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Abstract

Background: Current biomedical research needs to leverage and exploit the large amount of information reported
in scientific publications. Automated text mining approaches, in particular those aimed at finding relationships
between entities, are key for identification of actionable knowledge from free text repositories. We present the
BeFree system aimed at identifying relationships between biomedical entities with a special focus on genes and
their associated diseases.

Results: By exploiting morpho-syntactic information of the text, BeFree is able to identify gene-disease, drug-disease
and drug-target associations with state-of-the-art performance. The application of BeFree to real-case scenarios shows
its effectiveness in extracting information relevant for translational research. We show the value of the gene-disease
associations extracted by BeFree through a number of analyses and integration with other data sources. BeFree
succeeds in identifying genes associated to a major cause of morbidity worldwide, depression, which are not present
in other public resources. Moreover, large-scale extraction and analysis of gene-disease associations, and integration
with current biomedical knowledge, provided interesting insights on the kind of information that can be found in the
literature, and raised challenges regarding data prioritization and curation. We found that only a small proportion of the
gene-disease associations discovered by using BeFree is collected in expert-curated databases. Thus, there is a pressing
need to find alternative strategies to manual curation, in order to review, prioritize and curate text-mining data and
incorporate it into domain-specific databases. We present our strategy for data prioritization and discuss its implications
for supporting biomedical research and applications.

Conclusions: BeFree is a novel text mining system that performs competitively for the identification of gene-disease,
drug-disease and drug-target associations. Our analyses show that mining only a small fraction of MEDLINE results in a
large dataset of gene-disease associations, and only a small proportion of this dataset is actually recorded in curated
resources (2%), raising several issues on data prioritization and curation. We propose that joint analysis of text mined
data with data curated by experts appears as a suitable approach to both assess data quality and highlight novel and
interesting information.
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Background
Due to the increasing size of literature repositories, there

is a strong need for tools that firstly, identify and gather

the relevant information from the literature, and sec-

ondly, place it in the context of current biomedical

knowledge. Nowadays, the automatic analysis of the lit-

erature by text mining approaches eases the access to in-

formation otherwise locked in millions of documents

and supports translational research projects [1].

Despite the advances on biomedical text mining, sev-

eral challenges remain to be solved in the field, such as

the identification of complex relationships between en-

tities of biomedical interest and the exploitation of the

extracted information in real-case settings for supporting

specific research questions in translational research. This

is particularly relevant for researchers interested in human

diseases, since they are struggling with the large number

of publications in their domain. There is a pressing need

for methods that: a) can extract information on human

diseases and their genes in a precise manner; b) can be ap-

plied to large document repositories; c) allow to integrate

the extracted data with other information to aid subse-

quent analysis and knowledge discovery. In particular, text

mining tools that help in the identification of the action-

able knowledge from the vast amount of data available in

document repositories are key for bridging the gap be-

tween bench and bedside [2].

In the past, most efforts in text mining of relationships

have been devoted to the identification of interactions be-

tween proteins, both due to the availability of corpora and

the push driven by specific text mining challenges [1]. In

contrast, less attention has been paid to the identification

of relationships involving entities of biomedical interest

such as diseases, drugs, genes and their sequence variants.

In the last years, however, this trend has changed and

there is much more interest in gathering this kind of infor-

mation [3,4]. There are examples of systems developed for

identification of drug-gene interactions [5,6], drug-drug

interactions [7,8], drug-indications [9,10], drug-adverse ef-

fect [11,12], gene-disease [13,14], and also systems cover-

ing different types of relationships [15].

An important aspect in the field of relation extraction

(RE) are the different perspectives that can be used to de-

fine the relationships between entities. The relationship

between two entities might be unqualified or not specified

at the semantic level (e.g. “The LOXL1 gene is associated

with exfoliation glaucoma”), or, on the other hand, seman-

tically specified (e.g. “The LOXL1 gene is overexpressed in

exfoliation glaucoma”). Moreover, the relationships can

also be considered from the perspective of their level of

certainty; that is, if the scientific statement is phrased as a

fact or proven experimental observation or, alternatively,

as a speculation or hypothesis (e.g. “The LOXL1 gene

might be associated with exfoliation glaucoma”). Research

in the area of discourse analysis has been applied to ap-

proach this latter perspective of RE [16-18]. Finally, com-

plex representations of relations are the events as defined

by the BioNLP shared tasks, that involve several partici-

pant entities, semantically-defined relationship types and

their regulators [19].

A wide range of approaches for RE have been applied in

the biomedical field, namely co-occurrence based statistics

[20-22], rule-based systems [23,24], machine learning

[13,25-27] and NLP-based approaches [28,29]. In particular,

supervised learning approaches have shown good perform-

ance exploiting both syntactic and semantic information

[30]. Most of the studies have focused on kernel based

methods to identify associations between entities [31-34].

These methods are able to classify text based on how a rela-

tionship between two entities is represented. Different kinds

of features, such as word frequencies in the sentences

or the relationship between words provided by phrase

structure or dependency trees, can be used to represent

a relationship between two entities. A common ap-

proach involves considering distance criteria like the

shortest path between the candidate entities in a parse

tree to unravel associations [3,35].

In this paper, we propose the combination of the Shallow

Linguistic Kernel (KSL) [33] with a new kernel that exploits

deep syntactic information, the Dependency Kernel (KDEP),

for the identification of relationships between genes, dis-

eases and drugs. The KSL, which uses only shallow syntactic

information, was successfully applied to extract adverse drug

reactions from clinical reports [11] and drug-drug interac-

tions [8]. On the other hand, the KDEP exploits the syntactic

information of the sentence using the walk-weighted subse-

quence kernels as proposed by [36]. A major requisite of

supervised learning approaches for RE is the availability of

annotated corpora for both development and evaluation.

Although there are several annotated corpora for identifica-

tion of PPIs (LLL, AIMed, Bioinfer, HPRD50 and IEPA),

manually annotated corpora for other associations are

scarce [37]. Our group has developed one of these re-

sources, the EU-ADR corpus, that contains annotations on

drugs, diseases, genes and proteins and associations between

them [38]. We used this corpus to develop a RE system for

the identification of relationships between genes and dis-

eases. In addition, we also evaluated the RE systems for the

identification of relationships between diseases, drugs and

their targets. As we are particularly interested in identifying

associations between genes and diseases, we also developed

a new corpus in this domain by a semi-automatic annota-

tion procedure based on the Genetic Association Database

(GAD), an archive of human genetic association studies

of complex diseases and disorders, as a starting point. The

RE module in combination with our previously reported

Biomedical Named Entity Recognition or BioNER [39] con-

stitutes the BeFree system (http://ibi.imim.es/befree/).
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In addition to the evaluation of the performance of the

RE system based on Precision (P), Recall (R) and F-score

(F), that is common practice in the text mining domain,

we wanted to assess the ability of the BeFree system to

identify useful information in the context of concrete

biomedical problems. More specifically, we applied the

BeFree system for the extraction of associations between

genes and diseases to two real-case scenarios: 1) the search

for genes associated to one of the most prevalent diseases,

depression, and 2) the population of DisGeNET, a data-

base of gene-disease associations [40]. In the first case

study we demonstrate the ability of BeFree to identify use-

ful information related to this particular disease. In

the second case study we evaluated the application of

BeFree to large-scale data extraction and integration with

another knowledge source. This resulted in a large dataset

on gene-disease associations (approx. 500,000 associa-

tions) that raised issues related with the quality of the

extracted information. Therefore, we were faced with an-

other challenge, which is the prioritization of the results

obtained by large-scale mining of the biomedical litera-

ture. Since manual curation is not possible for this kind of

large datasets, we performed a series of analysis on the

data in order to gain insight on its quality and provide a

discussion on the outcome.

In summary, we present a novel text mining system,

BeFree, specifically focused on the identification of asso-

ciations between drugs, diseases and genes. Another im-

portant contribution of this work is the GAD corpus for

the evaluation of RE systems for gene-disease associa-

tions. We focus on the identification of gene-disease re-

lationships, and analyse the outcome of the two case

studies that highlight the value of the extracted informa-

tion, and finally discuss the impact of this kind of ap-

proach for translational research. We address some of

the current challenges in the field, such as improving RE

for entities of biomedical interest, disambiguation be-

tween semantically different entities, integration with

existing knowledge bases and exploitation of extracted

information in real-case scenarios.

The complete set of gene-disease associations extracted

by BeFree, with the supporting statements and informa-

tion on the provenance, is available in DisGeNET (http://

www.disgenet.org/). The corpora used in this study, in-

cluding the new corpus on gene-disease associations, are

available at http://ibi.imim.es/befree/#corpora. The BeFree

code is available upon request.

Results and discussion
We have developed a new RE system to identify associa-

tions between genes, drugs and diseases based on the ex-

ploitation of semantic and morpho-syntactic information

from the text. We first present the results of its evalu-

ation aimed at assessing the performance of both kernels

(KSL and KDEP, see Figures 1 and 2) using morpho-

syntactic features on three relationships, drug-target,

gene-disease and drug-disease, using the EU-ADR and

GAD corpora (see Additional file 1: Table S1 for corpora

statistics). The complete set of results is available online

at http://ibi.imim.es/befree/#supplbefree. Only a repre-

sentative set of the results is depicted in the manuscript.

We also conducted a series of experiments on the iden-

tification of protein interactions in order to evaluate the

performance of the KDEP kernel using different features,

and compare it with previous results (Additional file 2).

We then focus on the identification of gene-disease as-

sociations. We present the results of the real-life per-

formance of the system and discuss its application for

the identification of associations between genes and dis-

eases in two different scenarios: a) the research on the

genes involved in depression, one of the major health

problems in the world, and b) the population of DisGe-

NET, a public database of gene-disease associations.

Identification of drug-target, gene-disease and drug-

disease relationships

We assessed the performance of the KSL and KDEP ker-

nels on the relationships available in the EU-ADR corpus

[38]. We used different combination of features to repre-

sent the associations, but only a selection of the better

results is shown in the BeFree webpage (http://ibi.imim.

es/befree/#supplmaterial) and some of them transcribed

here (Additional file 3: Table S2). In the case of the

drug-disease associations, the best performance both in

terms of F-score and Recall is obtained with the KDEP

kernel (Experiment 3: P 70.2%, R 93.2%, F 79.3%), using

stems on the v-walk feature, while in terms of Precision

the best result is obtained using POS tags on both the e-

walk and v-walk features (Experiment 19: P 74.5%, R

71.5%, F 72.3%). The best results obtained by combining

both kernels did not improve the performance of the de-

pendency kernel alone (Experiment 75: P 72.0%%, R

84.0%, F 77.0%). Similar results were obtained for the

gene-disease association classification, where the KDEP

kernel alone achieved the best performance. The best

performance in terms of F-score and Recall was obtained

using stem or lemma over the v-walk features (Experi-

ments 5 and 3: P 75.1%, R 97.7%, F 84.6%), while the

best performance in terms of Precision was obtained

when using lemma in v-walk and role in e-walk (Experi-

ment 30: P 83.8%, R 71.0%, F 75.6%). Finally, for target-

drug relationship, the highest Precision was obtained by

the KDEP kernel with role and POS features over the v-

walk and e-walk, respectively (Experiment 21: P 75.2%,

R 68.1%, F 70.2%), while the highest Recall was obtained

when using a combination of KSL and KDEP (Experiment

80: P 73%, R 98%, F 82.8%). The best classification in

terms of F-score is achieved when using different
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combination of features with both kernels (see for in-

stance Experiment 102: P 74.2%, R 97.4%, F 83.3%).

Nevertheless, it is worth mentioning that the KSL kernel,

which only uses shallow linguistic information, achieves

competitive results in the classification of sentences con-

taining drug-disease, gene-disease and drug-gene associ-

ations (F-score: 76.7%, 80.9%, 81.1% respectively).

In order to evaluate the results of BeFree in the con-

text of other approaches, we evaluated the performance

of SemRep [28,41] for the identification of the three rela-

tionship types using the EU-ADR corpus. SemRep is

quite different than BeFree because it has been designed

to identify a large variety of semantic predications taking

into account the hierarchical relationships between con-

cepts. Nevertheless, we decided to use SemRep for com-

parison because: 1) it is publicly available, and 2) among

all the relationship types covered, some of them can be

mapped to the three relationship types covered in this

study (gene-disease, drug-target and drug-disease, see

Methods). SemRep identified these relationship types

with high precision but lower Recall than BeFree,

achieveing 96% P, 36% R and 52% F1 for gene-disease as-

sociations, 95% P, 39% R and 55% F1 for drug-target and

finally, 100% Precision, 40% R and 57% F1 for drug-

disease (Additional file 3: Table S2). Thus, compared to

SemRep, BeFree achieves more balanced results in terms

of P and R for the identification of the three entity types.

We can also analyze the results obtained by BeFree in

the context of recent work in the field (Table 1). Note

that the studies cited in the Table 1 define in different

ways the relationships, use different benchmarks for

evaluation and sometimes different metrics. Therefore,

the results of this comparison has to be taken with cau-

tion. For gene-disease associations, F-scores of 78% [13]

Figure 1 Global and local context kernels to represent a gene-disease association. a) The sentence extracted form a MEDLINE abstract
(PMID:22337703) expresses the association between the disease MMD (Major Depressive Disorder) and the genes EHD3 and FREM3. We will
focus in the association between EHD3 and MMD to illustrate the features considered in each kernel. b and c) The local context kernel (KLC)
uses orthographic and shallow linguistic features (POS, lemma, stem) of the tokens located at the left and right (window size of 2) of the
candidate entities (EHD3 and MDD). d) The global context kernel (KGC) is based on the assumption that an association between two entities
(in this case EHD3 and MDD) is more likely to be expressed within on of three patterns (fore-between, between, between-after). In this example
the association between EHD3 and MDD is expressed in the between pattern. e) In the global context kernel (KGC) we consider both trigrams
and sparse bigrams in each pattern.
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and 76% [42] have been reported. For drug-disease, F-

scores of 87% [11], 79% [42], 69% [10] and 50.5% [12]

were reported, while for drug-target the values are

around 80% [42]. In summary, BeFree achieves results

that are comparable to previous work on the field.

The EU-ADR corpus is a valuable resource because it

contains annotations for different types of associations,

but its main drawback is its small size. There are only a

limited number of corpora for entities of biomedical

interest (see http://corpora.informatik.hu-berlin.de/ for a

recent update). In order to test the feasibility of using a

semi-automatic annotated corpus for biomedical RE, we

developed a corpus from the GAD database to have a

large benchmark of gene-disease associations in which

to train and evaluate gene-disease classifiers. Then, we

tested the classifier for gene-disease relationships on the

Figure 2 Dependency graph representation of a gene-disease association. a) Dependency graph representation of the sentence. Solid lines
represent the shortest path between the two candidates. The token “associated” is the Least Common Subsumer (LCS) node of both candidates.
b) Subgraph representing the shortest path between EHD3 and MDD, where syntactic dependencies are represented as edges and tokens as
nodes. c) The e-walk and v-walk features for the node “association” and the syntactic (token, stem, lemma, POS) and semantic features (role)
considered in the KDEP kernel.

Table 1 Comparison of BeFree performance to previous work

Method Drug-disease Gene-disease Drug-target

Chun et al. 2006 [25] - 83% -

Bundschus et al. 2008 [13] - 78% -

Gurulingappa et al. 2012 [11] 87% - -

Kang et al. 2014 [12] 54% - -

Névéol and Lu. 2010 [10] - - 69%

Xu and Wang 2012 [6] - - 40%

Xu and Wang 2013 [43] 23% - -

Hakenberg et al. 2012 [15] 76% 84% 83%

Buyko et al. 2012 [42] 79% 76% 82%

BeFree 79% 85% 83%

Performance of different approaches including BeFree in terms of F for the three association types is presented. Note that the results corresponding to the work

of others are quoted verbatim from the literature, and are therefore not directly comparable.
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GAD corpus by 10-fold cross-validation. Compared to

the gene-disease set from the EU-ADR corpus, the GAD

corpus is larger and contains a different ratio of true/

false associations. Thus, it is interesting to see how the

different combination of kernels and features behave in

this benchmark. In addition, it contains a larger fraction

of negative sentences, allowing the classification of posi-

tive (PA) and negative (NA) sentences pertaining gene-

disease associations. Although these annotations are

available in the EU-ADR corpus, due to its small size,

it was not possible to train a classifier to distinguish

between positive and negative sentences. When assessing

the classification over the class TRUE, the best results

where those obtained with the KSL (1: P 77.8%, R

87.2% F 82.2%). Contrasting with the results obtained on

the EU-ADR corpus for gene-disease associations, KDEP

alone did not work very well on the GAD corpus, and

the combination of both kernels showed an improve-

ment of the performance but was always lower than the

ones obtained with KSL alone (see http://ibi.imim.es/

befree/#supplbefree). In the scenario of the classification

over three classes (PA vs NA vs FALSE), although the

best performance in terms of Precision or Recall is ob-

tained with combination of kernels, the best F-score is

achieved by the KSL kernel with sparse bigrams, where

the Precision and Recall values although not optimal are

competitive (2: P 66.0%, R 73.8% F 69.6%). In summary,

these results show that a corpus developed by automatic

annotation from an expert-curated database on gene-

disease associations can produce competitive classifiers,

and that the KSL kernel with shallow linguistic informa-

tion performs quite well in the classification.

Evaluation on real-life case studies

Case study on genetic basis of depression

Depression is a chronic, recurring, life-threatening disease

and the second cause of morbidity worldwide, costing bil-

lions of dollars per year to the society [44]. It is currently

accepted that a variety of genetic, environmentally-driven

epigenetic changes and neurobiological factors play a role

in the development of depression; however the exact

mechanisms that lead to the disease and affect therapy ef-

ficacy are still poorly understood. MEDLINE currently in-

dexes more than 100,000 publications on depression, thus

it is a good resource to gather information on genetic de-

terminants of this illness. We performed an evaluation on

a real-life setting to test the performance of BeFree in

identifying genes associated to depression. We evaluated

the results in terms of Precision, Recall and F-score of the

predictions. Next, we evaluated the quality of extracted in-

formation comparing it with what is available in curated

resources. We defined a document set of 270 abstracts

pertaining to depression that were published during 2012.

This document set was processed to identify genes and

depression terms with BioNER (see Methods) and the

associations between them using gene-disease models

trained in EU-ADR and GAD corpora. In both cases,

we used the model that in cross-validation achieved the

best F-score (for EU-ADR, experiment 3; for GAD, experi-

ment 1 and 2, see http://ibi.imim.es/befree/#supplbefree,

Additional file 3: Table S2). From a total number of 830

gene-disease associations predicted by the models, we

manually reviewed a subset of 100 selected at random to

estimate the performance of each model. In the case of

the model trained on the EU-ADR, although the Recall

was almost perfect (96.6%), we observe a decrease in the

Precision of the classification compared to the cross-

validation scenario (59.4%). On the other hand, the model

trained on the GAD corpus performed better in terms of

Precision (70%) but worst in terms of Recall (59.3%) when

compared to the cross-validation scenario. A model trained

in the GAD corpus is also able to classify sentences con-

taining gene-disease associations as positive, negative and

false with F-score of 53.7% (data not shown). All in all, the

model trained in the EU-ADR corpus, despite its small size,

performed a better classification of gene-disease sentences

in a real case setting (F-score 73.5%).

We then carried out a qualitative analysis of the infor-

mation extracted by BeFree. We compared the genes

identified as related to depression using BeFree with the

genes already known to be associated to depression

available from DisGeNET. The BeFree model trained on

the EU-ADR corpus identified 170 genes from the full

set of publications, 41 of them available in DisGeNET,

whereas the model trained on the GAD corpus retrieved

106 genes, 37 of them were already reported in DisGe-

NET (Figure 3). More interestingly, the EU-ADR and

the GAD models found 129 and 69 genes respectively,

not present in DisGeNET, which might represent novel

findings that could be introduced in the database. We

analysed more deeply the set of genes that were pre-

dicted by both methods and were not present in DisGe-

NET (59 genes). For this purpose we used PsyGeNET,

an expert-curated database on psychiatric diseases and

their genes. In particular, we assessed if the set of

59 genes identified by both methods were present in

PsyGeNET. Thirty seven% of the genes (22 genes) were

present in this database, indicating that these genes are

known players in depression. Next, we characterized the

set of 59 genes by functional enrichment analysis with

GO terms using DAVID [45], in order to gain insight

into their biological function. We found significant an-

notations for terms like synaptic transmission, transmis-

sion of nerve impulse, biogenic amine catabolic process,

regulation of neurological system process, regulation of

cell cycle, regulation of inflammatory response, which

are also found for the list of genes from DisGeNET, and

are representative of the biology of depression. More
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interestingly, some of the genes identified by text mining

are putatively involved in RNA regulation, RNA splicing

and epigenetic regulation, such as MEG3 (GeneId:

55384), BDNF antisense RNA (GeneId: 497258), DGCR8

(GeneId: 54487), EXOSC6 (GeneId: 118460), and GEMIN4

(GeneId: 50628). This is noteworthy since there is an in-

creasing interest in the relationship between the aforemen-

tioned processes and the physiopathology of depression. In

summary, the application of the BeFree system achieves

competitive performance in a real-case scenario and allows

the identification of genes related to depression, not previ-

ously associated to the disease in specialized databases.

More importantly, some of these genes represent novel as-

pects of the physiopathology of depression.

Large-scale analysis of gene-disease associations from the

literature

We applied the BeFree system on a set of 737,712 ab-

stracts pertaining to human diseases and their genes (see

Methods for details on document selection) to identify

relationships between genes and diseases. Note that our

approach for NER takes into account the existing ambi-

guity in the nomenclature between entities of different

semantic types, such as genes and diseases (see Methods

for more details). This resulted in 530,347 gene-disease

associations between 14,777 genes and 12,650 diseases,

which were reported in 355,976 publications. DisGeNET,

a database that integrates associations between genes

and diseases from several sources, includes 372,465

gene-disease associations at the time of this analysis.

Thus, the data identified by BeFree represent a very large

dataset on gene-disease associations. Some concerns on

the quality of the extracted information could be raised

such as 1) errors in the text mining approach, both at

the level of NER and RE, and 2) quality of the experi-

mental evidence supporting the association. A simple

way to identify both types of error would be to manually

curate all the associations, but this is not a feasible task.

Thus, before delivering the data to the public through

the DisGeNET knowledge portal, we conducted a series of

analysis to learn more about the data and its provenance.

Data analysis and filtering

We first analysed the frequency distribution of the num-

ber of publications or PubMed IDs (PMIDs) that support

each disease association (Figure 4). As can be observed

from the figure, 68.5% of the associations (363,382 associa-

tions) are supported by only one publication and 72,693

by two publications. On the other extreme of the distribu-

tion, there are approximately 900 associations supported

by more than 200 publications (0.16%). On average, each

association is supported by 2.8 publications. We then

inspected in more detail the associations supported by

only one publication. These might be associations that

could not be reproduced again by any other research

group. Another reason for the low publication number

could be that the related research area is not a hot topic

and therefore it is more difficult to publish in this specific

domain. Moreover, these associations could be new find-

ings from recent publications, which might be in the fu-

ture reproduced or followed up in other publications.

We analysed in more detail the set of associations sup-

ported by only one publication, looking at their publication

Figure 3 Depression genes identified by BeFree and their

overlap with genes available in other repositories. Venn diagram
showing the overlap for the depression genes identified by BeFree
trained in GAD or EU-ADR corpora, and the depression genes
present in DisGeNET.

Figure 4 Number of gene-disease associations as a function of

the number of PMIDs that support each association.
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dates (Figure 5) and the Impact Factors (IF) of the journals

(Figure 6), evaluating also their coverage in the DisGeNET

database. Figure 5 shows that most of the associations sup-

ported by only one publication have been published in the

last 15 years. Notably, 40,000 associations (11% of all the

associations supported by one PMID) have been published

during 2013. These associations represent newly open

research areas on the genetic basis of diseases that might

point out potential candidates for biomarkers or thera-

peutic targets. Interestingly, almost none (97%) of these

associations are present in the DisGeNET database. More-

over, 35% of the associations have been published in jour-

nals without IF and 16% in journals with IF between 0 and

2.5 (Figure 6). Remarkably, a very small fraction of the asso-

ciations with one supporting publication have been pub-

lished in journals with the higher IF, while the majority of

the associations are reported in journals with IF between

2.5 and 5.

We then inspected the distribution of the number of

gene-disease associations reported per MEDLINE ab-

stract (Figure 7). As can be observed, most of the ab-

stracts (47%) report 1–2 gene-disease associations and

on average each abstract reports 1.5 gene-disease associ-

ations. However, there is a subset of 15 abstracts that re-

port more than 100 gene-disease associations, with one

extreme case of 372 gene-disease associations. Manual

inspection of the 15 abstracts that report more than 100

associations indicated that in most of the cases, these

abstracts report associations for a number of genes to a

disease, using long sentences with coordination struc-

tures. In order to avoid possible sources of errors during

text mining processing of these long, complex sentences,

we decided to remove those abstracts that report more

than 20 associations.

Based on this preliminary data analysis, we developed

a decision tree workflow on the BeFree data that takes

into account the number of publications supporting the

gene-disease association, the overlap with DisGeNET

and the IF of the journals (Figure 8). After applying this

workflow, we obtained 330,888 gene-disease associations

(62% of the original data set) between 13,402 genes and

10,557 diseases.

Figure 5 Number of gene-disease associations reported by only

one PMID in each calendar year. In red we show the number of
associations present in DisGeNET.

Figure 6 Number of gene-disease associations reported by only

one PMID in journals classified by their Impact Factor. In red we
show the number of associations present in DisGeNET.

Figure 7 Distribution of the number of gene-disease associations

reported per MEDLINE abstract.
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Integration with DisGeNET and data prioritization

A pragmatic way to assess the quality of the extracted

information is to contrast it to the information present

in expert curated resources. Thus, we integrated the data

extracted by Befree with expert reviewed DisGeNET

sources (curated and predicted, see http://www.disgenet.

org/web/DisGeNET/v2.1/dbinfo#sources for more details

on DisGeNET datasets) in order to perform this compari-

son. Only 7,669 gene-disease associations (2% of BeFree

associations) are in common between expert curated asso-

ciations from DisGeNET and BeFree, while the overlap

between the two sources is quite small (0.3% of BeFree

associations, Figure 9). Remarkably, from all the gene-

disease associations (curated, predicted, and BeFree) 3.9%

are only reported by curated sources, and 92.5% only pro-

vided by BeFree. The gene-disease associations present in

DisGeNET but not recovered by BeFree might be exam-

ples of associations mentioned in the full-text and supple-

mentary material of articles and not present in the

abstract, or derived from publications not retrieved by our

PubMed query used for document selection. Alternatively,

they might be false negatives from our text mining ap-

proach. The high percentage of associations recovered by

text mining and not present in the curated resources high-

light the difficulty in collating all this putative useful infor-

mation in curated databases. It is important to note that

in our approach we do not mine the full MEDLINE

repository but only a small, but significant in terms of con-

tent, fraction (approx. 3% of current MEDLINE database).

We computed a score for the gene-disease association

based on the number of data sources that report the as-

sociation, the level of curation of each source and num-

ber of supporting publications (see Methods) in order to

analyse in an integrative manner the data extracted by

text mining. Figure 10 shows the DisGeNET score for

the BeFree associations versus the number of supporting

publications for each association. Most of the associa-

tions (99%) have less than 200 publications and have a

wide range of scores, reflecting the fact that they are re-

ported in one or several sources with different levels of

curation. Moreover, the analysis of this plot let us iden-

tify some interesting outliers. First, the associations

APP-Alzheimer disease and CFTR-Cystic Fibrosis receive

a very high score because they are also reported in all

the DisGeNET sources, and represent examples of very

well studied gene-disease associations. Notably, there are

22 associations with very low score (0.06, meaning that

they are only reported by BeFree) but are reported by

more than 1000 publications. It is intriguing why these

associations, that seem to be very well studied as re-

ported in thousands of papers, are not present in any

other DisGeNET source. A closer look to some of them

(Table 2) indicate that they represent very well studied

gene disease associations between breast and ovarian

Figure 8 Decision Tree Workflow for selection of BeFree

dataset on gene-disease associations.

Figure 9 Overlap of the gene-disease associations identified by

BeFree with the associations available in DisGeNET curated and

predicted sources. DisGeNET information coming from expert
curated sources such as UniProt are classified as curated, whereas
information coming from model animals such as mouse are
classified as predicted. For more information
see http://www.disgenet.org/.
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cancer with TP53, BRCA1, BRCA2, ESR1, ERBB2, and

also associations of specific genes to generic cancer

terms (neoplasms). For all these cases we find the corre-

sponding gene-disease association in DisGeNET but

with a different, yet closely related, UMLS concept. The

diversity, both at expressivity and granularity levels of

disease terminologies used in biomedical sources, is

highlighted by the large number of CUIs normalized

(aprox. 10,000) in associations unlocked by text mining.

This opens the question about disease terminologies

standardization, specially to ensure interoperability in

translational research. We observed differences in the

disease terminology used by database curators and the

literature. In general, there is a preference for using dis-

ease concepts that contain MeSH terms by database

curators (at least for the databases included in DisGe-

NET). It is interesting to note that most of the disease

concepts present in the curated sources in DisGeNET

contain MeSH terms, while this is not the case for the

data extracted by BeFree (see Figure 11).

Characterization of BeFree data

We analysed the frequency distribution of the number

of associated diseases per gene (Figure 12) and the num-

ber of associated genes per disease (Figure 13). The plots

show that there are very “promiscuous” genes regarding

their association to diseases (e.g. VEGFA, IL6, TNF and

TP53), whereas other genes seem to be more specific as

they are reported as associated with one or two diseases

only. The same can be observed when analysing diseases

and their associated genes (Figure 13). In this case, it is

expected that neoplastic diseases occupy the extremes of

the distribution, both for their genetic heterogeneity or

for being very well studied. We inspected the therapeutic

areas (Figure 11) and the protein classes covered by the

gene-disease associations identified by BeFree (Figure 14).

The coverage of diseases by therapeutic areas according

to the MeSH classification from BeFree paralleled

the one obtained for the diseases in DisGeNET. It is im-

portant to note that a large fraction (more than 40%) of

diseases identified by BeFree cannot be assigned to a

MeSH disease class, while this is not the case for DisGe-

NET diseases. Thus, the five most covered MeSH disease

classes in BeFree, following the not classified diseases, are

“Congenital, Hereditary, and Neonatal Diseases Abnormal-

ities”, “Nervous System Diseases”, “Pathological Condi-

tions, Signs and Symptoms”, “Nutritional and Metabolic

Diseases and Neoplasms”. The disease genes identified by

BeFree are classified as protein-coding (89%), ncRNA (2%),

pseudogenes (2%), rRNA, tRNA, snoRNA and snRNA

(0.5%), other (6%). Again, regarding the classification of the

Table 2 Examples of gene-disease associations from BeFree with low score and supported by a large number of

publications

Gene Disease Source Score Number of PMIDs (Number of PMIDS provided by BeFree)

TP53 Malignant Neoplasms (C0006826) BeFree 0.06 3365

TP53 Neoplasms (C0027651) DisGeNET 0.401 475 (401)

BRCA1 Breast Carcinoma (C0678222) BeFree 0.06 1966

BRCA1 Malignant neoplasm of breast (C0006142) DisGeNET 0.702 2123 (2056)

ESR1 Breast Carcinoma (C0678222) BeFree 0.06 1553

ESR1 Malignant neoplasm of breast (C0006142) DisGeNET 0.3 1690 (1681)

ERBB2 Breast Carcinoma (C0678222) BeFree 0.06 1425

ERBB2 Malignant neoplasm of breast (C0006142) DisGeNET 0.4 1493 (1484)

BRCA1 Ovarian carcinoma (C0029925) BeFree 0.06 1389

BRCA1 Malignant Neoplasm of Ovary (C1140680) DisGeNET 0.6 1365 (1337)

BRCA1 Ovarian Neoplasm (C0919267) DisGeNET 0.6 144 (71)

Similar associations provided by DisGeNET are indicated.

Figure 10 DisGeNET score vs number of supporting

publications for the gene-disease associations identified by

BeFree. The selected examples discussed in the text are: 1) TP53-
Malignant Neoplasm; 2) BRCA1-Breast Carcinoma; 3) ESR1-Breast
Carcinoma; 4) ERBB2-Breast Carcinoma; 5) BRCA1-Ovarian Carcinoma;
7) APP-Alzheimer disease; 8) CFTR-Cystic Fibrosis.
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proteins encoded by disease genes according to the Pan-

ther protein classification, we observe again that disease

proteins identified by BeFree have a similar class distribu-

tion than those present in DisGeNET (Figure 14).

Conclusions
Our results show that a kernel based approach using

both morpho-syntactic and dependency information per-

forms competitively for the identification of drug-

disease, drug-target and gene-disease relationships from

free text. Although the exact combination of features

that yield better results depends both on the association

type and the corpus used for training the system, the use

of shallow linguistic information is enough to produce

accurate RE classifiers to recognize these associations. A

supervised learning RE system for gene-disease associa-

tions trained on different corpora (EU-ADR, GAD) with

very different characteristics is able to identify gene-

disease associations in real-case scenarios with good

performance. As previously suggested by others [5], a cor-

pus developed by semi-automatic annotation is a good re-

source for developing a RE system in biomedicine.

We evaluated the value of the information extracted

by BeFree for specific case studies in translational re-

search. Particularly, the results obtained in the case

study on depression indicated that BeFree is able to

identify genes associated to depression that are not

present in public databases and support novel hypothesis

Figure 11 Distribution of diseases according to the MeSH

disease classification in the BeFree and DisGeNET datasets.

Note that more than 40% of diseases in BeFree do not contain a
MeSH disease class.

Figure 12 Frequency distribution of the number of associated

diseases per gene.

Figure 13 Frequency distribution of the number of associated

genes per disease.
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in the pathophysiology of depression. The large-scale

analysis of gene-disease associations provided interesting

insights on the kind of information that can be found in

the literature about gene-disease associations, and raised

some issues regarding data prioritization and curation.

The conclusions of the analysis of the provenance of the

gene-disease associations identified by BeFree can be

summarized in the following points:

� The scientific literature is a rich resource for

extracting gene-disease associations, even consider-

ing only abstracts from a specific subset of

MEDLINE.

� Only a small proportion of the gene-disease

associations discovered by text mining are collected

in expert curated databases. There is a pressing need

to find alternative strategies to manual curation to

review, prioritize and curate these associations and

incorporate them into domain-specific databases.

� A first and important step is to extract this

information and put it in a standardized format to

allow its integration with other data sources and

their subsequent analysis for different purposes.

� Joint analysis of data derived by text mining with

data curated by experts appears as a suitable

approach to assess data quality and identify novel

and interesting information.

� A large proportion of the associations are supported

by only one publication, raising concerns on data

reproducibility but also pointing out novel putative

targets for research and innovation.

� There are important differences in the use of disease

terminologies between database curators and the

authors of publications, and also in the level of

granularity of disease concepts to describe a disease

phenotype. This is a current challenge for large-scale

disease data integration that aims to gather a

comprehensive coverage of disease and ensure

systematic interoperability across biomedical domains.

Biocuration of large data sets, a.k.a. big data, is becom-

ing a bottleneck for biomedical research. Recently, the

crowdsourcing approach has attracted interest in the

bioinformatic domain and holds promise for biocuration

tasks [46]. As more and more scientific groups are

extracting knowledge blocked in free text by text mining

and exposing it to the public domain, another upcoming

question is the meta-curation of such deluge of data. In

this regard, the nanopublication concept, based on Se-

mantic Web triple-assertions, is a promising approach to

aid the prioritization of associations based on the sup-

porting evidence [47]. This kind of approaches could be

applied to large datasets such as the gene-disease associ-

ations extracted by BeFree.

In summary, the study presented here highlights the

importance of performing several steps of data analysis

on large data sets, before using the data for further bio-

informatic analysis and even to feed it to the curation

pipeline of a database. We suggest that this kind of itera-

tive process of data extraction, analysis and refinement

of data extraction methodology should be applied to

other approaches aimed at extracting large-scale infor-

mation from the literature.

One of the main limitations of this work is that, due

to the type of annotations currently available in the cor-

pora for gene-disease, drug-disease and drug-target asso-

ciations, the relationships identified are not semantically

Figure 14 Distribution of disease proteins according to the

Panther Protein classification. Data from Panther (http://www.
pantherdb.org/) was used to annotate disease proteins from BeFree
and DisGeNET. Note that more than 37% of proteins in BeFree
cannot be classified according to Panther.
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typed. For instance, for a drug-target relationship, it is

not possible to know if the drug is an agonist, or if it in-

activates the target. Availability of the corpora for these

relationships annotated at the semantic level will allow

the development of a system able to type these relation-

ships. Another limitation is the focus on relationships

that are stated at the sentence level, not handling anaph-

ora to detect associations that go beyond the boundaries

of a sentence. Future work in both these directions will pro-

vide a system with a higher Recall that provides better def-

inition of relationships from the semantic point of view.

Another aspect that we will like to explore is the identifica-

tion of contextual information of the relationship. For ex-

ample, in the case of gene-disease associations, we would

like to know the experimental method used to detect this

association (GWAS, exome sequencing, transcriptomic

analysis, etc.), information on cell-type or tissue (e.g. ad-

renal cells), population tested (e.g. caucasic males), etc.

Methods
We present the development of the BeFree system, com-

posed of a biomedical named entity recognition system

(BioNER, presented in [39]) and a kernel-based KE.

Kernel based RE

In order to implement a RE for different relationships

(drug-target, drug-disease, gene-disease), we propose the

combination of the Shallow Linguistic Kernel (KSL)

based on the system originally proposed by [33] and our

Dependency Kernel (KDEP). Both kernels are described

in the next two sections.

Shallow Linguistic Kernel (KSL)

The Shallow Linguistic Kernel (KSL), developed by [33]

has been successfully applied to PPI, drug-side effects

[11] and drug-drug interaction extraction [8]. Here, we

propose its application for the identification of the rela-

tionships gene-disease, drug-disease and drug-target. KSL

is composed of a linear combination of the kernels KGC

and KLC that provide different representations of the as-

sociation between two candidate entities. The global

context kernel (KGC) is based on the assumption that an

association between two entities is more likely to be

expressed within one of three patterns (fore-between,

between, between-after, see Figure 1d). Three term fre-

quency vectors are obtained based on the bag-of-words

approach using trigrams of tokens. Sparse bigrams were

included to improve the classification performance, as

suggested in the original implementation. The local con-

text kernel (KLC) uses orthographic and shallow linguis-

tic features (POS, lemma, stem) of the tokens located at

the left and right of the candidate entities (window size

of 2). Figure 1 shows the features considered by each

kernel using an example sentence.

Dependency Kernel (KDEP)

We developed the Dependency Kernel (KDEP) to train a

model to recognize relationships between the entities of

interest using walk features [35]. The syntactic dependen-

cies of the words within a sentence can be represented

as dependency graphs. Figure 2a shows the dependency

graph of an example sentence extracted from MEDLINE

as obtained by the Stanford parser (http://nlp.stanford.

edu/software/lex-parser.shtml). The shortest path between

the two candidate entities can be extracted from the de-

pendency graph (highlighted with a solid line in the ex-

ample, Figure 2b), which includes the Least Common

Subsumer (LCS) node (common governor node between

the two candidates, subgraph detailed in Figure 2b). In the

KDEP, two types of walk features are used, the v-walk fea-

ture that is composed of node(i)-edge(i, i+1)-node(i+1), and

the e-walk feature that is composed of edge(i-1, i)-node(i)-

edge(i, i+1) (both illustrated in Figure 2c). For the edges we

consider the dependency relation type, while for the nodes

we consider different features of the token, such as the

token itself, its stem, lemma, role (if this token is candidate

or not) and part-of-speech (POS) tag.

Corpora

We used two manually annotated corpora: AIMed for

PPIs and EU-ADR for gene-disease, drug-target and

disease-drug associations. In addition, we developed a

semi-automatically annotated corpus for gene-disease

associations based on the GAD database. All datasets

were pre-processed with a combination of tools to ex-

tract the features required by the RE system. More spe-

cifically, sentence boundaries were identified by NLTK

(http://www.nltk.org/), tokens and part-of-speech (POS)

tags were obtained using UIMA modules (http://www.

julielab.de/), lemmas were obtained with Biolemmatizer

(http://biolemmatizer.sourceforge.net/) and stems were

identified with the Porter’s algorithm. Syntactic dependen-

cies were obtained with the Stanford parser (http://nlp.

stanford.edu/software/lex-parser.shtml). Both EU-ADR

and GAD corpora are publicly available (http://ibi.imim.

es/befree/#corpora).

AIMed

The AIMed corpus is widely used for PPI extraction (ftp://

ftp.cs.utexas.edu/pub/mooney/bio-data/). The AImed cor-

pus consists of 225 MEDLINE abstracts, of which 200 ab-

stracts describe interactions between human proteins and

25 do not refer to any interaction. There are 5625 anno-

tated sentences, 1008 containing a true PPI (TRUE) and

4617 not containing a true PPI (FALSE).

EU-ADR

The EU-ADR corpus contains annotations of different

entities (drugs, diseases, and genes/proteins) and the
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relationships between them [38]. In particular, it con-

tains annotations of relationships between drug and dis-

eases (drug-disease set), drug and their protein targets

(drug-target set) and genes/proteins and their associ-

ation to diseases (gene-disease set). In addition, each re-

lationship is classified according to its level of certainty

as: positive association (PA), negative association (NA),

speculative association (SA) and false association (FA).

The EU-ADR corpus is composed of 100 MEDLINE ab-

stracts for each relationship set, and its annotation was

performed by three experts. In this study we considered

the relationships that result from the consensus annota-

tion of two experts. Additional file 1: Table S1 shows the

number of relationships for each set.

GAD

The Genetic Association Database (GAD) is an archive

of human genetic association studies of complex dis-

eases, including summary data extracted from publica-

tions on candidate gene and GWAS studies (http://

geneticassociationdb.nih.gov/). We use GAD for the de-

velopment of a corpus on associations between genes

and diseases (downloaded on January 21st, 2013). We

considered the annotations of relationships between a

gene and a disease in a single sentence as a reference set

to build this corpus. GAD contains over 130,000 re-

cords with different types of information. We selected

the records satisfying the following requirements: (i) the

association between gene and disease is annotated as

positive or negative, (ii) the association is expressed in

one sentence and (iii) the Entrez Gene identifier for the

gene is provided. Although GAD provides the sentence

in which a gene-disease association is stated, there is no

information on the exact location of the gene and dis-

ease entities in the text. In order to develop a corpus

suitable for training a gene-disease RE system, the exact

location of the interacting entities in the text is re-

quired. To achieve that, we applied our own NER sys-

tem (BioNER, see below) to identify the gene and

disease entities in the text and normalize them to NCBI

Gene and UMLS identifiers, respectively. Then, the sen-

tences in which a given gene was found together with

a specific disease, and this gene-disease association

was annotated by GAD curators as positive or negative,

were labelled as TRUE. In order to create a dataset con-

taining false associations (FALSE) between a gene and

a disease, that is, a gene and a disease that co-occur in

a sentence but are semantically not associated, we

selected the sentences with co-occurrences between a

disease and a gene found by the BioNER system that

were not annotated by GAD curators as gene-disease

associations. Additional file 3: Table S2 shows the num-

ber of TRUE and FALSE associations that represent the

GAD corpus.

Evaluation of Kernel based RE

The performance of each model for association classifi-

cation was evaluated by sentence-level 10-fold cross val-

idation in each corpus. The classifiers’ performances

were assessed using P, R and F-score over the class

TRUE. TRUE sentences contain real relationship be-

tween the entities analysed, in contrast with FALSE sen-

tences where the two entities co-occur, but there is no

semantic relationship between them. In the case of the

GAD corpus, we also trained a classifier that distin-

guishes between positive, negative and false associations,

and therefore the performance was assessed over the

class positive (PA) and negative (NA) separately. Due to

the nature of the annotations available in both corpora

used, the focus of this work is on associations that are

unqualified (not defined at the semantic level).

Evaluation of SemRep for identification of drug-target,

gene-disease and drug-disease relationships

We performed an evaluation of the SemRep system [41] for

identification of drug-target, gene-disease and drug-disease

relationships using the EU-ADR corpus. Since the scope

and types of associations covered by SemRep are quite

different than the ones covered by the EU-ADR corpus, we

selected a subset of the association types retrieved by

SemRep and mapped them to each of the association

types in the EU-ADR corpus. For gene-disease associa-

tions, we selected the following SemRep association

types: AFFECTS, ASSOCIATED_WITH, AUGMENTS,

CAUSES, PREDISPOSES, COEXISTS_WITH, NEG_

ASSOCIATED_WITH. For drug-target, the SemRep asso-

ciation types selected were: AFFECTS, ASSOCIATED_

WITH, AUGMENTS, DISRUPTS, DISRUPTS(SPEC),

INHIBITS, INHIBITS(SPEC), INTERACTS_WITH, NEG_

INTERACTS_WITH, PRODUCES, STIMULATES. For

drug-disease, we selected these SemRep association types:

AFFECTS, ASSOCIATED_WITH(INFER), CAUSES, NEG_

AFFECTS, NEG_TREATS, PREDISPOSES, PREVENTS,

TREATS, TREATS(INFER), TREATS(SPEC), USES.

We used the batch mode of the SemRep program

available at http://skr3.nlm.nih.gov/. For concept recog-

nition we used the 2012AA version of the knowledge

sources, that is the most recent version available within

SemRep.

Identification of entities

We identified gene and disease mentions in free text

using the BioNER system [39]. During the initial phase

of the project, we evaluated several NER tools publicly

available. Our requirements were that the NER tool had

to be able to detect and normalize to database identifiers

two types of entities: genes/proteins and diseases. After

an initial evaluation, the decision was to develop our

own system because none of the tools evaluated work
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properly for us (a brief description of the tools evaluated

is presented in the Suppl. File S1). Another reason for

developing our own tool was to be able to regularly up-

date the dictionaries used by the NER to keep the data

up-to-date, and to perform curation of the dictionaries

to reduce errors. We also invested efforts on the prob-

lem of the ambiguities between entities (see below),

which we think is not currently addressed by any other

tool. We believe that this point is important for subse-

quent steps in the text-mining workflow, such as the

identification of relationships between entities.

BioNER uses gene and disease dictionaries with fuzzy

and pattern matching methods to find and uniquely

identify these entity mentions in the literature. During

initial analysis of the RE results we observed that a

source of error was the wrong identification of entities

due to ambiguities in the terminologies for diseases and

genes. This is particularly problematic in the case of ac-

ronyms, where the same token can be used to refer to a

disease or a gene. Thus, we introduced a series of modi-

fications on BioNER in order to address ambiguities in

the identification of a single entity type (e.g. a gene) and

between different entity types (genes and diseases).

Frequently, an acronym appears after the long term is

defined in the text. In this case, we compare the list of

concept identifiers of both mentions (acronym, long form)

to determine if the acronym refers to the long form, using

an in-house developed tool. For example, in the sentence

“Selective gene targeting using the carcinoembryonic anti-

gen (CEA) promoter is useful in gene therapy for gastro-

intestinal cancer” (from PMID 11053994), BioNER detects

the long form expression “carcinoembryonic antigen” as a

gene with NCBI Gene Id 1048, and the acronym “CEA” as

four different gene entities (with four NCBI Gene Ids

1087, 5670, 1084 and 1048). The concept identifier in

common between the two entities (NCBI Gene Id 1048) is

kept as the right annotation. If there is more than one

concept identifier in common between the two entities,

we look at the similarity of the terms of each concept to

select the right identifier. The file gene2pubmed source

from Entrez Gene was also used to select the correct iden-

tifier in these ambiguous cases. Evaluation of BioNER

for gene normalization using the BioCreative II Gene

Normalization (BC2GN) [48] resulted in very low Preci-

sion (P: 48.1% R: 80.1% F: 60.1%), which could be im-

proved considerably when applying the above mentioned

strategies to handle the ambiguities between genes

(P: 74.0%, R: 76.2%, F: 75.0%).

The other type of ambiguity arises when one candidate

entity in a sentence can refer to different semantic types

(disease and gene). For example the symbol “APC” can

refer to the gene “adenomatous polyposis coli” or to the

disease “atrial premature complex”. To properly recognize

the identity of the mention, we take into account the

contextual information of the candidate entity. For in-

stance, to disambiguate a candidate entity to a gene, we

look for keywords such as “gene”, “protein”, “factor”, “tar-

get”, “biomarker”, etc., whereas to disambiguate a candi-

date entity to a disease, we look for keywords like

“disease”, “disorder”, “condition”, “syndrome”, etc. We also

looked at the MeSH Disease annotations of the corre-

sponding abstract to decide if a candidate entity refers to a

gene or a disease. We compared the terms of the candi-

date entity to the terms of the MeSH disease concepts an-

notated to the abstract using a soft-matching approach,

and if a match was found, we annotated the candidate

entity as a disease.

In addition, we performed an evaluation of the perform-

ance of BioNER in the identification and normalization of

disease entities using the Arizona Disease Corpus achiev-

ing competitive (P: 72.1% R: 64.4% F: 68.0%) results com-

pared to previous approaches [49,50].

Case study on genetic basis of depression

We defined a PubMed query to retrieve a set of docu-

ment to depression and published in 2012 as follows:

(“Depression” [Mesh] OR “Depressive Disorder” [Mesh])

AND “genetics” [Subheading] AND (hasabstract[text]

AND (“2012” [PDAT]) AND English[lang] AND “humans”

[MeSH Terms]) NOT (“Case Reports” [PT] OR “Clinical

Trial” [PT] OR “Clinical conference” [PT] OR “Clinical

Trial, Phase I” [PT] OR “Clinical Trial, Phase II” [PT] OR

“Clinical Trial, Phase III” [PT] OR “Clinical Trial, Phase

IV” [PT] OR “Controlled Clinical Trial” [PT] OR “Ran-

domized Controlled Trial” [PT] OR “Meta-Analysis” [PT]).

This query resulted in 270 citations (date of search

March 19, 2013). The abstracts were processed with

BeFree trained on GAD and EU-ADR corpora to find

gene-disease associations.

Case study on large-scale analysis of gene-disease

associations from the literature

We defined a PubMed query to retrieve documents per-

taining to human diseases and their associated genes

published from 1980:

(“Psychiatry and Psychology Category” [Mesh] AND

“genetics” [Subheading]) OR (“Diseases Category” [Mesh]

AND “genetics” [Subheading]) AND (hasabstract[text]

AND (“1980” [PDAT] : “2014” [PDAT]) AND “humans”

[MeSH Terms] AND English[lang]).

This query retrieved 737,712 citations (date of search

February 25, 2014), which were processed by Befree

trained on the EU-ADR corpus to identify relationships

between genes and diseases.

DisGeNET score

The DisGeNETscore is described at the DisGeNET web page

(http://www.disgenet.org/web/DisGeNET/v2.1/dbinfo#score).
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Here we reproduce its formulation in order to help in the

interpretation of the results. Briefly, we assign a score to

each gene-disease association in DisGeNET [51] according

to the source in which this association is reported (CU-

RATED, PREDICTED, LITERATURE), the level of cur-

ation of each source, and the number of publications that

report each association in the case of LITERATURE

sources. DisGeNET is a database on gene-disease associa-

tions covering all therapeutic areas, that integrates infor-

mation from resources curated by human experts

(UniProt and CTD), from orthologous genes from mouse

and rat (MGD, RGD and CTD), and from literature re-

positories by text mining (LHGDN and GAD). Thus, the

DisGeNET source databases are classified accordingly in

CURATED, PREDICTED and LITERATURE reflecting

the different sources where each association is reported.

The gene-disease associations extracted by BeFree are

then classified as LITERATURE once integrated in DisGe-

NET. For the associations reported in LITERATURE

sources, we can rank the associations based on the num-

ber of publications that support each association. The Dis-

GeNET score is defined as follows:

S ¼ SCURATED þ SPREDICTED þ SLITERATURE

S ¼ WUniProt þWCTDhumanð Þ þ W Rat þWMouseð Þ
þ WGAD þW LHGDN þ W BeFreeð Þ

Where

WUniProt ¼
0:3 if the association is reported by UniProt

0 otherwise

�

WCTDhuman ¼
0:3 if the association is reported by

CTDhuman
0 otherwise

8

<

:

WRat ¼
0:1 if the association is reported by

CTDRat or RGD
0 otherwise

8

<

:

WMouse ¼
0:1 if the association is reported by

CTDMouse or MGD
0 otherwise

8

<

:

W LITERATURE ¼
maximum if

ngd � 100

NLITERATURE
≥maximum

ngd � 100

NLITERATURE
if

ngd � 100

NLITERATURE
< maximum

8

>

<

>

:

maximum ¼
0:08 if source ¼ GAD

0:06 if source ¼ LHGDN or BeFree

�

W LITERATURE is the weight of source GAD; LHGDN and BeFree

NLITERATURE is the number of publications in source

ndgj is the number of publications reporting a

gene−disease association in source j

For more details on the DisGeNET score visit the Dis-

GeNET web page (http: //www.disgenet.org/).

Availability

The complete set of gene-disease associations extracted

by BeFree, with the supporting statements and informa-

tion on the provenance, are available in DisGeNET

(http://www.disgenet.org). The corpora used in this

study are available at http://ibi.imim.es/befree/#corpora.

DisGeNET data is distributed under the Open Database

License (http://opendatacommons.org/licenses/odbl/).
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Additional file 1: Table S1. Statistics of the EU-ADR and GAD corpora.
The Association type classifies the association according to the level of
certainty: TRUE (positive (PA), negative (NA) and speculative (SA)) and FALSE (FA).

Additional file 2: In addition, this article contains supplementary

information available online (http://ibi.imim.es/befree/

#supplmaterial).

Additional file 3: Table S2. Evaluation of BeFree and SemRep for
identification of drug-target, gene-disease and drug-disease relationships
using the EU-ADR corpus. A selection of the results obtained by BeFree
by 10-fold cross-validation on the EU-ADR corpus and the performance
of SemRep on the same corpus are shown. The first column indicates
the number of the experiment as it appears in http://ibi.imim.es/befree/
#supplbefree, Table 1. The second column shows if KSL is used with (TG
+SBG) or without (TG) sparse bigrams, or if it is not used (-). The next
two columns focus on KDEP walk features indicating the use of one of
the following features: token (T), stem (S), lemma (L), POS-tag (P), role (R)
or none (-). Finally, the last columns show the result obtained in each
experiment indicating Precision (P), Recall (R) and f-measure (F) in
percentage (%). *In the case of SemRep, note that the results were not
obtained by cross-validation.
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