syntactical patterns characteristic of Madame de

Lafayette. Among those, here is a syntactical structure which is frequently repeated:
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Group
cat: N

Group
cat: pN

Group
cat: V

Group
cat: N

Connect
cat: E

Group
cat: G

Sentence

Fig. 6.A syntactical structure characteristic of Madame de Lafayette writings

It closely covers all those fragments (and others in Madame de Lafayette's work)

whereas it is virtually absent from the other authors: "Le prince de Navarre prit la

parole :", "La reine de Navarre avait ses favorites", , "Monsieur de Nemours prit la

reine dauphine", "Madame de Clèvcs ne répondit rien", "Le comte de Tende aimait

déjà le chevalier de Navarre ;", "La passion de la reine surmonta enfin toutes ses

irrésolutions.", etc.

There exists also many fragments less closely covered by this pattern. For instance:

"Madame de Chartes avait une opinion opposée", "Le comte de Tende sentit son

procédé dans toute sa dureté ;", "La comtesse reçut ce billet avec joie", "L'humeur

ambitieuse de la reine lui faisait trouver une grande douceur à régner", etc.

There are also some very surprising results. For instance, in most of those phrases

(more than 80%), the word "comte" which means count in French and refers to a

member of the aristocracy, is matched against other words like "prince", "madame"

(i.e. madam), "monsieur" (i.e. sir), "reine" (i.e. queen) and "comtesse" (i.e. countess).

Since no semantics has been given, this example shows how the syntax may convey

semantics. As the reader might well imagine, there are many other hypotheses that

may be investigated using this procedure.

All those results were presented to experts of French literature. They recognize some

of the pattern as characteristic of the 18th century style of writing, while others seemed

to be more specific to Madame de Lafayette. We are now currently integrating our

program to a reading environment.

Note that there exists already many Computer-Assisted Research on Literature

(CARL) known as stylometric analysis [3], [6]. However, those studies are based on

the words, on their repetition, on their size, on their number or on their categories, not

on the syntactical structure.
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6 Conclusions and Future Research

We have developed a general pattern extraction algorithm working on a SOT. An

application to syntactical pattern extraction shows the viability of this algorithm on

real life problems. We are now programming a visual interface that displays these

results. This program may be applied to many different problems where data are

sequential, for instance financial analysis or molecular biology.

Among all the possible applications, one is now under development; it is to analyze

traces of computation. Our algorithm is particularly well adapted because traces are

easily expressed using a SOT. The two main goals of such an investigation of

computing traces are to study the use of new information technology and to detect

frequent patterns of commands which are the seeds of new macro operators. In other

words, the algorithm can be used to build intelligent learning agents.
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